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PATH TRACING IN PRODUCTION: PART 1 — PRODUCTION RENDERERS

Abstract

The last few years have seen a decisive move of the movie making industry towards rendering using
physically-based methods, mostly implemented in terms of path tracing. Increasing demands on the
realism of lighting, rendering and material modeling, paired with a working paradigm that very naturally
models the behaviour of light like in the real world mean that more and more movies each year are cre-
ated the physically-based way. This shift has also been recently recognised by the Academy of Motion
Picture Arts and Sciences, which in this year’s SciTech ceremony has awarded three ray tracing render-
ers for their crucial contribution to this move. While the language and toolkit available to the technical
directors get closer and closer to natural language, an understanding of the techniques and algorithms
behind the workings of the renderer of choice are still of fundamental importance to make efficient use
of the available resources, especially when the hard-learned lessons and tricks from the previous world
of rasterization-based rendering can introduce confusion and cause costly mistakes. In this course, the
architectures and novel possibilities of the next generation of production renderers are introduced to a
wide audience including technical directors, artists, and researchers.

This is the first part of a two part course. While the first part focuses on architecture and implementation,
the second one focuses on usage patterns and workflows.
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1 Objectives

The objective of this course is to provide the audience with insight into the inner workings of a modern,
production oriented, physically-based path tracer, as well as the ecosystem of tools and workflows sur-
rounding it. As more and more movies are rendered with this paradigm, powerful means to support the
intuition of technical directors at all levels of seniority are of primary importance in the solution of render-
ing problems. As the early adopters found out and rapidly shared with the community, the new paradigm
has obvious advantages in terms of of simpler and faster realistic lighting and material modeling, while
enabling novel workflows and reclaiming a few patterns that were typical of a rasterisation-based world.
It is immediately apparent that material and lighting modeling with physically-based entities is more in-
tuitive for artists, as the virtual world behaves more and more closely like the real world. An angle that
maybe is somewhat less obvious is how this also allows a separation of rendering algorithms from mate-
rial descriptions, resulting in more portable assets which require far less tweaking as they flow through
the pipeline from look development to lighting.

The world of architectural and product visualisation have illustrated how measured materials and
light sources can help attain a whole new level of realism, while the production environment is still in
the process of understanding how to harness the possibilities of these tools while allowing the necessary
control for artists.

To facilitate this kind of control, physically-based path tracing can be enriched by sidecar data such as
light path expressions or arbitrary output variables. To aid compositing, production tricks can be applied
inside the path tracing loop, involving matte objects or holdouts, as well as including non-physical effects
for instance via illuminance loops. Even though most of these concepts have been known for a long time,
new ways to best incorporate this into a physically-based renderer had to be found.

The path tracing paradigm has been around for along time, but it was only through the advances of the
last decade, both in terms of algorithmic research and hardware capability evolution, that is has become
a viable proposition for large-scale movie-making. Indeed, the recent evolution in the domain of noise
reduction algorithms, as well as the now ubiquitous use of progressive refinement have been instrumental
in this phase. To compute noise free and temporally stable images, many optimisation and tuning points
have to be built into the algorithms inside the renderer but also into the tools surrounding it. This enables
finer grained intervention such as for instance more precise compositing and an ever expanding family
of adaptive sampling strategies.

The course will review the coherent state of the art in path tracing for movie production, its novel
workflows, and software architectures that can face the challenges of the gigantic amounts of geometry,
textures, and light sources that make up a movie frame. Examples from recent productions (see Fig. 1)
provide evidence of the benefits of using path tracing in movie production.

Although advanced in nature, we welcome the opportunity to frame the course to engage a wide
audience including technical directors, artists, their producers and managers, as well as researchers. With
all the spearheading companies sharing and explaining the lessons they learned on the field, we hope
we'll be able to further improve the adoption of path tracing and help the audience gain the confidence to
explore, create and invent in the new world.

2 Syllabus

9:00 — Introduction to path tracing and Monte Carlo sampling

Luca Fascione will survey the principles of path tracing and modeling with physically-based entities,
which will serve as the foundation for all subsequent presentations. Monte Carlo integration is intro-
duced, and then applied to the light transport simulation context. The themes for the upcoming sections
will be then briefly introduced, illustrating how they relate to each other and together make the funda-
mental components of a modern path tracing renderer. At the same time, the course presenters will be
introduced and it will be pointed out how their revolutionary work is connected.
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9:20 — Arnold and How Path Tracing Took Over (30 min)

Monte Carlo path tracing is now the standard rendering approach in film VEX, animated films, commer-
cials and pre-rendered video game intros. The Arnold renderer from Solid Angle played a significant
role in the transition from rasterization-based technology. In this talk Marcos Fajardo will provide some
historical context on how studios made this transition and describe the key benefits that motivated it.
Marcos will also discuss some of the latest developments in the Arnold renderer as well as the challenges
that still lie ahead in the never-ending quest for increased detail and visual realism.

9:50 — Advanced path tracing in RenderMan: bidirectional, progressive pho-
ton mapping, VCM, UPBP (30 min)

RenderMan is a modern extensible and programmable path tracer with many features essential to han-
dling the fiercely complex scenes in movie production. In this talk Per Christensen will describe the
theory and practice of advanced path tracing techniques: bidirectional path tracing, progressive photon
mapping, vertex connection and merging (vcm), and unified points, beams, and paths (upBp). These
techniques can overcome some of the challenging lighting situations where regular path tracing will fail
(i.e. converge extremely slowly). Like regular path tracing, these techniques have gone from being pure
research techniques to now being implemented in some production renderers. But unlike regular path
tracing, they are not yet in mainstream use in movie production. Per will discuss some of the technical
and practical reasons why these advanced path tracing techniques have not yet caught on.

10:20 — Break (10min)
10:30 — Manuka, Weta’s Physically-Based Spectral Renderer (30 min)

In terms of color reproduction, Weta Digital’s renderer Manuka is taking physically-based seriously and
computes all transport on spectral power distributions instead of using the traditional rGB-based ap-
proach. Johannes Hanika will motivate this choice in his talk by showing theoretical and practical benefits.
This includes advantages of using real radiometric quantities during transport simulation and the effect
on importance sampling, as well as using actual photometric quantities on the ut side for the lighters. The
main differences to the RGB pipeline are explained along with the newly required tools, and the impact
on rendering gamut and color noise is discussed.

11:00 — Disney’s Hyperion Renderer (30 min)

Brent Burley will present changes to Hyperion made in support of Zootopia, Moana, and upcoming Dis-
ney animated productions. Significant developments include a transition away from multiple scattering
approximations to brute-force path tracing for hair and fur, skin, snow, and high-albedo volumes such
as clouds. Brent will continue describing how the Hyperion team addressed challenges with artistic con-
trol and efficiency, as well as future directions such as path tracing of cloth fibers. Additionally, Brent will
share some details about how Hyperion’s batch-based ray tracing architecture is evolving to accommodate
unbounded path lengths and leverage increasing core counts.

11:30 — Moonray, DreamWorks’s new Path Tracing Renderer (30 min)

MoonRay has been in development for the past four years and its growth has recently crossed the thresh-
old that enables production use. Brian Green will describe the inception and development of a brand
new physically-based path tracing production rendering system, leveraging, leading and improving var-
ious open source components. He will highlight some of the unique aspects of MoonRay’s vectorized
path tracing, shading and texturing architecture, and discuss the challenges and benefits of growing a
production rendering feature-set on top of a core rendering system designed with scalability and high
performance in mind.
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12:00 — Q&A with all presenters (1I5min)

3 Presenters

31 Luca Fascione, Weta digital (Organizer)

3.2 Johannes

Luca Fascione is Head of Technology and Research at Weta Digital where he over-
sees Weta’s core R&D efforts including Simulation and Rendering Research, Soft-
ware Engineering and Production Engineering. Luca architected Weta Digital’s next-
generation proprietary renderer, Manuka with Johannes Hanika. Luca joined Weta
Digital in 2004 and has also worked for Pixar Animation Studios. The rendering
group’s software, including PantaRay and Manuka, has been supporting the realiza-
tion of large scale productions such as Avatar, The Adventures of Tintin, the Planet of
the Apes films and the Hobbit trilogy. He has recently received an Academy Award
for his contributions to the development of the facial motion capture system in use
at the studio since Avatar.

Hanika, Weta digital (Organizer)

Johannes Hanika received his PhD in media informatics from Ulm University in 2011.
After that he worked as a researcher for Weta Digital in Wellington, New Zealand.
There he was co-architect of Manuka, Weta Digital’s physically-based spectral ren-
derer. Since 2013 he is located in Germany and works as a post-doctoral fellow at the
Karlsruhe Institute of Technology with emphasis on light transport simulation, con-
tinuing research for Weta Digital part-time. In 2009, Johannes founded the darktable
open source project, a workflow tool for RAw photography.

3.3 Marcos Fajardo, Solid Angle

Marcos is the founder and CEO of Madrid and London-based Solid Angle, where he
leads the research and development team working on the Arnold path tracing ren-
derer. Previously he was a visiting software architect at Sony Pictures Imageworks, a
visiting researcher at USC Institute for Creative Technologies under the supervision
of Dr. Paul Debevec, and a software consultant at various CG studios around the
world. He studied Computer Science at University of Malaga, Spain. Marcos is a fre-
quent speaker at SSIGGRAPH, FMX and EGSR. He has recently received an Academy
Award for the design and implementation of the Arnold renderer. His favorite sushi
is engawa.

3.4 Per Christensen, Pixar

Per Christensen is a principal software developer in Pixar’s RenderMan group in
Seattle. His main research interests are efficient ray tracing and global illumination in
very complex scenes. He received an M.Sc. degree in electrical engineering from the
Technical University of Denmark and a Ph.D. in computer science from the University
of Washington. Prior to joining Pixar, he worked at ILM in San Rafael, Mental Images
in Berlin, and Square USA in Honolulu. He has received an Academy Award for his
contributions to point-based global illumination and ambient occlusion.
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3.5 Brent Burley, Walt Disney Animation Studios

Brent Burley is a Principal Software Engineer at Walt Disney Animation Studios
leading the Hyperion development team. Previously he led the development of the
physically-based shading model used in all waps productions since Wreck-It Ralph,
and created Ptex, an open-source texture mapping system for subdivision surfaces
used on all waDps productions since Bolt. Prior to joining Disney in 1996, he worked
at Philips Media developing a cross-platform game engine, and also worked on air-
craft training simulators at Hughes Training Inc.

3.6 Brian Green, DreamWorks

Brian Green is a principal engineer in the R&D group at DreamWorks Animation,
where he has been working on film production rendering since 2005. Prior to that,
he held a similar position at Rhythm and Hues studios since 1997. Brian’s work
has primarily focused on sytem-level aspects of production rendering, including dis-
tributed rendering, multi-threading, and vectorization. Brian also worked on vari-
ous aspects of computer graphics, such as shading frameworks, AOVs, animation
systems, curve editors, and media tools. Brian was awarded a Technical Achieve-
ment Academy Award in 2016 for his work on Eve, part of the Rhythm & Hues digital
daily review system. Brian has along list of film credits including every DreamWorks
animated film sinch Over The Hedge.
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4 Introduction to path tracing and Monte Carlo sampling

JonaNNEs HANIKA, Weta Digital

This section summarises a few basic concepts of light transport and introduces the Monte Carlo integra-
tion scheme. This forms the foundation of the path tracing family of algorithms, which can be used to
synthesise pictures in a unified way. While we want to introduce all commonly used equations and explain
the terms therein, this will mainly form a basis for common notation rather than explain the underlying
principles in exhausting detail. For a more in-depth introduction we refer to Pharr et al. [2017].

41 The path space

To be able to unify lighting computations in one shared renderer (be it surfaces, subsurface scattering,
or volume contributions), we need to define a common mathematical frame work. Intuitively, we want
to track all possible paths that photons could take from all light sources via multiple interactions with
objects and their materials, into the camera lens. These photons will then be “counted” on the sensor.

The mathematical way of expressing all these individual transport paths is called the path space P and
contains all possible transport paths X = {x;, Xy, ..., Xx} € P, which are lists of k path vertices x.

To compute the color I,, of a pixel p, we then simply integrate over this space, weighted by a pixel filter
h(X), such as for instance the one derived by Harris [1978]:

IpZ/Ph(X) -f(X) dX, (1)

where f(X) is the measurement contribution function, which evaluates the differential flux through an
infinitesimally small hose around the vertices of the path. To illustrate this, the unit is W/m?*, i.e. watts
per one square meter for each of the k vertices along the path. Accordingly, the measure dX is the product
vertex area measure, i.e. a product of square meters: dX = Hle dx. As an additional mathematical
convenience, the measure dX is defined in such a way that it contains paths of all lengths k.

Veach [1998] introduced all this very carefully in his excellent dissertation. There is likely little need
to point this out here, however, many readers will have a printed copy of it on their bedside table (if not
you probably should have).

4.2 Transport equations

So far we introduced the mathematical framework, but did not talk about how light is actually transported.
This is expressed by the measurement contribution function f{(X). The exact form can be derived from the
radiative transfer equation as discussed by Chandrasekar [1960], which defines the change of radiance L
at a point x in direction w is due to emission (u,), extinction (4,), and scattering (u,):

(0 - V)L(x, 0) = pt, (x)Le(x) — ()L (%, @)

/ / / (2)
+p(x) | @(x, 0, 0")L(x,w")dw".
Q
This has been reformulated into a concise recursive integral equation by Kajiya [1986]. For brevity, here
is the version for vacuum transport, i.e. without participating media:

L(x,w) = Lo(x, w) + /f,(x, w, 0;)L(x, ®;) doi-. (3)
Q

The integration domain Q) is the (hemi-)sphere of incoming directions w;, and the measure dot =
cos 0 dw is the projected solid angle measure, which includes a foreshortening factor to account for Lam-
bert’s law. The term f,(.) is the bidirectional scattering distribution function (BSDF) and characterises
how incoming irradiance is converted to outgoing radiance. This is responsible for the look of surface
materials, such as texture or glossiness.
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Expanding this equation by unrolling the recursion to yield a path of length k results in the “flat view”
of the rendering equation, the measurement contribution function

k—2

fX) = LGy | [[iGi | W (4)
i=2

Note that this contains geometry terms G, which need to be applied for every edge of the path. These
convert the projected solid angle measure dw™ to vertex area measure, such that we can integrate f{X)
over the path space in product vertex area measure.

The geometry terms G also deal with occlusion, by means of a visibility operator. This can also be ex-
tended to include transmittance in participating media, for instance attenuation of light passing through
smoke. If the BSDF f, is also generalised to express the scattering collision coefficient and phase function
t - ¢(w, w;), this equation is suitable to render participating media, too.

The last term in Eq. (4), W, is the sensor responsivity function. It models how the sensor reacts to
light. While this is mostly used to un-do the vignetting caused by most camera models, it may also model
a spectral response corresponding to the colour filter array of the sensor.

4.3 The Monte Carlo method

Inserting Eq. (4) into Eq. (1), i.e. integrating the measurement contribution function over path space,
yields a high dimensional integration problem. Depending on path length, the integral can easily contain
hundreds of dimensions. This makes many popular integration schemes perform poorly (for instance
quadrature rules would yield exponential complexity in the number of dimensions).

The method of choice due to its behaviour for high dimensionality is the Monte Carlo method (see
for instance Ermakow [1975] or Sobol’ [1994] for an introduction).

The main idea is to make use of the definition of the expected value of a continuous random variable
x distributed with a probability distribution function (PDF) p(x) to solve the integral

E(x) = /x-p(x) dx (5)

by drawing a few random trials from x instead of solving the integral analytically. This results in a noisy
Monte Carlo estimator

Z|

1 N
==Y x~E(x). (6)
i=1

Applying this same principle to the path space integral, we need to divide out the probability distribution
function p(.) from the integrand f{X) to match the definition of the expected value in Eq. (5):

N
Ip:/Ph(X) 'f(x)dXzip:;ZW. 7)

The crucial difficulty in designing good estimators is now to find an appropriate PDF p(X) which min-
imises the integration error of this approximation. Such error manifests itself mostly due to variance

Var(l,) = % / <}’(;(<))];()X> —1p> p(X) dX. (8)

Mostly here means that we assume all employed algorithms will be unbiased, such that the error is spread
around the correct mean and the deviation will be only random noise, decreasing with higher sample
count N. Eq. (8) shows that the primary estimator & - f/p needs to be close to I, to reduce variance. In
practice, this can be achieved by variance reduction techniques, such as importance sampling. This tries
to choose p(X) to follow f(X) as closely as possible (of course the PDF will be normalised while fis not).
This goal is all but trivial to achieve in general for the high dimensional path space.

The following sections will give a run down through how these concepts are applied to image forma-
tion and embedded into the different pipelines at different studios.
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5 Arnold and How Path Tracing Took Over

MaRrcos FaJARDO, Solid Angle

51 Historical context

After playing around as a student with pre-opensource ray-
tracers like Vivid and POV-Ray, and educating himself in the
pre-PBR literature at the time, such as the Ray Tracing News
ASCII-based journal by Eric Haines (Haines [2010]), and An-
drew Glassner’s books (Glassner [1989], Glassner [1994]),
the skeleton of what later became the Arnold renderer was
started in 1997 by this author. The goal was in writing a tool
that would allow artists to take advantage of the increased re-
alism offered by physically-based, brute-force ray-tracing, a
rendering technique that was starting to become popular, but
that was prohibitively costly at the time. Rather than develop-
ing a polished product with a user interface, the renderer was
designed as a C-based application programming interface, or
API, so that it could be easily integrated into arbitrary 3D ap-
plications in both CAD and entertainment industries.

A visit to Blue Sky Studios in 1998, where the pioneering
ray-tracer CGI-Studio was already being used in the produc-
tion of films and commercials, sparked this author’s interest
into Monte Carlo ray-tracing techniques, and based on pub-
lished academic research by Jim Kajiya (Kajiya [1986]), Pe-
ter Shirley (Shirley [1991], Shirley [1992], Shirley and Chiu
[1994]) and others, the basic sampling components and
other bits started to crystalize into what was now clearly a
path tracer.

Around 1999, a 3dsMax plugin for the renderer was
developed. By now, the renderer was tentatively called
“Arnold”, as a nod to fellow VFX wizard Andy Lesniak and his particularly hilarious impersonations of
then Governor of California, actor and bodybuilder Arnold Schwarzenegger. Schwarzenegger’s Austrian
accent was in stark contrast to the beautiful and flawless Spanish accent of dubbing actor Constantino
Romero, which was a massive culture shock when this author first moved to the United States and watched
films like End of Days. The 3dsMax plugin allowed the animated short film Pepe (see Fig. 1) to be rendered
with unbiased global illumination on just a handful of machines by Spanish animator Daniel Martinez
Lara. This short film popularized the term “global illumination” amongst CG artists around the world
and, as they say, the rest is history.

In 2004, Arnold was adopted at Sony Pictures Imageworks for the rendering of the animated movie
Monster House, which required a particularly realistic and tactile marionette look that was very difficult
to achieve with commercial rendering products at the time. The success of this project led to Imageworks’
licensing of the Arnold source code, the expansion of its in-house rendering development team, and a
full migration to Arnold for all their future films. The production demands of their next animated film,
Cloudy with a Chance of Meatballs, led to further development of important features such as ray traced
curves, sub-surface scattering, and deformation motion blur, as well as speed and memory optimizations.
With the production experience gained while at Imageworks, the Madrid-based company Solid Angle
was formed in 2009 to continue to develop and market the renderer to a wider audience. A series of
conference talks and papers on the benefits of path tracing, and on specific algorithmic advances that
were developed in-house at both Solid Angle and Imageworks, contributed to the industry’s realization

Daniel Martinez Lara
Wwi.pepeland.com

Figure 1: “Pepe” image courtesy of Daniel
Martinez Lara. © 1999 Daniel Martinez
Lara. All rights reserved.

SIGGRAPH 2017 Course Notes: Path tracing in Production Page 10/ 37



PATH TRACING IN PRODUCTION: PART 1 — PRODUCTION RENDERERS

that path tracing was here to stay, and that not only was it a viable alternative to rasterization-based
renderers, but it was clearly the most promising direction of research. Both VFX and animation studios
jumped at the opportunity to simplify their pipelines, while at the same time increasing the realism of the
images that they could produce on ever tightening budgets.

5.2 Motivation

At a purely technical level, realism in CG images boils down to two things: scene detail (number of poly-
gons and hairs, number and size of textures, variety of materials) and quality of lighting simulation (soft
shadows, reflections, refractions, diffuse bounce light, etc). The prevailing systems at the time, in the early
2000, could either render very complex geometric data sets with poor lighting simulation (REYES and
rasterization-based renderers), or render simpler scenes with much higher quality, ray-traced shading
effects. You couldn’t get the best of both worlds, and often had to make concessions, such as in shadow
quality. The goal of Arnold was to be the first physically-based production ray tracer that scaled to film
complexity. The basic architecture was therefore motivated by the need for an efficient, light-weight sys-
tem capable of generating artifact-free images in a single pass, avoiding expensive pre-processing, and
minimizing both disk and memory usage. The system should also be easy to use, with a minimal set of
controls, enough to provide a basic level of art direction. Path tracing ticked most of these boxes from
the very beginning. In particular, shadows were always perfect. The only artifact was a fine-grain noise
in the rendered images, which, as annoying as it can be at low sample settings, is guaranteed to converge
to the right result. This consistency and reliability proved to be one of the main cost savings for stu-
dios, which no longer had to spend hours fighting with the renderer just to identify where image artifacts
were coming from. At the same time, the fact that path tracing allows for a lower time-to-first-pixel and
progressive-sampling of the image plane, meant that artists could quickly try variations in shading and
lighting without the need for a multi-hour render to finish. In essence, it proved to be more cost effective
to let the machines render final frames for longer, than to have artists sitting around fighting with a more
complicated renderer that could do faster final frames. An hour of an artist’s time can cost hundreds of
times more than an hour of CPU time.

5.3 Architecture

Arnold is an unbiased, uni-directional (backwards) CPU path tracer, based on a classical ray tracing ker-
nel. It is built on top of a programmable, node-based architecture, with different types of nodes such as
geometric primitives, shaders, cameras, or lights. Nodes can be interconnected in a node network, for
example in a shader network to form complex materials. Geometric primitives include polygon meshes,
hair curves, volumes, procedurally-created geometry, and simple quadrics. A two-level hierarchy of BVH
ray acceleration data structures is used to hold the scene’s geometry. This BVH is able to intersect differ-
ent types of primitives at the leaf level, whether it’s polygons, hairs, or particles. A great deal of effort was
spent in optimizing these ray accels to minimize memory use, build time, and traversal time. Geomet-
ric primitives can be instanced any number of times, which allows the easy creation of massive scenes
containing vegetation, debris, crowds, etc. Even without instancing, the system is efficient enough that
around a billion polygons can be stored in 24 GB of memory. Primitives are stored in memory in a
compact representation using both lossless and lossy compression techniques where appropriate.

5.4 Sampling

As first described by Cook et al. [1984], at the core of the renderer lie several numerical integration sub-
problems that are solved via Monte Carlo sampling, such as soft shadows, depth of field, indirect lighting,
or motion blur. Stratification and importance sampling are the two most important techniques for reduc-
ing the variance of the estimators involved (see e.g. Glassner [1994]), and this is where we spend most of
our research efforts. In particular, the sub-problem of direct lighting by next-event estimation is an area
where, even today, after decades of publications on the subject, improvements are still found. Arnold
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Figure 2: These images show next event estimation in a participating medium, lit by a disk-shaped area
light source. Left: naive area sampling compared to right: importance sampling of the solid angle. This
technique is described in detail by Guillén et al. [2017].

makes extensive use of the solid angle domain when sampling direct lighting (see Fig. 2). Ideally, all area
lights would be sampled according to the cosine-weighted, projected solid angle of the light with respect
to the shading point. This, however, is extremely difficult to do with closed-form, analytical expressions
for the sample directions.

Some of the recent sampling improvements in Arnold include equi-angular and decoupled ray march-
ing (Kulla and Fajardo [2012]), BSSRDF importance sampling (King et al. [2013]), solid angle (Urena et al.
[2013]) and cosine-weighted solid angle sampling for quad area lights (Arvo [2001]), solid angle sampling
for disk lights (Guillén et al. [2017]), and blue-noise dithering patterns that perceptually improve the dis-
tribution of the sampling error across adjacent pixels (Georgiev and Fajardo [2016]).

As for indirect lighting, as much as we have tried to experiment with bi-directional techniques (such
as Lafortune and Willems [1993], Veach and Guibas [1994]), Arnold is still a uni-directional path tracer.
It turns out that uni-directional path tracing can efficiently solve a very wide subset of the interesting
scenes that we must render in production, with little to no technical work required from the artist. While
bi-directional techniques can work very well in some difficult lighting scenarios, they can also introduce
artifacts and inefficiencies in the larger number of “easier” scenes where uni-directional already works
very well. It is not clear how to automatically select the algorithm that works best for each scene, other
than let the artist select the algorithm, and add a number of obscure heuristics and controls that the
artist then needs to master. It is our hope that we will eventually find an algorithm that is more robust
to all of these different scenes without the need for human intervention, yet is as efficient as the simpler,
uni-directional path tracing algorithm.
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6 Advanced path tracing in Pixar’s RenderMan

PER CHRISTENSEN, Pixar Animation Studios

Pixar’s RenderMan renderer is a modern, extensible, and programmable path tracer with many features
that are essential to handling the fiercely complex scenes encountered in movie production.

6.1 Historic background

RenderMan was originally a scanline renderer based on the Reyes algorithm by Cook et al. [1987] which
offered ground-breaking efficiency in terms of geometric complexity, texture caching, antialiasing, high-
quality motion blur and depth-of-field effects, SIMD shader execution, and more - see Upstill [1990]
and Apodaca and Gritz [2000]. Pixar’s early short films, the first feature-length CG animated movie, Toy
Story, and many many other movies have been rendered with this algorithm.

However, shadows had to be computed with shadow maps, reflections with reflection maps, and in-
direct diffuse illumination had to be “faked” by manually placing additional light sources (a very labor
intensive and high-expertise task).

Over the years, many features were added to RenderMan on top of the Reyes algorithm: ray trac-
ing for shadows, specular reflections, and ambient occlusion (see Christensen et al. [2003]), point-based
algorithms for noise-free subsurface scattering, ambient occlusion, and indirect diffuse illumination
(see Christensen [2008]), and efficient distribution ray tracing for indirect diffuse illumination (see
Christensen et al. [2012], Cook et al. [1984]). At last count, nearly 400 CG and VEX movies have been
rendered with the help of RenderMan.

6.2 Modern architecture

Over the last few years, we have rewritten RenderMan as a path tracer Kajiya [1986]. The modern version
of RenderMan has been used to render the Pixar movies Finding Dory and Cars 3, as well as recent movies
by other studios such as Terminator Genisys, Ant Man, The Jungle Book, and Star Wars Rogue One.

- m

Figure 3: A pivotal moment in the Cars 3 movie. (Copyright © Pixar/Disney 2017.)

The reasons for the switch to path tracing were that it is a unified and flexible algorithm, it is well suited
for progressive rendering, geometric complexity can often be handled through object instancing, and itis a
single-pass algorithm (unlike the point-based approaches that require a pre-pass to generate point clouds).
Also, the Achilles’ heel of path tracing — noisy images and slow convergence — has been adressed by new
and effective denoisers (as described by e.g. Zimmer et al. [2015], Zwicker et al. [2015]) and improved
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sampling. Furthermore, it was getting increasingly hard to scale the Reyes-based architecture to run
efficiently beyond 16 threads.

It was important to still provide flexibility and programmability similar to the original RenderMan
architecture. This is to enable our customers to create their own materials and experiment with different
rendering algorithms based on path tracing. We use a plug-in architecture, where users can write their
own rendering algorithms and materials (“integrators” and “bxdfs”). The interface is largely inspired by
the PBRT book by Pharr et al. [2017].

We keep groups of ray hits on the same material together in “shade groups” so that their bxdf can be
evaluated together in a single function call. This enables compiler optimizations such as SIMD execution,
vectorization, loop unrolling, etc. in the bxdf execution, as also gives improved data locality.

Other properties that have been maintained in the “new world” of path tracing is the use of multi-
resolution textures and multiresolution tessellated geometry, with the appropriate resolution determined
by ray (path) differentials as described by Christensen et al. [2003], Igehy [1999], Suykens and Willems
[2001]. This is necessary to be able to handle heavily textured surfaces (more than 20 textures per surface
is common) and hugely complex scenes when the geometry is not suitable for instancing.

6.3 Surface (and volume) materials

Surface materials are specified by bxdfs and by texture patterns to control the parameters of the bxdfs.
“Bxdf” is an abbreviation of “bidirectional reflection/transmission/surface-scattering distribution func-
tion” for surfaces, and also encompasses phase functions for volumes. The textures can be computed
procedurally (for example using OSL) or by looking up in texture maps.

Sadly, gone are the days where a novice TD could quickly learn to write an RSL (RenderMan Shading
Language) shader computing surface reflection and transparency. With physically-based rendering it
is much more complex: bxdfs are written in C++ and require knowledge about optics, sampling and
probability theory, probability density functions (pdfs), and much more.

The two main functions specifying a bxdf are Evaluate() and Generate(). Evaluate() takes as input
an array of incident directions and an array of exitant directions, and returns an array of rgb bxdf values
(each value being the ratio of reflected radiance in the exitant direction over differential irradiance from
the incident direction) and two arrays of pdf values. Generate() takes as input an array of incident direc-
tions and generates an array of “random” exitant directions along with two arrays of pdf values for those
directions.

Users can write their own bxdfs or simply use one of the bxdfs provided with RenderMan. The most
general of the provided bxdfs is PxrSurface, a general-purpose “uber-bxdf” developed by Pixar’s studio
tools illumination group and used on Finding Dory, Cars 3 and future Pixar movies. Depending on the
input parameters this bxdf can look like plastic, metal, paint, glass, skin, and many other materials. (We
also provide a simpler bxdf based on Disney’s bxdf model developed by Burley [2015].)

Subsurface scattering in skin and other translucent materials is rendered with efficient local path
tracing. The amount of scattering is determined using various diffusion approximations: dipole diffusion
by Jensen and Buhler [2002], Jensen et al. [2001], quantized diffusion by d’Eon and Irving [2011], photon
beam diffusion by Habel et al. [2013], or normalized diffusion by Burley [2015], Christensen and Burley
[2015]. Lately we are also experimenting with brute-force subsurface scattering, i.e. subsurface scattering
computed with Monte Carlo simulation of a homogeneous volume (an approach pioneered by Weta and
Disney). For the brute-force approach, intuitive surface scattering parameters are converted to equivalent
volume scattering parameters (volume albedo and extinction coefficients) used in the simulation.

For hair, fur, and feathers we provide a bxdf that is based on the model by Marschner et al. [2003]
with later improvements by Hery and Ramamoorthi [2012], Pekelis et al. [2015].

Volumes can have zero scattering (just attenuation with Beer’s law), single scattering or multiple scat-
tering, can have homogeneous or heterogeneous density, and can have isotropic or anisotropic scattering.
Volumes can be nested within other volumes, or overlap each other. To complicate matters further, the
volumes can be emissive (as a flame, fire, neon tubes, etc.) Villemin and Hery [2013] and have motion
blur Wrenninge [2016]. RenderMan keeps track of the volumes that a ray enters and exits, and integrates
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over all volumes covering a region; it also samples emitting volumes as light sources. RenderMan’s vol-
umes are covered in much more detail in the course notes by Fong et al. [2017].

6.4 Rendering algorithms

RenderMan has an interface that allows the implementation of various rendering algorithms (“integra-
tors”) based on path tracing. Unidirectional path tracing is the simplest production-quality integrator,
but even that is far from trivial due to stochastic light selection in scenes with many light sources, Russian
roulette, arbitrary output variables (AOVs) specified by light path expressions (LPEs), deep output im-
ages, volume tracking, mattes, and many other features that allows tweaking the rendering to obtain the
results a movie director may demand. Even though the path tracing algorithm is based on a Monte Carlo
simulation of physics, there is still a need to “cheat” from time to time, for example by altering shadows,
or adjusting the position and intensity of highlights and indirect diffuse illumination.

Bidirectional path tracing was developed independently by Lafortune and Willems [1993] and by
Veach and Guibas [1994]. It traces paths from the light sources in addition to paths from the camera,
and connects the paths with shadow rays. Bidirectional path tracing is advantageous in scenes where the
illumination is mainly indirect, for example in interiors with the light sources “hidden” behind lighting
fixtures. Despite this advantage, bidirectional path tracing has not caught on as much as unidirectional
path tracing in actual movie production. One of the reasons is that the texture cache accesses are much
less well-behaved: for unidirectional path tracing the rays are either coherent or can use coarse levels in
texture maps, but for bidirectional path tracing the light paths are sometimes both incoherent and require
rather fine levels in the texture maps — a combination that is deadly for texture cache performance. Also,
many of the non-physical tricks that have been developed for unidirectional path tracing do not work so
well for the light paths in bidirectional path tracing.

Figure 4: VCM rendering of light from a textured light source being refracted through a Fresnel lens and
focused on a diffuse wall. (Image courtesy of Andrew Kensler.)

Vertex connection and merging (VCM, also known as unified path sampling or UPS) by Georgiev et al.
[2012] and Hachisuka et al. [2012] is a combination of bidirectional path tracing with progressive photon
mapping (as developed by Hachisuka et al. [2008]). VCM excels at rendering caustics and reflections of
caustics (which simpler algorithms have a harder time rendering to convergence).

The UPBP (unified points, beams, and paths) algorithm by Ktivanek et al. [2014] is a generalization
of VCM to volumes. It is particularly suitable for rendering volume caustics and reflections of volume
caustics.
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Figure 5: UPBP variation on the classic Luxo Jr. scene. Note the volume caustic under the glass sphere
and the reflection in the table of the volume caustic. (Image credit: Brian Savery, Martin Sik, and Per
Christensen.)

6.5 Interactive rendering

RenderMan has traditionally been mainly used for final-quality movie rendering. But we are also increas-
ingly focusing on interactive rendering, including optimizing the time to first pixel, time to first complete
iteration (one sample per pixel), and “time to first decision” (typically just a few samples per pixel).

With progressive path tracing the first images are of course very noisy, but users are able to make
creative decisions (change of scene geometry, texturing, illumination, etc.) very quickly despite the noise.
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7 Manuka, Weta’s Physically-Based Spectral Renderer

JonaNNEs HANIKA, Weta Digital
Luca FascioNg, Weta Digital

While the first session introduced the path tracing framework and the transport equations for a full path,
these were written without wavelength dependency. Actually most of the terms such as BSDF, transmit-
tance, emission, or sensor responsivity have spectral equivalents and depend on wavelength. Modelling
this wavelength dependency as closely as possible to physical reality results in much improved fidelity, as
well as better importance sampling.

71 Colour formation in a renderer

Mostly, the rendering equation is written without explicit dependency on wavelength A. This is because
even when doing colour or spectral transport, the equation is usually interpreted as grey transport, i.e.
every wavelength can be treated independently. In the most simple case, colour is treated completely
detached from the path sampling. This means the path is constructed and colour is added in by mul-
tiplying colour dependent BSDFs, transmittances, etc. Ignoring cases where path creation has a strong
dependency on wavelength (we’ll get to that in a bit), this boils down to multiplying chromatic factors,
for instance for a simple path:

fX) = Le() - G1 - fr(A) - G2 - W(A). 9)

This will be integrated in the frame buffer, to yield tristimulus colour:

x= [ fyama, (10)
380..830nm

where X is the first channel of the CIE XYZ tristimulus colour space and x(1) is the normalised colour
matching function for this channel. The Y and Z channels are computed analogously. See for instance
Fairman et al. [1998] for more information on the colour matching functions.

What happens in RGB transport, when using the CIE RGB primaries, this equation will only be eval-
uated for three distinct wavelengths of 700 nm (red), 546.1 nm (green) and 435.8 nm (blue). It is clear
that a lot of information between these wavelengths is lost because it is never evaluated. On the other
hand, the transport for these wavelengths is evaluated physically correctly. The tristimulus values which
end up in the frame buffer are then directly

R = f(A =700nm), G = f(A=546.1nm), B = f(A = 435.8nm). (11)

In general, using any other RGB space to perform the multiplications in Eq. (9) and replacing the integral
in Eq. (10) like in Eq. (11) is wrong and will yield non-physical transport. This is especially apparent for
indirect illumination. Agland [2014] performed extensive comparisons on the impact of the rendering
colour space.

This is why Manuka performs all light transport computations in spectral, and only converts to a
colour in the frame buffer. Many options to transport and represent spectra have been devised in litera-
ture. The simplest method is to just transport one wavelength bin for every five nanometers of spectral
resolution. Since this is also the resolution of the CIE colour matching functions, the results are expected
to be good.

Discretising the domain, however, theoretically introduces some bias. While this would likely not
matter in this case at this resolution, it also has implications on importance sampling. Thus, Manuka
transports a continuously sampled wavelength in the spirit of the Monte Carlo method. This wavelength
is then used to drive the importance sampling of the path. Naturally, introducing a random variate intro-
duces noise. The wavelength has to be chosen carefully, and we further employ path reuse and stratifica-
tion to reduce colour noise (the hero wavelength scheme, as detailed by Wilkie et al. [2014]).
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MacAdamn’s limit, illuminant E smooth spectra

Figure 6: The maximal gamuts of surface reflection, reproduced after Meng et al. [2015]. The graphs show
the maximum brightness (X + Y+ Z) of a surface colour (for instance diffuse albedo), as an iso line graph.
The coordinate system as seen from the top is the standard space of chromaticities, i.e. x = X/(X+ Y+ Z)
andy = Y/(X + Y + Z). Left: the theoretical maximum which can possibly be achieved using step
functions as spectra. Right: a slightly smaller gamut that can be achieved using more natural, smooth
spectra.

7.2 Colour reproduction

With spectral rendering, precise colour reproduction is simple. All relevant formulas are collected in the
fundamental book by Wyszecki and Stiles [2000]. Just model the light source emission, the surface reflec-
tion, and the camera responsivity with measured spectral data and the result will be correct. Modeling
the spectral camera response will also give a render directly in camera RGB space rather than XYZ. This
means that the render will even show the same metamerism as the live footage. There are, however, a few
subtleties to keep in mind.

As often, physical plausibility has advantages and downsides. A possible downside, especially when
rendering cartoons, may be that energy conservation poses a limit on colour saturation and brightness of
a surface. This has been recognised early on by Schrodinger [1919] (and who are we to argue with that).

The issue is that energy conservation dictates that, in the absence of fluorescence, no wavelength A
may result in more reflected than incoming energy:

/fr(x,a),a),‘,ﬂl)dwiL <1 VA (12)
Q

For a diffuse BSDE, f, = p(1)/m, where p(A) is the albedo, this means that p(1) < 1 for all wavelengths
A. Now the total brightness of the surface as seen in an RGB image has something to do with the XYZ
brightness, i.e. X + Y + Z, which is essentially the integral of p(1). Naturally, a more saturated colour
means a more peaky spectral shape, which forces the integral to diminish since the maximum cannot be
increased.

Fig. 6, reproduced after Meng et al. [2015], shows the limits on brightness of a surface colour (X +
Y + Z), depending on colour saturation. As the chromaticity of the colour moves towards the edge of
the spectral locus, the maximum achievable brightness becomes dimmer. The gamut shown on the left is
the one derived by MacAdam [1935], who gave a constructive proof which spectra will yield the highest
possible brightness for a given chromaticity. The one on the right is derived by Meng et al. [2015] and uses
more natural smooth spectra. These lead to more believable indirect lighting, since the shape is usually
closer to most reflectances encountered in the wild.
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In the future, to add even more realism, renderers may require fluorescence to exceed the MacAdam
gamut, similar to Couzin [2007]. Note that this is only an issue when such bright and saturated colours
are required. For the more regular case, that realistic surface reflection needs to be reproduced, this limit
of energy conservation poses a natural restriction on the look of the materials. This automatically avoids
unrealistically bright and glowing surfaces. Together with smooth spectra, this results in much more
life-like indirect lighting than using RGB transport.

7.3 Where to get input spectra from

We can get spectral definitions for some light sources or cameras from the manufacturers. Also some
special materials, such as for instance spectral absorption of melanin (for hair) and hemoglobin (for skin)
can be readily found in text books.

Even for these it is sometimes useful to be able to overrule or modulate them by artist-drawn textures.
Since these are usually working in RGB, there is a need to convert tristimulus data to full continuous
spectra.

Early work by MacAdam [1935] facilitates this, but with the limitation that the resulting colours will
always be as bright as possible and thus box functions in shape. Since natural reflection spectra are usually
smooth, this results in unnatural looking indirect lighting.

Smits [1999] devised a method to upsample RGB values to spectra, taking into account smoothness
and optimising the process to try and achieve energy conservation too. Depending on the input tris-
timulus coordinate, it may not be possible to meet both goals: chromaticity and energy conservation.
Also, this method only works for within a certain RGB working space, not for the whole gamut of visible
colours. Meng et al. [2015] recognise this and separate the process into two steps: first, the colour from
tristimulus values is upsampled, disregarding energy conservation. Secondly, a gamut mapping step is
performed that enforces energy conservation in case the input colour was too saturated and bright for
a physically plausible reflectance value. This is not needed in case a light source emission is upsampled
from RGB values.

This approach ensures a surface lit by illuminant E will look the same when using the RGB reflectances
and the upsampled spectrum, when observed with the CIE XYZ colour matching functions.

7.4 Colour noise

As mentioned above, introducing a randomly sampled wavelength A into the path tracing process in-
troduces noise. Fortunately, natural reflectance spectra are smooth, and also forced to be this during a
potential upsampling step from tristimulus texture input. It is thus an effective strategy to use stratified
samples in the wavelength domain to resolve colour.

Wilkie et al. [2014] do this in combination with efficient path reuse: the path construction is still
performed with one main wavelength, and a set of 3 stratified wavelengths are evaluated alongside with it.
The final contribution is weighted using multiple importance sampling (MIS), resulting in a much lower
variance picture.

The evaluation of the PDF and wavelength-dependent BSDF can be performed in SSE, evaluating four
wavelengths in four lanes in one instruction.

Note that this method requires precise computation of PDFs (that is, a stochastically evaluated or
approximate PDF may lead to problems). Due to its usefulness for noise reduction we adopted this scheme
in Manuka, throughout all sampling techniques. More advanced MIS techniques share the requirement
on consistent PDF evaluation, so enforcing this on all our sampling techniques actually resolved a few
headaches when experimenting with new path construction algorithms.

75 Importance sampling

While at first sight it may seem path construction can be performed independently of wavelength, there
are a few important special cases.
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The first is obviously chromatic dispersion in dielectrics, causing the prominent rainbow like colours
in caustics, for instance under a glass of water on a table in the sun. This is one obvious effect that is hard
to model in an RGB-based rendering system. On the other hand, shots with such effects are relatively rare.
This is even more so because usually the visually rich materials in VEX have fine details such as scratches,
grease stains on glass, or dirt particles scattering the light under water. All this blurs or masks away such
subtle dispersion effects most of the time.

There are some scattering models which include a spectral shape of the lobe. This includes diffraction
at surface points as well as Rayleigh scattering in the atmosphere. Using spectral sampling, it is easy for
us to incorporate such advanced models into our render.

The most important case, however, is chromatic extinction in participating media. That is, the extinc-
tion coeflicient y,(x, 1) depends on the wavelength. This governs the transmittance term

7(t) = exp (—/0 u,(x(s), 1) ds) , (13)

which is simply exp(—u,(A) - t) for homogeneous media. The mean free path in the medium 1/, depends
on the wavelength in chromatic media, resulting in very different importance sampling strategies for red
vs. blue photons.

This is important for instance when using fully ray traced subsurface scattering in skin: skin has a
particular look that scatters red light farther than blue light. This is the reason why black and white
portrait photography looks smoother with a red filter.

The domain of distance sampling is fairly extreme: [0, 00). This means that scattering vertices will
be sampled far apart when importance sampling the transmittance for different wavelengths. In some
cases, when one wavelength does not interact with the medium at all, this leads to infinite variance, as
recognised by [Raab et al., 2008, Sec. 3.2].

This application of spectral importance sampling is the important one for us, since it is very hard to
perform principled importance sampling which can be combined in a flexible way with generic sampling
strategies in RGB transport (such as combination with equi-angular sampling or sampling distances by
scattering coeflicient instead of extinction).

7.6 Radiometry vs. Photometry

Radiometric quantities (such as watts for flux or watts/square meter/steradian for radiance) are great to
work with during light transport, since they allow a 1:1 mapping to the equations we find in physics books.

For a lighter, however, it may be more intuitive to work with photometric quantities. These account
for the fact that different colours appear to be of different brightness for a human observer. To be pre-
cise, a spectral power distribution can be converted from radiometric quantities to photometric ones by
weighting by a luminousity function. Usually the photopic, daytime brightness function of the CIE is used.
This allows us to express radiant power not in watts but as lumen, which is then called luminous power,
for instance. For all radiometric quantities, there are equivalent photometric ones (cf. Tab. 1). Designing
user interfaces for lighters around this notion allows them to change the colour of a light source while
maintaining the perceived brightness in a principled way.

As said earlier, when dealing with spectral light sources, the photopic luminosity function y(2) is used:
this is the result of a series of experiments and tabulations first published by the International Commission
on [llumination (c1E) in 1924 (the function was called V(1) at the time) and then included in the color
matching functions for the standard 2 degree colorimetric observer, published in 1931.

At this point we have enough information to write equations correlating radiometric quantities to
their corresponding photometric ones: given a radiometric spectral quantity X, (..., A) the correspond-
ing photometric quantity X, (. . .) is simply obtained integrating X against K, - (1) where K, is a scaling
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Radiometric spectral Photometric
name unit symbol| name unit symbol
Radiance W/(m?-sr-m) L, |Luminance nit nt=Im/(m?-sr) L,
Irradiance W/(m? - m) E) |Hluminance lux Ix = Im/m? E,
Radiosity W/(m?* - m) Jo | Luminosity lux Ix = Im/m? Iy
Radiant emittance W/(m?-m) M, |Luminousemittance [lux Ix = Im/m? M,
Radiant intensity W/(sr-m) Iy |Luminous intensity candela  cd = Im/sr I,
Radiant power  watt W/m ®, |Luminous power lumen Im D,
Radiant energy  joule J/m = W-s/m Q) |Luminousenergy  talbot Tb=1Im-s Q

Table 1: Correspondence between radiometric and photometric units. We abbreviate the unit for lumi-
nous energy talbot as Tb instead of the also common T to avoid confusion with the unit for magnetic flux
tesla. We also use the convention of subscripting photometric quantities with v (for visual), radiometric
quantities with e (for energetic) and spectral radiometric quantities with A. this follows the recommenda-
tions in documents such as USAS and ASME [1967].

constant about equal ! to 683:

X,(..) = Km/X,\(...,)L)y(A)dA.

For example, given spectral radiant power @) (1), the corresponding luminous power @, is

7.7 Conclusion

Spectral rendering is an integral part of the Manuka renderer, and one we wouldn’t want to roll back. The
hero wavelength scheme ensures that it almost doesn’t cost us anything in terms of performance when
compared to RGB transport. We have seen that employing RGB transport is in general not computing
physically based light transport, and can lead to visibly wrong indirect lighting and high variance. As a
VEX studio, we care a lot about a precise match of render and plate, and spectral rendering helps us to
achieve this: using measured light source spectra, camera responsitivities, and advanced material models.
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8 Recent Advancements in Disney’s Hyperion Renderer

BRENT BURLEY, DAVID ADLER, MATT JEN-YUAN CHIANG, RALF HABEL, PATRICK KELLY, PETER KUTZ,
YininGg Karr Lt, DANIEL TEECE?

~© 2017 DISNEY

Figure 7: A production frame from Moana, rendered using Disney’s Hyperion Renderer. (Copyright ©
Disney Animation 2017.)

81 Introduction

Path tracing at Walt Disney Animation Studios began with the Hyperion renderer, first used in produc-
tion on Big Hero 6. Hyperion is a custom, modern path tracer using a unique architecture designed to
efficiently handle complexity, while also providing artistic controllability and efficiency.

The concept of physically based shading at Disney Animation predates the Hyperion renderer. Our
history with physically based shading significantly influenced the development of Hyperion, and since
then, the development of Hyperion has in turn influenced our philosophy towards physically based shad-
ing.

811 History of Physically Based Rendering at Disney Animation

A major theme in the past decade of rendering at Disney Animation has been the advantages of physically
based solutions over biased approximations, for both visual richness and artistic controllability. Early
successes with physically inspired hair shading on Tangled led to the development of the Disney BRDF
by Burley [2012] during Wreck-It Ralph, and was subsequently extended into the modern Disney BSDF
with subsurface scattering and refraction during Big Hero 6 (as described by Burley [2015]). Adopting
physically meaningful parameters made shader response more predictable and intuitive for artists.

At the same time, moving from REYES-style rasterization rendering to physically based path tracing
has removed the considerable data management overhead imposed on artists to manage the shadow maps,
point clouds, and more that rasterization rendering necessitated. We continue to strive for ease of use by
simplicity and consistency—“it just works”.

8.1.2 Inception of Disney’s Hyperion Renderer

The Hyperion renderer was developed at Walt Disney Animation Studios with the aim of providing global
illumination within a physically based framework while retaining the benefits of highly coherent shading

? Author names after Brent Burley are presented in alphabetical order by last name.

SIGGRAPH 2017 Course Notes: Path tracing in Production Page 26/ 37



PATH TRACING IN PRODUCTION: PART 1 — PRODUCTION RENDERERS

Figure 8: A production frame from Zootopia, rendered using our fully path-traced fur model. (Copyright
© Disney Animation 2017.)

shown in previous production-proven rasterization-based strategies. Beginning in 2011 and continu-
ing through 2012, an initial period of research and exploration was followed by a prototype and proof-
of-concept stage where successful ideas were tested at a production scale. The results were compelling
enough to drive development into a full production renderer over a short time period from 2013 to 2014,
coinciding with the production of Big Hero 6. Hyperion has subsequently been used to render the feature
films Zootopia and Moana, and is being used to render all projects currently in production at the studio.

The core of Hyperion’s architecture is sorted deferred shading. Starting with primary rays we perform
ray sorting, binning rays by direction and grouping them into large, sorted ray batches of fixed size. Next,
we perform scene traversal, one sorted ray batch at a time. We use a two-level quad BVH with streaming
packet cone traversal in the top level, and single-ray traversal in the bottom. We exploit the fact that
our ray batches are directionally coherent to perform approximate front-to-back traversal at each node.
The result of traversal is a list of hit points, one per ray. Next, hit point sorting organizes ray hits with
the aim of maximizing coherent access from the texture cache. If a shading task has many hit points, it
is partitioned into sub-tasks, further increasing parallelism. The shader also feeds secondary rays back
into ray sorting to continue ray paths. Increasing the batch size provides improved coherence and better
performance for traversal and shading. A more detailed description of this architecture is presented by
Eisenacher et al. [2013]

The introduction of Hyperion has produced numerous benefits across the studio. Due to the ease
of use, more departments can render full frames, and we now render shots continuously in all stages of
production with full global illumination. Higher quality rendering in all stages of the production process
provides a much earlier view into the look of each show. Because of the predictability of the results,
artists are able to final frames in fewer iterations than before path tracing. As the complexity of our films
continues to increase, the Hyperion renderer grows and evolves to meet the unique challenges of each
show.

8.2 Transitioning from Multiple Scattering Approximations to Brute-force So-
lutions

Historically, phenomena requiring large amounts of multiple scattering were prohibitively computation-
ally expensive to evaluate using physically correct brute-force solutions, so approximations were typically
used instead. Many of our projects since Big Hero 6 have required complex multiple-scattering effects,
such as the fur in Zootopia, snow in Frozen Fever, various cases in Moana, and volumes in upcoming
shows. Moving to path tracing has allowed us to discard previous approximate solutions and move to-
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Figure 9: Fur rendered with path-traced multiple fiber scattering (top) vs. its Dual Scattering approxima-
tion, both using the same lighting setup and same absorption coefficients in the fur strands. For more
details, we refer the reader to Chiang et al. [2016a]. (Copyright © Disney Animation 2017.)

wards brute-force solutions for these effects. In this section, we describe some of these phenomena, and
also discuss some of the careful parameterization work that is often necessary to make these models more
artist-friendly.

8.21 Path-traced Hair and Fur

Prior to Zootopia, we used an artistically controlled Dual Scattering hair model originally developed for
Tangled by Sadeghi et al. [2010]. While this model was more physically inspired than previous ad hoc
models, we found that the Dual Scattering model lacked the richness that multiple scattering already
provided in other subsystems of the Hyperion renderer. The lack of multiple scattering in fur and hair
often contributed to a coarse and stiff look that became amplified with the presence of high albedo fibers
(Figure 9). In order to address this problem, we came up with a physically based single fiber scattering
model that allows for efficient Monte Carlo rendering of path-traced multiple fiber scattering in produc-
tion (Chiang et al. [2016a]).

One common sampling strategy for previous physically based fiber scattering models (such as the one
proposed by d'Eon et al. [2011]) is to focus on eliminating the shading variation across the width of a fiber.
However, often in production path-traced global illumination, a more prominent source of sampling
variance per fiber is the illumination coming from the complex surrounding scene, as well as illumination
coming from all nearby fibers. This outside illumination requires a large number of shader evaluations to
tully converge. We realized that by relying on the general Monte Carlo framework to integrate over fiber
width, we can greatly reduce the complexity of the per-sample evaluation. We also introduced a fourth
lobe that re-injects the energy lost from only representing R, TT and TRT interactions to achieve perfect
energy conservation, even for non-absorbing fibers. These improvements made brute force path tracing
of fur and hair possible in production, and significantly contributed to the look of Zootopia (Figure 8).

One issue with a physically based model is that its parameters, such as the absorption coefficient, are
often not intuitive for the artists. Also, physically based parameters can have very little visual connection
with the final material appearance, which comes from the result of multiple scattering. To address artistic
controllability, we re-parameterized the fiber roughness to be perceptually uniform. We also allow the
artists to specify multiple scattering albedo directly, which is used internally to derive the absorption
coefficient for rendering. These enable efficient artist workflows while remaining physically consistent,
empowering the artists to achieve wider ranges of appearances of hair and fur with great efficiency.

We continue to use the techniques described in this section for all productions beyond Zootopia, to
great success. For example, in Moana, human characters are covered in fine, groomed peach fuzz, which
provides effects such as rim lighting through brute-force multiple scattering of back lighting instead of
requiring a dedicated light type (Figure 10).
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Figure 10: Rim lighting effects on Moana and Grandma Tala, simulated through brute-force multiple
scattering of back-lighting through fine hairs. (Copyright © Disney Animation 2017.)

8.2.2 Path-traced Subsurface Scattering for Snow and Skin

Subsurface scattering is the phenomenon of light scattering inside an object and exiting at a different place
than it entered. This phenomenon produces effects like softness, light bleeding, and shadow saturation.
Preventing translucent materials like skin and snow from looking too opaque or hard is essential.

For years, the diffusion approximation was the method of choice. During Big Hero 6, we used normal-
ized diffusion, introduced by Burley [2015], as our primary subsurface scattering solution. To simplify the
problem, most diffusion approximations assume that the medium is a semi-infinite slab of homogeneous
material. Diffusion works well even when the geometric assumption is violated, but only if the distance
that the light scatters is small compared to the size of the geometric details on the surface. In geometri-
cally small and thin regions, diffusion causes energy loss, while on convoluted surfaces, diffusion causes
energy gain. Furthermore, interesting optical effects and important visual cues caused by light scattering
through objects of different sizes and shapes are lost when using diffusion.

The physical process of subsurface scattering through arbitrary geometry can be simulated much
more accurately using volumetric path tracing. However, since light can potentially scatter hundreds or
thousands of times inside an object before exiting, this approach has the potential be extremely compu-
tationally expensive. Furthermore, highly directional scattering and small bright light sources increase
noise.

We experimented with several approaches to improve the appearance of snow in Frozen Fever, and
ended up implementing and using a limited brute-force volumetric-path-tracing solution (Figure 11). A
number of design decisions were made to circumvent performance problems:

o We performed simulated scattering inside only a user-defined subset of the scene surfaces.

o We assumed that the volumes were completely homogeneous.

o We performed free-flight sampling according to a monochromatic scattering coefficient and calcu-
lated the amount of chromatic absorption based on the full path length.
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Figure 11: A production frame from Frozen Fever with characters made from path-traced subsurface-
scattering snow. (Copyright © Disney Animation 2017.)

« We only supported isotropic phase functions and only index-matched diffusely-transmitting inter-
faces.
o We introduced a hack to increase scatter distances after several hundred bounces.

Although this system worked well, it was very difficult to achieve a desired overall color and desired
scatter distances for each color channel. After a good deal of research (which resulted in Koerner et al.
[2016]), we came up with an artist-friendly parameterization for setting chromatic scattering and absorp-
tion coeflicients and a sampling strategy that efficiently handled these chromatic coefficients (Chiang et al.
[2016b]). The parameterization is based on fitting curves to sets of simulated results. The sampling strat-
egy uses the path throughput and single-scattering albedo to bias free-flight distributions. We also intro-
duced internal reflection to make results more accurate and reduce unrealistic brightening of edges.

We first used our current path-traced subsurface scattering solution on selected prop elements in
Moana, although skin for characters continued to use normalized diffusion. When comparing normal-
ized diffusion and path-traced subsurface scattering on Moana characters, we discovered that details such
as creases and wrinkles had been modeled deeper than expected to compensate for detail loss that occurs
from diftusion, which produced different looks with path-traced subsurface scattering. All of our current
productions have fully switched over to path-traced subsurface scattering for everything from snow to
skin, which has simplified modeling and shading workflows because compensations for diffusion arti-
facts no longer need to be modeled into geometry. We show an example of a test character rendered with
path-traced subsurface scattering skin in Figure 12.

8.2.3 Volume Rendering

Hyperion’s sorted deferred architecture provides a significant challenge for implementing volumetric ren-
dering. During Big Hero 6, a volume-rendering system was developed that was heavily designed around
the sorted deferred concept. Up until recently, one fundamental requirement of the sorted deferred archi-
tecture was that a ray must hit a surface before a new ray could be fired. In our current volume-rendering
system, Hyperion traces a ray completely through a heterogeneous volume, calculating a transmittance
estimate using residual-ratio tracking (Novak et al. [2014]) which is followed by constructing PDFs to
sample in-scattering and emission. In-scattering rays are generated to be treated like any other ray and
are added to the list of rays for processing in the sorted deferred shading queue. Multiple scattering is
achieved by recursing on the procedure.
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Figure 12: Skin rendered using path-traced subsurface scattering. For similar render times as our old
normalized diffusion technique, our new path-traced subsurface scattering provides richer visual quality
and better predictability. (Copyright © Disney Animation 2017.)

Figure 13: A production frame from Moana demonstrating large, complex, dense smoke plumes domi-
nated by low-order scattering. Our current residual-ratio tracking based volume rendering system is not
as efficient with high-order multiple scattering, but handles low-order scattering very efficiently. (Copy-
right © Disney Animation 2017.)
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Figure 14: A cloudscape with high-albedo clouds and thousands of multiple-scattering bounces, rendered
using our new brute-force volume-rendering system. Our new volume-rendering system makes use of our
spectral and decomposition tracking techniques, introduced by Kutz et al. [2017]. (Copyright © Disney
Animation 2017.)

This solution produces high quality estimates at high compute costs per sample and is optimized
for low-order scattering, such as in smoke plumes and dust clouds with low albedos (Figure 13). This
approach avoided major modifications to the core sorted deferred architecture. However, building a high
quality PDF per ray makes high-order multiple scattering with potentially tens of thousands of bounces
unfeasibly expensive. Initially, efforts were made to rely on only Hyperion’s existing volume-rendering
solution, and fill in missing energy from high-order scattering using various approximations and cheats.
These efforts failed; artists found these approximate techniques difficult to control and were not able to
achieve the highly realistic look they were targeting.

Starting in 2016, a project arose within the studio that required rendering enormous quantities of
high-albedo clouds with very high-order multiple scattering. We are in the process of transitioning into
a new volume system that allows us to render thousands of scattering events per path. To make such
long paths more practical to render, we derived new, advanced versions of tracking (Kutz et al. [2017]).
Architecturally, this new volume renderer is made possible by changes within the sorted deferred system
that remove the requirement for a ray to always end at a surface, meaning that the volume renderer can
immediately re-scatter a ray upon finding a scattering event. The brute-force and therefore predictable
nature of our new volume-rendering system has allowed artists to hit their target looks with significantly
greater ease than before, while also providing significantly faster iteration and feedback loops. In Figure
14, we demonstrate an example of a scene with many clouds that Hyperion’s new volume rendering system
handles with ease.

8.3 Future Directions

Over the course of three feature films and several more short films, we have gained significant experience
with both general path tracing, and the practicalities of our sorted deferred architecture. Using lessons
learned from production, we continue to evolve Hyperion’s architecture going forward.
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8.31 Unbounded Path Lengths

Hyperion has allowed us to universally adopt multi-bounce global illumination studio-wide with signif-
icant efficiency, up to a certain number of bounces. However, Hyperion’s architecture imposes some
interesting restrictions that shaped our light sampling strategy, along with our ability to support truly
unbounded path lengths efficiently.

Hyperion originally only supported a single ray type, which makes direct light sampling via next-
event-estimation difficult to implement. Instead of using next event estimation, we relied on explicit light
sampling, splitting rays at each scattering event so that we could shoot separate samples towards lights
and along BSDFs. This splitting approach alone results in a geometric increase in the number of rays at
each bounce, which places considerable memory pressure on a system that already keeps tens of millions
of rays in flight at once. To keep the total number of rays in flight manageable, we rely on an aggressive
Russian Roulette strategy to cull rays.

While this approach has generally worked well for us, it has some consequences at higher bounces.
As we reach higher and higher bounces, our aggressive Russian Roulette begins to dominate over split-
ting, resulting in large drops in ray counts. We eventually reach a point where there are too few rays in
flight simultaneously to justify the overhead of our sorted deferred ray batches, meaning that paths with
extremely high lengths can become inefficient to compute.

One current active area of development is loosening our requirement for a single ray type, allowing
us to replace our existing sampling strategy with a more conventional next-event-estimation approach.
Changing the sampling strategy changes the relationship between samples-per-pixel and variance, which
presents an interesting user-education topic. To make unbounded paths more efficient, we are also exam-
ining ways to loosen the definition of a ray batch, along with different methods for scheduling ray batches.
We plan to have more to report on this topic in the near future.

8.3.2 Leveraging Increasing Core Counts

As the complexity of our films continues to grow, we anticipate our studio’s rendering needs to outstrip
the increases in computational power predicted by Moore’s Law in the near future. As a result, we are
concerned not just about scaling Hyperion to increasingly more cores on a single render node, but also
about distributing and scaling both memory and compute for a single render job beyond the bounds of a
single render node. This topic continues to be an active area of research that we hope to be able to report
more on in the near future.

8.4 Conclusion

We presented a series of recent advancements made in Disney’s Hyperion Renderer, with a particular
focus towards replacing multiple scattering approximations with true, brute-force path-traced solutions.
Adopting a path-tracing renderer studio-wide has allowed us to pursue effects and features that were
previously considered completely infeasible to solve using brute-force methods in production, all while
also providing simpler, more intuitive controls for artists. We continue to investigate ways to evolve our
architecture and increase the scalability and efficiency of the Hyperion renderer even further, in support
of even more future advancements to production quality and artist controllability.
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9 Hello Moonray! - A new production path tracer

BRrRIAN GREEN, Dream Works

Moonray is DreamWorks Animation’s new production path tracer. It was written from scratch over the
last four years. It it built on top of some of the most well known open-source components available for
path tracing. These include Embree Wald et al. [2014], OpenImagelO Gritz [2008], ISPC Corpoation
[2012], LLVM Lattner [2002], and OpenShadingLanguage Gritz [2009]. Its design is heavily influenced
by the ideas described in Pharr et al. [2017].

Moonray, although now a true production renderer, was not initially developed with production ren-
dering as its primary goal. Its initial goal was to provide a near real-time rendering system that could be
deployed in a cloud using a SAS (software-as-a-service) model. The system needed to meet the following
criteria:

1. Easy to use The system needed to produce good looking photo-realistic images with a minimum of
user setup. The users were not likely to be production artists with expertise in multi-pass rendering
or complex shading models.

2. Easy to integrate The renderer needed to be easy to integrate with many different 3rd party author-
ing and lighting tools.

3. Highly scalable. Broadly speaking we interpreted this to mean that the more hardware you gave
us, the faster the renderer would go.

DreamWork’s existing micro-polygon based rendering system, Moonlight, while powerful and pro-
duction proven, failed to meet these most basic criteria. To achieve good results with decent performance,
many complex pre-passes needed to be setup. For integration, fairly heavy, not easily portable libraries
needed to be directly linked into any 3rd party application. But worst of all, the system just did not scale
that well as core and machine counts rose.

Path tracing checked all the above boxes. Using simple, physically based shaders, users could quickly
achieve photorealistic results with no parameter tweaking at all. Path tracing is embarassingly parallel,
and Moonray easily scales to thirty or more machines with 32+ cores. A cloud deployment strategy re-
quires only a thin “SDK” wrapper library be used in the client.

After four years of development, it became clear at DreamWorks that Moonray was ready to take the
leap and become our next production renderer. What we initially thought was only important to non-
artists, actually turned out to be pretty important to artists as well. What follows is a sampling of what we
think make Moonray a unique (and not at all unique!) addition to the production path tracing universe.

91 Our basic path tracing algorithm

Our basic algorithm is most compactly described as “backwards path tracing with multi-importance sam-
pling” But a brief overview of what we precisely mean by this will help in understanding the next sections
and remove possible ambiguities. See Veach [1998], for a detailed description of multi-importance sam-
pling.

Broadly speaking we divided the rendering process up into two distinct pieces:

1. Render Preparation This is where geometry procedurals are run and a fully tessellated and dis-
placed BVH is built. More generally, any work that can be done once per-frame and used in the
next phase takes place here.

2. Mcrt Rendering During this phase we cast rays into the scene accumulating returned radiance
values (and other outputs) into the various frame buffers.

After render prep, rays are generated from the camera and cast into the scene. When they hit a surface,
a material shader is run which produces a Bsdf (bi-directional scattering distribution function) which
gives us two important methods given a viewing (wo) direction
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1. Next ray direction, wi. We can randomly determine a direction for the next ray along the path, as
well as the relative importance of this direction (i.e the value of the probability density function) of
this path.

2. Reflected radiance. Given wo, and wi, we can compute the reflected radiance back along the wo
direction.

The artist controls the number of surface samples at the hit point. But only for the first non-mirror
bounce. After the first non-mirror bounce, we use only a single surface sample.

In addition to surface samples, which are chosen based on the surface Bsdf, we also evaluate samples
based on the lights. Given a light, a surface position, and an outgoing wo direction, the light provides two
functions similar to the Bsdf which randomly generate a wi direction with importance probability and an
outgoing radiance value from the light along the wi direction.

The artist controls the number of light samples taken at a hit point. But as with surface samples, after
the first non-mirror bounce only (and exactly) one sample per active light is used.

A sample wi direction may do one of the following 3 things:

1. Hit nothing. If the wi direction hits nothing, then there is no energy and the path is terminated

2. Hitalight. If the wi direction has an unoccluded view of a light, then the sample is a “direct lighting”
result. The Bsdf value is multiplied by the light value along with the MIS heuristic to produce a final
value for the sample.

3. Hit a geometry. If the wi direction hits another geometry, then the sample is lit indirectly based
on the radiance value computed recursively at the wi/geometry intersection point.

The artist has control on the amount of path depth recursion. In fact, we further break these controls
up based on the type of surface we are evaluating (diffuse, glossy, or mirror).

9.2 Vectorization

Moonray has, what we believe to be, a novel approach to vectorized path-tracing. “Keeping all the lanes
of all the cores busy all the time with meaningful work” has been our mantra.

At the time of this writing, a paper describing Moonray’s vectorization approach has been submitted
to HPG ’17. Pending acceptance and its presentation, we are unable to provide details of the algorithm in
these notes. But at the time of the course, we will present an overview of the algorithm and the results.

9.3 Arbitrary output variables

Moonray has a full featured system for arbitrary output variables (AOVs). In our experience, AOVs serve
two primary roles in production: diagnostics, and compositing work flows.

For diagnostic purposes, Moonray has introduced a “Material AOV” syntax that is used to extract
material properties at a primary ray intersection point:

[C<GL>)+\.J[C<ML>)+\.J[C<LL>)+\.][(SS|R| T| D | G| M) +\.][fresnel\.]<property>

<GL>, <ML>, and <LL>: user specified labels

SS|R|T|D|G|M: types of bsdf lobes

fresnel qualifies property

<property> are diagnostic parameters such as roughness, normal, or color.

For example ’spec’. MG.roughness specifies an AOV that is the average roughness of all mirror and
glossy Bsdf lobes that also have the ’spec’ label assigned.

For compositing work flows, we make use of light path expressions as defined by the OpenShadingLan-
guage distribution. The important distinction we make between material AOV's and lighting AOVs is that
former has no interaction with lighting while the later necessarily involves some light integration and al-
ways returns a radiance value.
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9.4 Automatic differentiation

One key difference between production rendering systems and real-time systems is the near ubiquitous
use of derivatives (or more generically areas) during shading. Evaluating shaders over ray-differential
areas is needed to properly select MIP levels for texture mapping, avoid temporal bump mapping noise,
and many other reasons.

For the most part, our shaders operate using dual numbers of three variables. This allows the shader
code to compactly compute not just its value, but also the partial derivative of its value with respect to the
ray differential (dx, dy, and dz). See Piponi [2004] for details.

Of course, these additional computation does come at a cost, which segues nicely into our last section.

9.5 Justin time (JIT) compilation

At compile time, our shaders are compiled from ISPC into LLVM bitcode. At run-time we use the LLVM
API to analyze and perform the following operations:

1. Shader attribute values. We replace all attribute value references with the actual values set by the
user (saves function calls, allows constant folding).

2. Shader connections. Shaders are built in isolation, but connected together in a network by the
artist. At the connection points, which are basically just function pointer dereferences, we replace
these calls with actual inline code. This allows the optimizer to see the entire network.

3. Autodiff. If the code calling a shader does not use the derivatives computed by the shader, the
computations associated with the derivatives can be optimized out.

After we have finished the analysis and code substitutions, we run the LLVM code optimizer and
backend to produce a callable shade function. This occurs only once per frame during the render prepa-
ration phase. Intuitively, the more information you provide to an optimizing compiler, the better job it
can do optimizing your code. By delaying the final compilation until run-time, we give the compiler the
maximal possible information to work with.
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