Capturing and Rendering the World of Materials

Wenzel Jakob
Joint work with Jonathan Dupuy
A new database of surface appearance
A new database of surface appearance

1. **Why?**

2. **Prior work**

3. **Hardware**

4. **Microfacet theory**

5. **Our method**

6. **Demo**
Standard materials in rendering systems
Standard materials in rendering systems
Why does it matter?
Why does it matter?

- Scientific method
Why does it matter?

• Scientific method
Why does it matter?

- Scientific method
- Entertainment
Why does it matter?
Why does it matter?
The BRDF

\[f_r = f_r(\omega_i, \omega_o, \lambda) \]
The BRDF

$$f_r = f_r(\omega_i, \omega_o, \lambda)$$
The BRDF

\[f_r = f_r(\omega_i, \omega_o, \lambda) \]
Isotropic BRDFs

• If the BRDF is unchanged as the material is rotated around the normal, then it is \textit{isotropic}, otherwise it is \textit{anisotropic}.
Isotropic BRDFs

• If the BRDF is unchanged as the material is rotated around the normal, then it is *isotropic*, otherwise it is *anisotropic*.

• Isotropic BRDFs are functions of just 4 variables (instead of 5)
Why is measuring BRDFs hard?

1 measurement / second

100^2

100^2
Why is measuring BRDFs hard?

1 measurement / second

100^2

100^2
Why is measuring BRDFs hard?

Curse of dimensionality: **3 years** of measurement time
“Evading” the curse of dimensionality

A New Change of Variables for Efficient BRDF Representation

[Rusinkiewicz 98]
“Evading” the curse of dimensionality

A New Change of Variables for Efficient BRDF Representation

[Rusinkiewicz 98]
Prior work
Prior work

- **MERL database** [Matusik et al. 2003]
 - First comprehensive repository of reflectance data.
 - Landmark paper & dataset – used in hundreds of papers.
Prior work

- **MERL database** [Matusik et al. 2003]
 - First comprehensive repository of reflectance data.
 - Landmark paper & dataset – used in hundreds of papers.

... but MERL is not without problems.
Issues with the MERL approach
Issues with the MERL approach

1. Acquiring multiple directions at once using a camera
Issues with the MERL approach

1. Acquiring multiple directions at once using a camera
2. Restriction to spherical samples
Issues with the MERL approach

1. Acquiring multiple directions at once using a camera

2. Restriction to spherical samples

3. Restriction to isotropy
Issues with the MERL approach

1. Acquiring multiple directions at once using a camera

2. Restriction to spherical samples

3. Restriction to isotropy

4. Interpretation of data
Issues with the MERL approach, contd.
5. Fixed sampling pattern: dense discretization necessary.
Issues with the MERL approach, contd.

5. Fixed sampling pattern: dense discretization necessary.

6. No importance sampling
Issues with the MERL approach, contd.

5. Fixed sampling pattern: dense discretization necessary.

6. No importance sampling

7. Extrapolation artifacts, oscillatory behavior
EPFL’s gonio-photometer

[PAB Ltd.]
EPFL’s gonio-photometer
Sensors

Modular head:

1. Silicon photodiodes
2. Spectrometer (320-1200nm)
Sensors, contd.

Modular head:

3. 26 MPix CCD (RGB/Bayer)
4. 24 MPix CMOS (mono)
Problem with this approach:
- fast along 1 dimension
- .. but what about remaining 3?

Curse of dimensionality remains
High level idea

1. Measurement locations should be chosen adaptively
High level idea

1. Measurement locations should be chosen adaptively
High level idea

1. Measurement locations should be chosen adaptively

2. Importance sampling seems useful?
The central conundrum

- Importance sampling would be ideal:
 - Samples correspond to “interesting” locations, where the BRDF takes on non-negligible values.

- But: to importance sample the material, we must already have measured it.
The central conundrum

• Importance sampling would be ideal:
 - Samples correspond to “interesting” locations, where the BRDF takes on non-negligible values.

• But: to importance sample the material, we must already have measured it.

Is there something else that is
1. quick to measure, and
2. informative?
Retro-reflection to the rescue

\[R(\omega) = f_r(\omega, \omega, 532 \text{ nm}) \]

Diffuse Specular & isotropic Anisotropic
Review: microfacet theory

Smooth conducting material

Smooth dielectric material
Review: microfacet theory

Smooth conducting material

Smooth dielectric material

Rough conducting material

Rough dielectric material
Microfacet theory

- Model interactions with a random surface microstructure
Microfacet theory

- Model interactions with a random surface microstructure
Microfacet theory

• Model interactions with a random surface microstructure
Microfacet theory

- Model interactions with a random surface microstructure
Microfacet theory

- Model interactions with a random surface microstructure
Microfacet theory

• Model interactions with a random surface microstructure
A helpful connection
A helpful connection
A helpful connection

intuition: \(f_r^\perp (\omega_i = \omega_o) \propto D(\omega_h) \)
Putting things together..
Putting things together..

1. Measure retroreflection (2D only, i.e. fast)
Putting things together..

1. Measure retroreflection (2D only, i.e. fast)
2. Convert to microfacet distribution
Putting things together..

1. Measure retroreflection (2D only, i.e. fast)
2. Convert to microfacet distribution
3. Importance sample microfacet model
Putting things together..

1. Measure retroreflection (2D only, i.e. fast)
2. Convert to microfacet distribution
3. Importance sample microfacet model
4. Measure
Putting things together..

1. Measure retroreflection (2D only, i.e. fast)
2. Convert to microfacet distribution
3. Importance sample microfacet model
4. Measure
5. Profit!
Putting things together..

1. Measure retroreflection (2D only, i.e. fast)
2. Convert to microfacet distribution
3. Importance sample microfacet model
4. Measure
5. Profit!

Not so fast:
1. Will we be restricted to materials that match microfacet theory?
2. how to evaluate the model?
Importance sampling

Goal: generate random samples x proportional to $f(x)$
Importance sampling

Goal: generate random samples x proportional to $f(x)$
Inverse transform sampling

• The inversion method:
Inverse transform sampling

- The inversion method:
 1. Compute the CDF \(P(x) = \int_0^x p(x') \, dx' \)
Inverse transform sampling

• The inversion method:
 1. Compute the CDF \(P(x) = \int_0^x p(x') \, dx' \)
 2. Compute its inverse \(P^{-1}(x) \)
Inverse transform sampling

• The inversion method:
 1. Compute the CDF \(P(x) = \int_0^x p(x') \, dx' \)
 2. Compute its inverse \(P^{-1}(x) \)
 3. Obtain a uniformly distributed random number \(\xi \)
Inverse transform sampling

• The inversion method:

 1. Compute the CDF \(P(x) = \int_0^x p(x') \, dx' \)
 2. Compute its inverse \(P^{-1}(x) \)
 3. Obtain a uniformly distributed random number \(\xi \)
 4. Compute \(X_i = P^{-1}(\xi) \)
Inverse transform sampling

• The inversion method:
 1. Compute the CDF $P(x) = \int_{0}^{x} p(x') \, dx'$
 2. Compute its inverse $P^{-1}(x)$
 3. Obtain a uniformly distributed random number ξ
 4. Compute $X_i = P^{-1}(\xi)$
Importance sampling as a parameterization
The final pipeline

ACQUIRE

- Regular grid

WARP 1

- VNDF (4D)
- u_1, u_2
- (θ_i, ϕ_i)

WARP 2

- g_2

WARP 3

- g_3
- ω_h
The final pipeline

\[g_3 \]

\(\omega_i \)

\(\omega_o \)

\text{WARP 3}

\text{CAPTURE}

\text{WEIGHT}
The final pipeline

\[g_3 \]

\(\omega_i \)
\(\omega_o \)

Capture

Weight

Inverse Warp 1

Inverse Warp 2

Evaluate

\(g_3^{-1} \)

\(g_2^{-1} \)

(\(u_1, u_2 \))
The final pipeline

\(g_3 \)

\(\omega_i \)

\(\omega_o \)

\(\text{Warp 3} \)

\(\text{Capture} \)

\(\text{Weight} \)

\(\text{Inverse Warp 3} \)

\(g_1^{-1} \)

\(\text{Interpolate} \)

\(\text{Spectra (5D)} \)

\((u_1, u_2) \)

\((s_1, s_2)\)

\((\theta_i, \phi_i, \lambda) \)

360nm

1000nm
Optical setup: spectral acquisition

- Xenon arc lamp
- Collimation lens
- Focusing lens
- Pinhole
- Sensor
- Sample
Optical setup: retro-reflection
Measurement setup

- DPSS laser
- Kinematic mirrors (2x)
- Electronic shutter
- Beam expander
- Beamsplitter
- Beam dump
- Collimation lens
- Faraday isolator
- Photodiode
- Pinhole
- Electronic shutter
- Xenon arc light source
- Focusing lens
Measurement setup
Step 1: retro-reflective acquisition (x8)
Step 1: retro-reflective acquisition (x8)
6 aurora-white
Description: TeckWrap vinyl wrapping film ("Aurora White DCH02")
Renderings

19 ibiza-sunset
Description: Car wrap material (Teckwrap Ibiza Sunset RD02)
Renderings

20 iridescent-flake-paint2
Description: Iridescent car paint with flakes
Renderings
36 ibiza-sunset

Description: Car wrap material (Teckwrap Ibiza Sunset RD02)

Plots

Slices

Sample Locations

Renderings

29 northern-aurora

Description: Car wrap material (Teckwrap Northern Aurora RD05)

Plots

Slices

Sample Locations

Renderings

31 silk-blue

Description: Blue car wrap (Teckwrap Silk Blue VCH502N)

Plots

Slices

Sample Locations

Renderings

20 iridescent-flake-paint2

Description: Iridescent car paint with flakes

Renderings

Plots

Slices

Sample Locations
Material database: microfacet-like

vch_dragon_eye_red vch_frozen_amethyst vch_silk_blue vch_ultra_pink
Material database: microfacet-like

- aniso_copper_sheet
- aniso_metallic_paper_copper
- aniso_metallic_paper_gold
- aniso_brushed_aluminium_1
Material database: microfacet-like (??)

satin_blue satin_gold satin_purple satin_white
Material database: microfacet-like (??)

aurora_white cc_nothern_aurora cc_ibiza_sunset cc_amber_citrine
Iridescent butterfly

aniso_morpho_melenaus
Iridescent butterfly

aniso_morpho_melenaus
Anisotropic fabrics

aniso_sari_silk_2color
Anisotropic fabrics

aniso_sari_silk_2color
Broad wavelength coverage

(a) D65

(b) Fluorescent

(c) Incandescent

(d) Infrared
Post-processing

Slices (raw)

Slices (post-processed)

Shadowed!
Resources

Hardware

Spectral 4-Axis Gonio-Photometer

Data

Material Database

Software

Tekari

Benoit Ruiz, Tizian Zeltner, and Wenzel Jakob
Resources

Hardware

Spectral 4-Axis Gonio-Photometer

Data

Material Database

Software

Tekari

Benoit Ruiz, Tizian Zeltner, and Wenzel Jakob
<table>
<thead>
<tr>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acrylic_felt_white</td>
<td>White acrylic felt (Edukit A4)</td>
</tr>
<tr>
<td>acrylic_felt_yellow</td>
<td>Yellow acrylic felt (Edukit A4)</td>
</tr>
<tr>
<td>aniso_brushed_aluminium</td>
<td>Brushed aluminium sheet (https://www.gah.de/profile-bleche/produkte/reparatur-und-bastlerbleche-1/glattblech-8/)</td>
</tr>
<tr>
<td>aniso_copper_sheet</td>
<td>Smooth copper sheet -- anisotropic</td>
</tr>
<tr>
<td>aniso_metallic_paper_copper</td>
<td>Copper metallic foil card</td>
</tr>
<tr>
<td>aniso_metallic_paper_gold</td>
<td>Gold metallic foil card</td>
</tr>
<tr>
<td>aniso_miro_7</td>
<td>Alanod Miro #7 5000GP aluminium sample</td>
</tr>
<tr>
<td>aniso_morpho_melenaeus</td>
<td>Morpho melanaus specimen (male, scan covers dorsal surface of right fore wing)</td>
</tr>
</tbody>
</table>
The importance of good parameterizations

\[\theta_i \]

NDF

VNDF
The importance of good parameterizations

\[\theta_i \]

(a) NDF

(b) VNDF

Hierarchical sample warping

Marginal-conditional (naïve)

Marginal-conditional (exact)

Marginal-conditional (+weighting)
Contributions
Contributions

• A unified algorithm for BRDF acquisition, representation, and rendering
 - Low storage requirements (16 KiB per channel)
 - Significantly fewer samples (3712 measurements vs >100K for MERL).
 - Built-in importance sampling.
 - Handles anisotropy
Contributions

• A unified algorithm for BRDF acquisition, representation, and rendering
 - Low storage requirements (16 KiB per channel)
 - Significantly fewer samples (3712 measurements vs >100K for MERL).
 - Built-in importance sampling.
 - Handles anisotropy

• A hardware modification for scanning gonio-photometers.
Contributions

• A unified algorithm for BRDF acquisition, representation, and rendering
 - Low storage requirements (16 KiB per channel)
 - Significantly fewer samples (3712 measurements vs >100K for MERL).
 - Built-in importance sampling.
 - Handles anisotropy

• A hardware modification for scanning gonio-photometers.

• A database of spectral BRDFs (isotropic & anisotropic, currently 57 materials).
Questions?

http://rgl.epfl.ch/materials