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Abstract

In the past few years themovie industry has switched over from stochastic rasterisation approaches to using phys-
ically based light transport simulation: path tracing in production has become ubiquitous across studios. The new
approach camewith undisputed advantages such as consistent lighting,progressive previews,and fresh code bases.
But also abandoning 30 years of experience meant some hard cuts affecting all stages such as lighting, look devel-
opment, geometric modelling, scene description formats, the way we schedule for multi-threading, just to name a
few. Thismeans there is a rich set of people involved and as an expert in either one of these aspects it is easy to lose
track of the big picture.
This is part I of a full-day course,and it focuses on the necessary backgroundknowledge. In this part,wewould like
to provide context for everybody interested inunderstanding the challenges behindwriting renderers intended for
movie productionwork. In particularwewill give an insight intomovie production requirements for new students
and academic researchers. On the other side we will lay a solid mathematical foundation to develop new ideas to
solve problems in this context.
To further illustrate, part II of the course will focus on materials (acquisition and production requirements) and
showcasepractical efforts byprominent professionals in thefield,pointingout unexpected challenges encountered
in new shows and unsolved problems as well as room for future work wherever appropriate.
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1 Introduction topath tracingandMonteCarlo sampling
J������� H�����,Weta Digital
L��� F�������,Weta Digital

Thissection summarises a fewbasic conceptsof light transport and introduces theMonteCarlo integration scheme.
This forms the foundation of the path tracing family of algorithms, which is used to synthesise pictures in a uni-
fied way.While we want to introduce all commonly used equations and explain the terms therein, this will mainly
form a basis for common notation rather than explain the underlying principles and the algorithms to solve the
equations in exhausting detail. For a broader introductionwe refer to Pharr et al. [2017]. A thorough introduction
to the radiometric quantities is given by Chandrasekar [1960], and a good entry point for especially the volumet-
ric scattering aspects are the dissertations by Jarosz [2008], Novák [2014] and the recent state of the art report by
Novák et al. [2018].

1.1 Transport equations

We need to derive a measurement function which can be used to evaluate throughputs for transport paths as they
are constructed during path tracing. Intuitively, this will require us to measure some physical quantity along a ray,
i.e. an infinitesimally narrow direction emergent from an infinitesimally small position. This is rather abstract,
so we will proceed by simplifying the problem setting somewhat, introducing the notion of photons, and then
resort to simply counting photons. From there, we will derive what is the quantity the flows through a ray of light
(radiance) and the equations that govern its flow (or transport)through the scene. This approach is inspired by
Arvo [1993].

1.1.1 Assumptions

Before we dive into equations, let’smake some simplifying assumptions tomake our task easier. Most assumptions
to be made about light transport have been prominently generalised away in computer graphics literature, so our
list here comes with references to works that extended rendering beyond the discussed limitation:

• Light consists of particles (photons), not waves. In particular we are not interested in interference (as op-
posed to Werner et al. [2017]) or polarisation (unlike Jarabo and Gutierrez [2016]).

• Photons travel along straight lines, because the index of refraction does not vary continuously but only at
interfaces (contrary to Ament et al. [2014]). Also photons are not affected by gravity (as they would on
astronomical scales such as Thorne [2014]).

• Light is transported instantly, or, equivalently,we’re only interested in some equilibrium state with constant
boundary conditions (even though Jarabo et al. [2014] showed that simulating time dependence results in
nice visualisations).

• Weonlymodel elastic scattering, i.e.there isnoenergy transferbetweenwavelengths,nophotoluminescence
(as described for instance by Glassner [1995],Hullin et al. [2010]).

• Volumes: toderive the transport equations,wewill assumeauniformrandomdistributionof light-interacting
particles (unlike Bitterli et al. [2018], d’Eon [2018], Jarabo et al. [2018]) which are much larger than the
wavelength (as opposed to Rayleigh scattering as introduced by Strutt [1871]), and have isotropic cross-
sections (because we avoid anisotropic media described by Jakob et al. [2010]).

1.1.2 Counting photons

Toquantify light, let’s start with a straightforward concept: we’ll be counting photons. A single photon corresponds
to an atomic portion of energy E (measured in joule [J]):

E =
h ⋅ cm
λ

[J]. (1)

Here, h ≈ 6.62607004 × 10−34 [m2kg/s = Js] is Planck’s constant and cm = c/ηm is the speed of light in a
materialwith indexof refractionηm. This is slightly slower than the speedof light in vacuum,which is conveniently
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fixedbydefinitionat exactly c = 299, 792, 458 [m/s]. In equation (1),λ [m] is thewavelengthof thephoton.We’ll
often measure it in nanometers [nm] instead to help distinguish it from world space lengths.

To determine the overall radiant energy in a certain volume, all we need to do is count photons and add up
their energies. Assuming they all have the samewavelength, they all have the same energy andwe can justmultiply
the energy by their count #P:

Q = #P ⋅
h ⋅ cm
λ

⎡⎢
⎣
J =

kg ⋅ m2

s2
⎤⎥
⎦

. (2)

Unfortunately, photons can be moving very quickly and thus a more practically useful quantity is how many
photons pass through a certain volume per time. This is called radiant power, or flux, and is measured in watts:

Φ =
dQ
dt

[
J
s

= W] . (3)

To derive a quantity that considers the direction of the photon, we need a measure of directions. This two
dimensionalmeasure space is called solid angle and defined as the area of a piece of surface projected onto the unit
sphere,measured in steradians [sr]:

A

Ω

r

ΩA = A/r2 [sr] . (4)

To perform actual integration in this domain, we often times need to re-parametrise the domain into polar
coordinates, for instance using the latitude/longitude way. In general, spherical polar coordinates would require
also a radius. Since we are only interested in directions ω, the 2D angular domain (θ,φ) ∈ [0, π] × [0, 2π]
suffices in this case, remembering the adjustment due to the change of variables1:

dφ

dθ dω = dθ | sin θ| dφ, (5)

∫
Ω
dω = ∫

2π

0
∫
π

0
sin θ dθ dφ = 4π. (6)

Since photons live in phase space, i.e. have a 3D position and a 2D direction,we will associate (x,ω) ∈ V ×Ω
with them.With these tools at hand,we’re finally ready to count photons per time per volume and per solid angle.
Ideally we would count some place holder quantity ⋅ with some imaginary measurement device that only counts
photons inside a certain3Dvolume if their directionω fallswithin the solid angle subtendedbya certain imaginary
funnel:

Φ = ∫
Ω

∫
V

⋅(x,ω) dx dω [W] . (7)

We will be assuming a locally uniform distribution of photons such that we can assume a piecewise smooth
function ⋅(x,ω) andexpect to get the sameanswerby integrating it over a volumeV×Ω inphase space aswewould

1The intuitive notion here is that as θmoves away from π, the length of the constant-φ lines change in length proportionally to sin θ
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by counting individual photons.2 Theapproachwewill take in the next paragraphs, to both define such a function
and to introduce the transport equations governing its propagation, is the following: First wewill define the effects
that change the distribution of photons in phase space, collecting all these results in a differential equation, the
radiative transfer equation (���). From there we will derive the more well-known integral equation.

1.1.3 Events that change photon count

Themost obvious event is photon emission,where particles emit light (for instancemodelled by a black body emit-
ter). Other than that, there are two things that obviously change photon count in a certain region of phase space.
The first one is themost natural: streaming: This happens when the photon enters or leaves the volume crossing its
boundarybecause it’s continuingon itsway. Theother one is collision,when thephoton interactswithmatter inside
the volume under consideration. In a collision event, a photon can be absorbed or scattered. While absorption is
always a loss, scattering may mean both: the new direction of the photon may be inside the solid angle spanned
by the current region of the phase space, or it may be not.We’ll go through them in an order that makes reasoning
about the quantities as easy as possible.

Absorption Collision with an absorbing particle is easy to model, since all that happens is that the photon
disappears. All we need to model is how often such an event happens. We will be using a statistical model which
can be used to determine the chance that a photon interacts with such a particle while travelling a unit distance. As
mentioned earlier,we assume a locally uniform randomdistribution of absorbing particles, such that we can com-
pute a locally constant density ρ in [1/m3].We will also only deal with isotropic cross-sections σ of the particles,
i.e. σ [m2] does not depend on directionω. From these two,we define the collision coefficient μ = σ ⋅ ρ [1/m].
This is the probability of collision while travelling unit distance in the medium,or, conversely,1/μ is the mean free
path. In neutron transport literature, this is sometimes referred to as Σ.

Tomodel heterogeneousmedia,wewillworkwithμ(x) to expressmacroscopic inhomogeneitieswhile still as-
suming locally uniform random distribution of particles at microscopic scale. This is important for the derivation
of the differential equations later on.

We will need a few such collision coefficients for the different types of events. For absorption, we are dealing
with μa(x). If a photon intersects such a particle, it is lost and we can compute the change in flux:

− ∫
Ω

∫
V
μa(x)L(x,ω) dx dω [W] . (8)

This equation shows that the unit of μa(x)L(x,ω) has to be [ 1
m ⋅ W

m2sr = W
m3sr] to integrate to watts [W]. We

take this opportunity to define radiance as the core unit which is transported along a light transport path. It can
be measured by an imaginary differential measurement device which consists of a surface counting photons (per
time unit) passing through it and a funnel attached to it3. As both the surface and the funnel simultaneously tend
to zero size (in area and solid angle, respectively), the measured quantity approaches radiance for the resulting ray
(x,ω):

L(x,ω) [
W
m2sr

] . (9)

Emission Emission is very similar to absorption, in that a black body emittermodel dictates that every photon
intersecting an emitting particle is absorbed rather than reflected. This means that emission comes with a loss
term very similar to the one for absorption. In fact, some formulations assume that μa includes the density of
emitting particles, too. For increased clarity, sometimes the emission coefficient is explicitly modelled as μe(x).

2This seems to be one of the longer lasting assumptions, at least we are not aware of computer graphics literature generalising the equa-
tions to count individual photons

3Each photon is accounted for by the energy it carries, so its contribution is scaled by its wavelength according to equation (1)
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We introduce another symbol for emitted radiance Le(x,ω) to be able to quantify the amount of photons which
are added per time in a certain volumeV × Ω:

∫
Ω

∫
V
μe(x)Le(x,ω) dx dω [W] . (10)

Streaming To quantify how many photons enter and leave the current piece of phase spaceV × Ω, we want
to count the number of photons passing through the spatial boundaries of V , which is written as ∂V . This is
measured perpendicularly to the surface normal n(x). Since the quantity L(x,ω) depends onω but itself is just a
scalar and no vector field,we will measureω ⋅ L(x,ω):

− ∫
Ω

∫
∂V

⟨ω ⋅ L(x,ω), n(x)⟩ dx dω. (11)

The integration over the boundary ∂V will get in the way later on, so we replace it by an integration over the
whole volumeV by using Gauss’ theorem, leaving us with a directional derivative in the integrand:

= − ∫
Ω

∫
V

∂
∂ωL(x,ω) dx dω. (12)

Scattering Once a photon collides with a particle, it can also be scattered, i.e. experience a change of direc-
tion ω. As mentioned before, we want to limit ourselves to elastic scattering. This means the energy of the photon
remains unchanged during the event. In particular this means it does not change wavelength, so we can limit our
analysis to one wavelength at a time, and solve the resulting equations per wavelength. (we’ll briefly come back to
this assumption of excluding fluorescence in section 1.4).

Wemodel scatteringby a kernelk(ωi, x,ω)whichdetermines thedirectional change at positionx. Depending
on thenewdirection, thismay result in a gain or a loss: the photonmaybe scattered into the solid angle of our piece
of phase space, or out of it.We can write the in-scattering gain as

+ ∫
Ω

∫
V

∫
Ω
k(ωi, x,ω)L(x,ωi)dωidxdω, (13)

and similarly the out-scattering loss as

− ∫
Ω

∫
V

∫
Ω
k(ω, x,ωo)L(x,ω)dωodxdω. (14)

This last term can be simplified considerably by assuming the scattering kernel is separable in space and direction,
i.e.

k(ωi, x,ω) = μs(x) ⋅ fs(ω ⋅ ωi), (15)

because then we can pull the scattering coefficient μs out of the inner integral over solid angleωo:

− ∫
Ω
k(ω, x,ωo)L(x,ω) dωo = −μs(x) ∫

Ω
fs(ωo ⋅ ω)L(x,ω) dωo (16)

= −μs(x)L(x,ω) ∫
Ω
fs(ωo ⋅ ω) dωo (17)

= −μs(x)L(x,ω), (18)

where in the last step, we used the property of the phase function fs() that it integrates to one over the sphere Ω.
Because it is normalised, this phase function fs() is a probability density function determining where a particle is

SIGGRAPH 2019 Course Notes: Path tracing in Production — Part 1 Page 7 / 105



P��� ������� �� P���������

reflected to when intersecting a scattering particle, as determined by the collision coefficient μs. Often we assume
isotropicmedia, i.e. the phase function only depends on the cosine between incoming and outgoing directions, i.e.
fs(ω ⋅ωi). Themost simple incarnation is isotropic scattering,where the outgoing direction does not even depend
on the incoming direction at all, i.e. a constant distribution fs ≡ 1

4π . The more often used variant is the popular
phase function by Henyey and Greenstein [1941]:

fs(cos θ) =
1
4π

1 − g2

(1 + g2 − 2g cos θ)3/2 , (19)

that contains a singleparameter g , themeancosine,whichdetermineshow forward (g = 1) or backward scattering
(g = −1) the phase function is.

To further simplify the equations, we combine the losses due to absorption, shadowing by emissive particles,
and out-scattering, and define the extinction coefficient:

μt(x) = μa(x) + μe(x) + μs(x). (20)

1.1.4 The radiative transfer equation

Now that we discussed all events, we can proceed and combine them in a single equation. As dictated by energy
conservation, all terms need to sum up to zero (because we considered all ways photons may be added or lost).
Doing so gives us

0 = ∫
Ω

∫
V

streaming
⏞⏞⏞⏞⏞⏞⏞
−

∂
∂ωL(x,ω) +

emission
⏞⏞⏞⏞⏞⏞⏞μe(x)Le(x,ω)

extinction
⏞⏞⏞⏞⏞⏞⏞− μt(x)L(x,ω)

+ μs(x) ∫
Ω
fs(ωi ⋅ ω)L(x,ωi)dωi⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
in-scattering

dx dω. (21)

Since this equation holds for integration over any arbitrary part of phase space, they have to hold for every indi-
vidual point, too. This means we can leave away the integration over phase space Ω × V , and arrive at a simpler
differential equation, the radiative transfer equation (���) as discussed by Chandrasekar [1960],which defines the
change of radiance L at a point x in directionω is due to emission (μe), extinction (μt), and scattering (μs):

∂
∂ωL(x,ω) = μe(x)Le(x) − μt(x)L(x,ω)

+ μs(x) ∫
Ω
fs(ω ⋅ ωi)L(x,ωi) dωi. (22)

The directional derivative ∂
∂ω is sometimes written as ω ⋅ ∇. This formulation presents an alternate intuitive

way of looking at the terms: ∂
∂ωL(x,ω), the left hand side, is the change of radiance in directionω. To find out how

radiance changes along the ray directionω,we need to add emission at this point, subtract extinction, and add the
in-scattered radiance over all incoming directionsωi.

The mathematical structure of equation (22) is an integro-differential equation, since it contains differentials
and integrals. This makes it hard to solve, especially with path tracing: in rendering we know how to solve difficult
high-dimensional integrals with the Monte Carlo method, thus we’ll have to work on the differential.

In an effort to integrate both sides of equation (22), let’s look at a simple one dimensional example of a differ-
ential equation:

d
dx

L(x) = −μtL(x). (23)

where of course potential similarity in naming of the variables are entirely coincidental. To solve it, we’ll need
boundary conditions, in our example x > 0, L(0) = 1. Given this, we know a closed-form solution to this
problem, using and integrating factor:

L(x) = exp(−μt ⋅ x) ⋅ L(0). (24)
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Figure 1: Illustration of all events taking part in the change of radiance along a ray: surface emission (a), surface scattering
(b), volume emission (c), volume scattering (d), and the distances as they appear in equation (28).

Transmittance Applying a very similar reasoning as in this last example in equation (23) to the ��� in equa-
tion (22),we arrive at a very similar exponential factor:
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T(x, y) = e−τ(x,y), (25)

τ(x, y) = ∫
d

0
μt(x + t ⋅ ω)dt, (26)

where d = ‖x− y‖ andω = (x− y)/d. T(x, y) is called the transmittance and computes the fraction ∈ [0, 1] of
lightwhichwillmake it from x to y. This attenuation is called theBeer-Lambert law,and τ(x, y) is called the optical
thickness. Note how the transmittance for homogeneous materials (i.e. μt ≡ const.) degenerates to a factor very
much like the one in equation (24), illustrated in the graph next to equation (25). On the other hand, this classic
kindof exponential attenuation is challengedby recentworks byBitterli et al. [2018],d’Eon [2018] and Jarabo et al.
[2018],who do not assume a uniform random distribution of particles.

Boundary conditions To solve the ���, we still need to define boundary conditions. These can be found
in surface transport, formalised as a recursive integral equation by Kajiya [1986]:

L(x,ω) = Le(x,ω) + ∫
Ω
fr(x,ω,ωi)L(x,ωi) dω⟂

i , (27)

where the integrationdomainΩ is the (hemi-)sphereof incomingdirectionsωi, and themeasuredω⟂ = cos θ dω
is the projected solid anglemeasure,which includes a foreshortening factor to account for Lambert’s law. The term
fr(.) is the bidirectional scattering distribution function (����) and characterises how incoming irradiance is con-
verted to outgoing radiance. This is responsible for the look of surface materials, such as texture or glossiness.

The integral form of the RTE With an integrating factor (transmittance) and boundary conditions
(surface transport) we are now ready to convert the ��� to integral form. Putting everything together, the result is

L(x,ω) = T(x, y)

contribution from the point y on surface
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(Le(y,ω) + ∫

Ω
fr(ωi, y,ω)L(y,ωi)dω⟂

i )

+ ∫
d

0
T(x, z) (μe(z)Le(z,ω) + μs(z) ∫

Ω
fs(ω ⋅ ωi)L(z,ωi)dωi)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

contribution from any point z at distance t in volume

dt. (28)

Figure 1 visualises all terms in the integral formof the ���. Since this is somewhat bulky,we can simplify the nota-
tion by dropping a few parameters and introducing a linear transport operator T, which represents the scattering
at either the point on the surface y or a point z in the volume, as introduced by Veach [1998]:

L = Le + TL. (29)

1.2 The path space

With the physical foundation and mathematical tools at hand,we can now determine how much light flows along
a single transport path. Explicitly unrolling the recursion in equation (29) for an example path with five vertices
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x1 x3

x2 x4

x5 dx3
dx1

dx4dx2

dx5

Figure 2: A light transport path is represented as a list of vertices (left). Each vertex comes with an integration domain in
vertex area measure, as indicated by dxi in the right image. The full integration domain consists of the product of all these
infinitesimal surface patches, the product vertex area measure as indicated by the dashed tube around the path.

(cf. figure 2) shows that we need to transport the emitted radiance four times. In general

L = Tk−1Le (30)

for k path vertices. Substituting the original terms from equation (28) instead of the transport operator shorthand,
this results in the“flat view”of the rendering equation, themeasurement contribution function as defined byVeach
[1998]:

f (X) = Le(x1)T(x1, x2)G(x1, x2) ⋅ ⎛⎜
⎝

k−1
∏
i=2

fx(xi)T(xi, xi+1)G(xi, xi+1)⎞⎟
⎠

⋅ W(xk). (31)

This formulation contains two new terms: W is the sensor responsivity function. It models how the sensor reacts
to light. While this is mostly used to un-do the vignetting caused by most camera models, it may also model a
spectral response corresponding to the colour filter array of the sensor.

The other term,G, is called the geometry term and appears here as the Jacobian determinant from projected
solid angle dω⟂ to vertex area measure dx, such that we can integrate f (X) over the path space in product vertex
area measure. This measure space is useful because it is agnostic of the transport direction and allows for easy
inclusion of next event estimation samples which directly sample transport points on surfaces instead of outgoing
directions. The geometry termG also contains the mutual visibilityV(x, y) between the points. More precisely

G(x, y) = V(x, y)
D(x, y)D(y, x)

‖x − y‖2
, (32)

D(x, y) =
⎧{
⎨{⎩

|n(x) ⋅ ωx→y| if x is on a surface,
1 if x is in a medium.

(33)

Le(x, y) =
⎧{
⎨{⎩

Le(x,ωx→y) if x is on a surface,
μe(x)Le(x,ωx→y) if x is in a medium.

(34)

fx(x) =
⎧{
⎨{⎩

fr(x) if x is on a surface,
μs(x)fs(x) if x is in a medium.

(35)

The scattering function fx is generalised to express the ���� fr on surfaces as well as the scattering collision coeffi-
cient and phase function μs(x) ⋅ fs(ω,ωi) inside media. Note that for brevity we dropped the dependency of the
scattering functions on the incoming and outgoing directions in equation (31) and equation (35).

To model a camera as a measurement apparatus, collecting photons per time incident on the pixel area from
a certain solid angle, i.e. to compute radiant power, all we need to do is integrate the measurement contribution
function equation (31) over all vertex areas dx associated with a path. For instance for the path configuration in
figure 2,we get

∫ ∫ ∫ ∫ ∫ f (X) dx1 dx2 dx3 dx4 dx5, (36)

whichmeansweneed to integrate over five individual surface patches in squaremeters (thiswould be cubicmeters
for vertices in volumes). As a shorthand,we definedX5 as a productmeasure for pathswith five vertices. Now, light
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is not restricted to be transported only by paths of length five, but in general we need to sum up contributions of
all path lengths, for instance by explicitly expanding theNeumann series

L = Le + TLe + T2Le + ⋯ . (37)

To be able to write one single integral for transport paths of any length, we also define dX to signify the union of
all dXk = ∏k

i=1 dxwith k ≥ 2. This finally enables us to unify lighting computations in one single mathematical
framework (be it surfaces, sub-surface scattering, or volume contributions). Intuitively, we track all possible paths
that photons could take from all light sources via multiple interactions with objects and their materials, into the
camera lens. These photons are then“counted”on the sensor.

The sampling space we just defined is called the path space P and contains all possible transport paths X =
{x1, x2, ..., xk} ∈ P , which are lists of k path vertices x (see figure 2). To compute the color Ip of a pixel p, we
simply integrate over this space, weighted by a pixel filter hp(X), such as for instance the one derived by Harris
[1978]. Note that sometimes the pixel filter hp(X) is folded into the camera responsivityW(xk). In summary,we
finally arrive at the path integral for global illumination:

Ip = ∫
P
hp(X) ⋅ f (X) dX . (38)

Now the only remaining challenge is to efficiently sample good transport pathsX to numerically evaluate the in-
tegral.

1.3 The Monte Carlo method

Equation (38), i.e. integrating themeasurement contribution functionover path space,presents a highdimensional
integration problem. Depending on path length, the integral can easily contain hundreds of dimensions. This
makes many popular integration schemes perform poorly (for instance quadrature rules would yield exponential
complexity in the number of dimensions).

Themethodof choice due to its behaviour for highdimensionality is theMonteCarlomethod (see for instance
Ermakow [1975] or Sobol’ [1994] for an introduction).

The main idea is to make use of the definition of the expected value of a continuous random variable x dis-
tributed with a probability distribution function (���) p(x) to solve the integral

𝔼(x) = ∫ x ⋅ p(x) dx (39)

by drawing a few random trials from x instead of solving the integral analytically. This results in a noisy Monte
Carlo estimator

̂x =
1
N

N
∑
i=1

x ≈ 𝔼(x). (40)

Applying this same principle to the path space integral,we need to divide out the probability distribution function
p(.) from the integrand f (X) to match the definition of the expected value in equation (39):

Ip = ∫
P
hp(X) ⋅ f (X) dX ≈ ̂Ip =

1
N

N
∑
i=1

hp(X) ⋅ f (X)
p(X) . (41)

The crucial difficulty in designing good estimators is now to find an appropriate ��� p(X) which minimises the
integration error of this approximation. Such error manifests itself mostly as variance

Var( ̂Ip) =
1
N

∫ ⎛⎜
⎝

hp(X)f (X)
p(X) − Ip⎞⎟

⎠

2

p(X) dX. (42)

Mostly here means that we assume all employed algorithms will be unbiased, such that the error is spread around
the correct mean and the deviation will be only random noise, decreasing with higher sample count N . Equa-
tion (42) shows that the primary estimator h ⋅ f /p needs to be close to Ip to reduce variance. In practice, this can
be achieved by variance reduction techniques, such as importance sampling. This tries to choose p(X) to follow
f (X) as closely as possible (of course the ���will be normalisedwhile f is not). This goal is all but trivial to achieve
in general for the high dimensional path space.

SIGGRAPH 2019 Course Notes: Path tracing in Production — Part 1 Page 11 / 105



P��� ������� �� P���������

1.4 Colour formation in a renderer

While the first section introduced the path tracing framework and the transport equations for a full path, these
were written without dependency onwavelength λ. Actually,most of the terms such as ����, transmittance, emis-
sion and sensor responsivity have spectral equivalents and depend on wavelength. Modelling this wavelength de-
pendency as closely as possible to physical reality results in much improved fidelity, as well as better importance
sampling.

Colour can come into a rendering by simulating three discrete wavelengths, as typically done in standard ���
transport. Even when simulating the wavelength domain directly, we usually assume only elastic scattering hap-
pens. Thismeans that the energy of a photon remains the same after an event and only depends on thewavelength.
In particular a photon can only be absorbed or scattered into a different direction, but no inter-wavelength trans-
port is considered (such as it would be required to accurately model fluorescence or phosphorescence).

In the most simple case, colour is treated completely detached from the path sampling. This means the path
is constructed and colour is added “after the fact”, if you will, multiplying colour dependent components such as
����, transmittance, etc. Ignoring cases where path creation has a strong dependency on wavelength (we will get
to that in a moment), this boils down to multiplying chromatic factors, for instance for a simple path:

f (X) = Le(λ) ⋅ G1 ⋅ fr(λ) ⋅ G2 ⋅ W(λ). (43)

This will be integrated in the frame buffer, to yield tristimulus colour:

X = ∫
380..830nm

f (λ) ⋅ ̄x(λ) dλ, (44)

where X is the first channel of the ��� ��� tristimulus colour space and ̄x(λ) is the normalised colour matching
function for this channel. TheY and Z channels are computed analogously. See for instance Fairman et al. [1998]
for more information on the colour matching functions.

What happens in ��� transport, when using the ��� ��� primaries, this equation will only be evaluated for
three distinct wavelengths of 700 nm (red), 546.1 nm (green) and 435.8 nm (blue). It is clear that a lot of infor-
mation between these wavelengths is lost because it is never evaluated. On the other hand, the transport for these
wavelengths is evaluated physically correctly. The tristimulus values which end up in the frame buffer are then
directly

R = f (λ = 700nm), G = f (λ = 546.1nm), B = f (λ = 435.8nm). (45)

In general, using any other ��� space to perform the multiplications in equation (43) and replacing the integral
in equation (44) like in equation (45) is wrong and will yield non-physical transport. This is especially apparent
for indirect illumination. Agland [2014] performed extensive comparisons on the impact of the rendering colour
space.

1.4.1 Colour reproduction

With spectral rendering, precise colour reproduction is simple. All relevant formulas are collected in the funda-
mental book by Wyszecki and Stiles [2000]. Just model the light source emission, the surface reflection, and the
camera responsivity with measured spectral data and the result will be correct. Modeling the spectral camera re-
sponse will also give a render directly in camera ��� space rather than ���. This means that the render will even
show the same metamerism as the live footage. There are, however, a few subtleties to keep in mind.

As often,physical plausibility has advantages and downsides. A possible downside, especially when rendering
cartoons,may be that energy conservation poses a limit on colour saturation and brightness of a surface. This has
been recognised early on by Schrödinger [1919] (and who are we to argue with that).

The issue is that energy conservation dictates that, in the absence of fluorescence, no wavelength λmay result
in more reflected than incoming energy:

∫
Ω
fr(x,ω,ωi, λ) dω⟂

i ≤ 1 ∀λ. (46)
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Figure 3: The maximal gamuts of surface reflection, reproduced after Meng et al. [2015]. The graphs show the maximum
brightness (X + Y + Z)/3 of a surface colour (for instance a diffuse albedo such that X = Y = Z = 1 would be the peak
at 1 in the graph), as an iso line graph. The coordinate system as seen from the top is the standard space of chromaticities, i.e.
x = X/(X + Y + Z) and y = Y/(X + Y + Z). Left: the theoretical maximum which can possibly be achieved using step
functions as spectra. Right: a slightly smaller gamut that can be achieved using more natural, smooth spectra.

For a diffuse ����, fr = ρ(λ)/π, where ρ(λ) is the albedo, this means that ρ(λ) ≤ 1 for all wavelengths λ.
Now, the total brightness of the surface as seen in an ��� image has something to do with the ��� brightness,
i.e. X + Y + Z, which is essentially the integral of ρ(λ). Naturally, a more saturated colour means a more peaky
spectral shape,which forces the integral to diminish since the maximum cannot be increased.

Figure3,reproducedafterMeng et al. [2015],shows the limits onbrightnessof a surface colour(X+Y+Z)/3,
dependingon colour saturation.As the chromaticity of the colourmoves towards the edgeof the spectral locus, the
maximum achievable brightness becomes dimmer. The gamut shown on the left is the one derived by MacAdam
[1935], who gave a constructive proof as to which spectra will yield the highest possible brightness for a given
chromaticity. The one on the right is derived by Meng et al. [2015] and uses more natural smooth spectra. These
lead to more believable indirect lighting, since the shape is usually closer to most reflectances encountered in the
wild.

In the future, to add even more realism, renderers may require fluorescence to exceed the MacAdam gamut,
similar to Couzin [2007]. Note that this is only an issue when such bright and saturated colours are required.
For themore regular case that realistic surface reflection needs to be reproduced, this limit of energy conservation
poses a natural restriction on the lookof thematerials. This automatically avoids unrealistically bright and glowing
surfaces. Together with smooth spectra, this results in much more life-like indirect lighting than using naive ���
transport. Note that this ismostly a problem for wide gamut input colour spaces: when stayingwithin Rec709 pri-
maries all colours can be represented by valid reflectances, albeit some of them will be boxy (cf. Jakob and Hanika
[2019]).

1.4.2 Where to get input spectra from

Wecan get spectral definitions for some light sources or cameras from themanufacturers. Also some specialmate-
rials, such as for instance spectral absorption of melanin (for hair) and hemoglobin (for skin), can be readily found
in text books. Even for these it is sometimesuseful tobe able tooverruleormodulate thembyartist-drawn textures.
Since these are usually working in ���, there is a need to convert tristimulus data to full continuous spectra.

Early work by MacAdam [1935] facilitates this, but with the limitation that the resulting colours will always
be as bright as possible and thus box functions in shape. Since natural reflection spectra are usually smooth, this
results in unnatural looking indirect lighting.
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Smits [1999] devised a method to upsample ��� values to spectra, taking into account smoothness and op-
timising the process to try and achieve energy conservation too. Depending on the input tristimulus coordinate,
it may not be possible to meet both goals: chromaticity and energy conservation. Also, this method only works
within a certain ��� working space, not for the whole gamut of visible colours. Meng et al. [2015] recognise this
and separate the process into two steps: first, the colour from tristimulus values is upsampled, disregarding en-
ergy conservation. Secondly, a gamut mapping step is performed that enforces energy conservation in case the
input colour was too saturated and bright for a physically plausible reflectance value. This is not needed in case a
light source emission is upsampled from ��� values. This approach ensures a surface lit by illuminant E will look
the same when using the ��� reflectances and the upsampled spectrum,when observed with the ��� ��� colour
matching functions ̄x(λ), ̄y(λ), ̄z(λ).

There is a refreshed interest in accurate and fast spectral upsampling: Otsu et al. [2018] employ a clustered
��� to create spectra that are similar to a certain input set and clamp to [0, 1] if needed. Jakob and Hanika [2019]
present a particularly fast method to upsample spectra, and Peters et al. [2019] provide a sophisticated method
with scalable accuracy. The last two approaches get away without look up tables during render time,which makes
them particularly interesting for memory bound scenarios.

1.4.3 Colour noise

Asmentionedabove, introducinga randomly sampledwavelengthλ into thepath tracingprocess introducesnoise.
Fortunately, natural reflectance spectra are smooth, and also forced to be this during a potential upsampling step
from tristimulus texture input. It is thus an effective strategy to use stratified samples in the wavelength domain to
resolve colour.

Wilkie et al. [2014] do this in combination with efficient path reuse: the path construction is still performed
with onemain wavelength, and a set of 3 stratified wavelengths are evaluated alongside with it. The final contribu-
tion is weighted using multiple importance sampling (���), resulting in a much lower variance picture.

The evaluation of the ��� and wavelength-dependent ���� can be performed in ���, evaluating four wave-
lengths in four lanes in one instruction. Note that this method requires precise computation of ���s (that is, a
stochastically evaluated or approximate ��� may lead to problems). Due to its usefulness for noise reduction it
has found adoption in production (inW���D������’sManuka), butmay be limiting in some contexts that do not
already depend on multiple importance sampling.

1.4.4 Importance sampling

While at first sight it may seem path construction can be performed independently of wavelength, there are a few
important special cases.

The first is obviously chromatic dispersion in dielectrics, causing the prominent rainbow-like colours in caus-
tics, for instance under a glass of water on a table in the sun. This is one obvious effect that is hard to model in an
���-based rendering system. On the other hand, shots with such effects are relatively rare. This is even more so
because usually the visually rich materials in ��� have fine details such as scratches, grease stains on glass, or dirt
particles scattering the light under water. All this blurs or masks away such subtle dispersion effects most of the
time.

There are some scatteringmodelswhich include a spectral shapeof the lobe. This includesdiffractionat surface
points as well as Rayleigh scattering in the atmosphere. Using spectral sampling, it is easy to incorporate such
advanced models into a render.

The most important case, however, is chromatic extinction in participating media. That is, the extinction co-
efficient μt(x, λ) depends on the wavelength. This governs the transmittance term equation (25) which is simply
exp(−μt(λ) ⋅ d) for homogeneousmedia. Themean free path in themedium 1/μt depends on the wavelength in
chromatic media, resulting in very different importance sampling strategies for red vs. blue photons.

This is important for instance when using fully ray traced sub-surface scattering in skin: skin has a particular
look that scatters red light farther than blue light. This is the reason why black and white portrait photography
looks smoother with a red filter.
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Radiometric spectral Photometric
name unit symbol name unit symbol
Radiance W/(m2 ⋅ sr ⋅ m) Lλ Luminance nit nt = lm/(m2 ⋅ sr) Lv
Irradiance W/(m2 ⋅ m) Eλ Illuminance lux lx = lm/m2 Ev
Radiosity W/(m2 ⋅ m) Jλ Luminosity lux lx = lm/m2 Jv
Radiant emittance W/(m2 ⋅ m) Mλ Luminous emittance lux lx = lm/m2 Mv
Radiant intensity W/(sr ⋅ m) Iλ Luminous intensity candela cd = lm/sr Iv
Radiant power watt W/m Φλ Luminous power lumen lm Φv
Radiant energy joule J/m = W ⋅ s/m Qλ Luminous energy talbot Tb = lm ⋅ s Qv

Table 1: Correspondence between radiometric and photometric units. We abbreviate the unit for luminous energy talbot
as Tb instead of the also common T to avoid confusion with the unit for magnetic flux tesla. We also use the convention of
subscripting photometric quantities with v (for visual), radiometric quantities with e (for energetic) and spectral radiometric
quantities with λ. this follows the recommendations in documents such as USAS and ASME [1967].

Thedomain of distance sampling is fairly extreme: [0, ∞). Thismeans that scattering vertices will be sampled
far apart when importance sampling the transmittance for different wavelengths. In some cases, when one wave-
length does not interact with the medium at all, this leads to infinite variance, as recognised by [Raab et al., 2008,
Sec. 3.2].

This application of spectral importance sampling is often the most important one, since it is very hard to per-
form principled importance sampling which can be combined in a flexible way with generic sampling strategies
in ��� transport (such as combinationwith equi-angular sampling or sampling distances by scattering coefficient
instead of extinction).

1.4.5 Radiometry vs. Photometry

Radiometric quantities (such as watts for flux or watts/squaremeter/steradian for radiance) are great to workwith
during light transport, since they allow a 1:1 mapping to the equations we find in physics books.

For a lighter, however, it may be more intuitive to work with photometric quantities. These account for the
fact that different colours appear to be of different brightness to a human observer. To be precise, a spectral power
distribution can be converted from radiometric quantities to photometric ones byweighting by a luminosity func-
tion. Usually the photopic, daytime brightness function of the ��� is used. This allows us to express radiant power
not in watts but as lumen, which is then called luminous power, for instance. For all radiometric quantities, there
are equivalent photometric ones (cf. Tab. 1). Designing user interfaces for lighters around this notion allows them
to change the colour of a light source while maintaining the perceived brightness in a principled way.

As said earlier,when dealing with spectral light sources, the photopic luminosity function ̄y(λ) is used: this is
the result of a series of experiments and tabulationsfirst publishedby the��� in1924 (the functionwas calledV(λ)
at the time) and then included in the color matching functions for the standard 2 degree colorimetric observer,
published in 1931.

At this point we have enough information to write equations correlating radiometric quantities to their cor-
responding photometric ones: given a radiometric spectral quantity Xλ(… , λ) the corresponding photometric
quantityXv(…) is simply obtained integratingXλ againstKm ⋅ ̄y(λ) whereKm is a scaling constant about equal 4

to 683:
Xv(…) = Km ∫Xλ(… , λ) ̄y(λ)dλ.

For example, given spectral radiant powerΦλ(λ), the corresponding luminous powerΦv is

Φv = Km ∫Φλ(λ) ̄y(λ)dλ.

4The scaling constant Km is actually closer to 683.002, because the value of ̄y is about 0.999 998 at 555.016 nm, but the value of 683
can safely be used for all practical applications, see CIE [1996],Wyszecki and Stiles [2000]
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1.5 Path construction techniques

This section will give a quick run down on a few basic path construction techniques and the related problems.
The examples here are generic and simplified, in practical production scenarios they will be aggravated by difficult
geometry, complex materials, and combinations of many lighting effects.

1.5.1 Path tracing

In themost simple incarnationasdescribedbyKajiya [1986],path constructionproceedsby samplingpathvertices
iteratively by successively extending the path starting at the eye or camera sensor. This involves sampling a pixel,
a point on the camera aperture, and tracing a ray to the first intersection with the scene. At this point, the ���� is
queried to generate a good outgoing direction given only the incoming ray (left):

This local decision is not necessarily a good idea globally, however. In the example in the right image above, the
generated outgoing direction misses the light source. This is especially problematic for small and far away light
sources, subtending a small solid angle as seen from the shading point.

1.5.2 Next event estimation

The problem outlined in the previous section is addressed by a technique called next event estimation (���). In
this context, a path is directly connected to the light sources by explicitly sampling the surface area of the emitter
in vertex area measure instead of sampling an outgoing direction in projected solid angle measure. This has been
known inneutron transport for a long timeandcoinednext event estimationbyCoveyou et al. [1967]. Connections
can be performed multiple times from the same vertex to increase sampling efficiency for long paths with difficult
illumination (left):

This technique, however, disregards the ����. In extreme cases this can result in no throughput at all, if the ����
contains a Dirac delta, such as smooth specular materials in the example on the right. The problem persists with
glossy materials, too, and gradually becomes less of an issue for diffuse materials. Unfortunately, even those will
have sub optimal importance sampling when using straight uniform area sampling as opposed to more advanced
mappings such as for instance the one proposed by Ureña et al. [2013].

1.5.3 Light tracing

Another technique devised byArvo [1986] to solve the problem in the last section is called light tracing as opposed
to path tracing,because the randomwalk starts at the emitters and performs next event estimation to the eye point
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(left):

Unfortunately, it is very easy to construct symmetric fail cases for this type of next event estimation by putting a
smooth specular material between the eye point and the diffuse surface (see right image). Light tracing can be
combined via multiple importance sampling with all previously mentioned techniques to generate a more robust
composite estimator. The example in the image above is however one that cannot be rendered efficiently by bidi-
rectional path tracing. This is because thediffuse event on thebottomof thepool is encapsulatedby specular events
on both sides, a so called ��� situation (from specular-diffuse-specular, this system for classifying path structures
was introduced in [Heckbert, 1990]). Again, this is a problem even if the ���� are not perfectly smooth specular,
sampling efficiency will smoothly degrade as the ���� tends to a Dirac delta.

1.5.4 Photon mapping-based approaches

Torender such��� scenarios,onecanemploypathcachesbymeansof photonmapping (see theworksofGeorgiev et al.
[2012],Hachisuka et al. [2012],Jensen [1996]). Techniques employing this are usually two-passmethods,first trac-
ing fractional light packets (colloquially called photons in computer graphics) or gather points from the light or
the eye, respectively. In this example image,”photons”are traced from the light, as indicated by the yellow paths:

It is then possible in a second pass, here performed from the eye (indicated by the black rays), to collect these
photons via kernel estimation (indicated by the black circle). Since many ”photons”are traced in the first pass, it is
likely to intersect them in the second pass, facilitating efficient reuse of computation. Drawbacks of this method
include that photons aren’t distributed according to importance from the eye and can be wasteful without further
refinement of the method, such as the one proposed by Gruson et al. [2016]. The kernel estimation is not always
simple and can lead to visible bias near complex geometry,which is unfortunately quite important for production
scenes. This is especially apparent on hair and fur.

1.5.5 Markov chain-based methods

Anunbiased alternative is the family of Markov chain-basedmethods. These includeMetropolis light transport as
introducedbyVeach and Guibas [1997],primary sample spaceMetropolis light transportbyKelemen et al. [2002],
and Hamiltonian Monte Carlo as introduced to graphics by Li et al. [2015]. On a high level, these methods are
based on a Markov chain that holds a current state (indicated as the dashed path in the figure):
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This path is thenmutated by iteratively proposing tentative newpathswhich are drawn fromsome transitionprob-
ability distribution. These mutations can be modelled to explicitly handle a certain class of important transport,
such as exploring specular manifolds (see Jakob and Marschner [2012]). Markov chains have traditionally suf-
fered from temporal flickering. This is because we need to strike a balance between global discovery of important
lighting effects (disconnected islands inpath space,potentiallywithdifferentdimensionality than the current path)
and local exploration (smallmutations). PlainMonteCarlo is good at the first task,especiallywhen combinedwith
stratified sampling such as when using the randomly scrambled Halton sequence. Markov chain-based methods
are usually very good at the second task, but fail to stratify the samples globally, resulting in temporal instability.

1.6 Conclusion

This introductory section summarised the most essential and basic concepts of light transport theory, the related
equations, a few thoughts on colour reproduction which is essential to match live footage in production, as well as
the most common path space sampling techniques.

References

Steve Agland. 2014. CG Rendering and ACES. http://nbviewer.ipython.org/gist/sagland/
3c791e79353673fd24fa.

Marco Ament, Christoph Bergmann, and DanielWeiskopf. 2014. Refractive Radiative Transfer Equation. ACM
Trans. on Graphics 33, 2 (April 2014), 17:1–17:22. https://doi.org/10.1145/2557605

JamesArvo. 1986. Backward Ray Tracing. In SIGGRAPH Course Notes. 259–263.

JamesArvo. 1993. Transfer equations in global illumination. In SIGGRAPH Course Notes.

Benedikt Bitterli, Srinath Ravichandran, Thomas Müller, Magnus Wrenninge, Jan Novák, Steve Marschner, and
Wojciech Jarosz. 2018. A radiative transfer framework for non-exponential media. Technical Report.

Subrahmanyan Chandrasekar. 1960. Radiative Transfer. Dover Publications Inc. ISBN 0-486-60590-6.

CIE. 1996. The Basis of Physical Photometry. Commission Internationale de l’Éclairage,CIE Central Bureau.

Dennis Couzin. 2007. Optimal fluorescent colors. Color Research & Application 32, 2 (2007), 85–91.

R.R.Coveyou,V.R.Cain,andK. J.Yost.1967.Adjoint and Importance inMonteCarloApplication.Nuclear Science
and Engineering 27, 2 (1967), 219–234. https://doi.org/10.13182/NSE67-A18262

Eugene d’Eon. 2018. A reciprocal formulation of non-exponential radiative transfer. 1: Sketch and motivation.
ArXiv e-prints (March 2018). arXiv:physics.comp-ph/1803.03259

Sergej Mikhailovich Ermakow. 1975. Die Monte Carlo Methode und verwandte Fragen. VEB Deutscher Verlag
derWissenschaften.

SIGGRAPH 2019 Course Notes: Path tracing in Production — Part 1 Page 18 / 105

http://nbviewer.ipython.org/gist/sagland/3c791e79353673fd24fa
http://nbviewer.ipython.org/gist/sagland/3c791e79353673fd24fa
https://doi.org/10.1145/2557605
https://doi.org/10.13182/NSE67-A18262


P��� ������� �� P���������

HughFairman,Michael Brill, andHenryHemmendinger.1998.How theCIE1931 color-matching functionswere
derived fromWright-Guild data. Color Research and Application 22, 1 (1998), 11–23.

IliyanGeorgiev, JaroslavKřivánek,TomášDavidovič, andPhilipp Slusallek.2012. Light Transport Simulationwith
VertexConnectionandMerging.ACMTrans.onGraphics (Proc.SIGGRAPHAsia)31,6 (2012),192:1–192:10.

Andrew S.Glassner. 1995. Principles of Digital Image Synthesis. Morgan Kaufmann.

Adrien Gruson, Mickaël Ribardière, Martin Šik, Jiří Vorba, Rémi Cozot, Kadi Bouatouch, and Jaroslav Křivánek.
2016. A Spatial Target Function for Metropolis Photon Tracing. ACM Trans. on Graphics 36, 1 (Nov. 2016),
4:1–4:13. https://doi.org/10.1145/2963097

Toshiya Hachisuka, Jacopo Pantaleoni, and HenrikWann Jensen. 2012. A Path Space Extension for Robust Light
Transport Simulation. ACM Trans. on Graphics (Proc. SIGGRAPHAsia) 31, 6 (2012), 191:1–191:10.

Frederic J. Harris. 1978. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc.
IEEE 66, 1 (1978), 51–83.

Paul S.Heckbert. 1990. Adaptive Radiosity Textures for Bidirectional Ray Tracing. SIGGRAPH Comput. Graph.
24, 4 (Sept. 1990), 145–154. https://doi.org/10.1145/97880.97895

L.Henyey and J.Greenstein. 1941. Diffuse radiation in the Galaxy. Astrophysical Journal 93 (1941), 70–83.

Matthias Hullin, Johannes Hanika,BorisAjdin, Jan Kautz,Hans-Peter Seidel, and Hendrik Lensch. 2010. Acquisi-
tion andAnalysis of Bispectral Bidirectional Reflectance andReradiationDistribution Functions. Transactions
on Graphics (Proceedings of SIGGRAPH) 29, 4 (2010), 1–7.

Wenzel Jakob and JohannesHanika.2019.A Low-Dimensional Function Space for Efficient SpectralUpsampling.
Computer Graphics Forum (Proceedings of Eurographics) 38, 2 (March 2019).

Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: a Markov chain Monte Carlo technique for ren-
dering scenes with difficult specular transport. ACM Trans. on Graphics (Proc. SIGGRAPH) 31, 4 (2012),
58:1–58:13.

Wenzel Jakob, Jonathan T. Moon, Adam Arbree, Kavita Bala, and Steve Marschner. 2010. A Radiative Transfer
Framework for Rendering Materials withAnisotropic Structure. ACMTrans. on Graphics (Proc. SIGGRAPH)
29, 10 (July 2010), 53:1–53:13. https://doi.org/10.1145/1778765.1778790

Adrian Jarabo,CarlosAliaga,andDiegoGutierrez.2018.ARadiativeTransfer Framework for Spatially-Correlated
Materials. ACM Trans. on Graphics (Proc. SIGGRAPH) 37, 4 (2018).

Adrian Jarabo andDiegoGutierrez. 2016. Bidirectional Rendering of Polarized Light Transport. InProceedings of
CEIG ’16.

Adrian Jarabo, JulioMarco,AdolfoMuñoz,Raul Buisan,Wojciech Jarosz,andDiegoGutierrez.2014.AFramework
forTransientRendering.ACMTrans.onGraphics 33,6 (Nov.2014),177:1–177:10. https://doi.org/10.1145/
2661229.2661251

Wojciech Jarosz.2008. EfficientMonte CarloMethods for Light Transport in ScatteringMedia. Ph.D.Dissertation.
UC San Diego, La Jolla,CA,USA. Advisor(s) HenrikWann Jensen and Matthias Zwicker.

HenrikWann Jensen. 1996. Global illumination using photon maps. In Proc. EurographicsWorkshop on Render-
ing. 21–30.

James T.Kajiya. 1986. The rendering equation. Computer Graphics (Proc. SIGGRAPH) (1986), 143–150.

Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A Simple and Robust Mutation
Strategy for the Metropolis Light TransportAlgorithm. Computer Graphics Forum 21, 3 (2002), 531–540.

SIGGRAPH 2019 Course Notes: Path tracing in Production — Part 1 Page 19 / 105

https://doi.org/10.1145/2963097
https://doi.org/10.1145/97880.97895
https://doi.org/10.1145/1778765.1778790
https://doi.org/10.1145/2661229.2661251
https://doi.org/10.1145/2661229.2661251


P��� ������� �� P���������

Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi,Wenzel Jakob, and Frédo Durand. 2015. Anisotropic Gaussian
Mutations for Metropolis Light Transport through Hessian-Hamiltonian Dynamics. ACM Transactions on
Graphics (Proceedings of SIGGRAPHAsia) 34, 6 (Nov. 2015), 209:1–209:13.

David L. MacAdam. 1935. Maximum Visual Efficiency of Colored Materials. Journal of the Optical Society of
America 25, 11 (1935), 361–367.

Johannes Meng, Florian Simon, Johannes Hanika, and Carsten Dachsbacher. 2015. Physically Meaningful Ren-
dering using Tristimulus Colours. Computer Graphics Forum (Proceedings of Eurographics Symposium on
Rendering) 34, 4 (June 2015), 31–40.

JanNovák.2014.EfficientMany-LightRendering of SceneswithParticipatingMedia. Ph.D.Dissertation.Karlsruhe
Institute of Technology.

Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo Methods for Volumetric
Light Transport Simulation. Computer Graphics Forum (Eurographics State of the Art Reports) 37, 2 (2018),
1–26.

H. Otsu, M.Yamamoto, and T. Hachisuka. 2018. Reproducing Spectral Reflectances From Tristimulus Colours.
Computer Graphics Forum 37, 6 (2018), 370–381. https://doi.org/10.1111/cgf.13332

ChristophPeters,SebastianMerzbach, JohannesHanika,andCarstenDachsbacher.2019. UsingMoments toRep-
resent Bounded Signals for Spectral Rendering.ACMTrans. on Graphics (Proc. SIGGRAPH) 38, 4,Article 136
(2019), 14 pages. https://doi.org/10.1145/3306346.3322964

Matt Pharr,Wenzel Jakob, and Greg Humphreys. 2017. Physically Based Rendering: FromTheory to Implementa-
tion (3rd ed.). Morgan Kaufmann Publishers Inc.

Matthias Raab,Daniel Seibert, andAlexander Keller. 2008. Unbiased Global Illumination with Participating Me-
dia. InMonte Carlo and Quasi-Monte Carlo Methods 2006. 591–606.

Erwin Schrödinger.1919.Theorie der Pigmente größter Leuchtkraft.Annalen der Physik 367,15 (1919),603–622.

Brian Smits.1999. AnRGB-to-spectrum conversion for reflectances. Journal of Graphics Tools 4,4 (1999),11–22.

Ilya Sobol’. 1994. A Primer for the Monte Carlo Method. CRC Press.

JohnStrutt.1871.Onthe light fromthe sky, itspolarizationandcolour.Philos.Mag.41,4 (1871),107–120,274–279.

Kip Thorne. 2014. The Science of Interstellar. W.W.Norton & Company.

CarlosUreña,Marcos Fajardo,andAlanKing.2013.AnArea-preservingParametrization for Spherical Rectangles.
Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) (2013), 59–66. https://doi.org/
10.1111/cgf.12151

USAS and ASME. 1967. USA Standard Letter Symbols for Illuminating Engineering. United States of America
Standards Institute.

EricVeach. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D.Dissertation. Stanford,CA,
USA. Advisor(s) Guibas, Leonidas J.

EricVeach and Leonidas J.Guibas. 1997. Metropolis Light Transport. Proc. SIGGRAPH (1997), 65–76.

SebastianWerner,ZdravkoVelinov,Wenzel Jakob, andMatthias B.Hullin.2017. Scratch Iridescence:Wave-optical
Rendering of Diffractive Surface Structure. ACM Trans. on Graphics 36, 6 (Nov. 2017), 207:1–207:14. https:
//doi.org/10.1145/3130800.3130840

SIGGRAPH 2019 Course Notes: Path tracing in Production — Part 1 Page 20 / 105

https://doi.org/10.1111/cgf.13332
https://doi.org/10.1145/3306346.3322964
https://doi.org/10.1111/cgf.12151
https://doi.org/10.1111/cgf.12151
https://doi.org/10.1145/3130800.3130840
https://doi.org/10.1145/3130800.3130840


P��� ������� �� P���������

AlexanderWilkie, Sehera Nawaz,Marc Droske,AndreaWeidlich, and Johannes Hanika. 2014. HeroWavelength
Spectral Sampling. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering) 33, 4
(July 2014), 123–131.

G.Wyszecki andW. S. Stiles. 2000. Color Science: Concepts and Methods, Quantitative Data and Formulae. John
Wiley & Sons.

SIGGRAPH 2019 Course Notes: Path tracing in Production — Part 1 Page 21 / 105



P��� ������� �� P���������

2 MonteCarlo integration
L��� F�������,Weta Digital
J������� H�����,Weta Digital

2.1 Introduction: a holistic look at integration theory

Path tracing algorithms can be seen as specialized algorithms carefully designed to compute a very high dimen-
sional integral of a function with a relatively specific structure. Generations of researchers, following Jim Kajiya’s
seminal article introducing the rendering equation to graphics [Kajiya, 1986], have used various kinds of Monte
Carlo methods to estimate approximate solutions to the rendering equation, sometimes without asking too many
questions as to why exactly a method or another was actually chosen.

Inwhat followswe showcase how there are a few possibilities for numerically estimating the integral of a given
function f : if a closed formula can be used, using arguments based from an analytical application of Riemann or
Lebesgue integration, the error will be only a function of the precision with which the closed form expression of
the analytical integral can be evaluated.

However in the common case analytical means are not applicable, for example because a closed form for the
integral is not known, or maybe because it is f to not have an analytic form in the first place, and other numerical
approaches must be employed. One kind of avenue is based on approximating sections of f with functions for
whichclosed formintegration is available andwell understoodandcontrolled,suchas theNewton-Cotes formulas,
whereas the other avenue is to useMonte Carlo integration,which apparently starts with a lesser degree of control
on the estimation error εn.

Newton-Cotes becomes hard if the integration domainΩ is complicated and/or high dimensional: first off it
might require sampling f an enormous amount of times (this is the so-called curse of dimensionality), and secon-
darily the control on error depends on how well the Lagrange interpolation approximates f .

On the other hand Monte Carlo has no specific issues dealing with integration domains of awkward shapes
and/or high dimensionality, but the convergence is only available in a probabilistic sense (and in particular the
error depends on the specific instance of the stochastic process underlying the integration procedure) and the
tightening of the convergence bounds is only achieved by increasing the number of sampling locations, at a rate of
O(1/√n): as halving the error requires quadrupling the sample count, the feasibility of the brute-force approach
fades away quickly, although admittedly nowhere near as quickly as it is the case for Newton-Cotes.

In fact, the approach of increasing the number of samples n to reduce integration error is well-known from
practical experience in graphics to be difficult or near impossible to sustain, and the vast majority of the research
inMonte Carlo integration is around increasing the quality of the estimator θn, or in other words, keepingn about
constant (mostly as a consequence of a relatively fixed compute budget) and making sure that the standard devia-
tion σ of the estimator is as small as possible.

Moving onto quasi-MonteCarlo,wewill see how the lack of applicability of the central limit theorem to quasi-
random processes makes empirical estimation of convergence rate difficult to do with tight, informative bounds.
As the integration error ε = O((log n)d/n),we see that if thenumberof dimensionsd is largewehave (log n)d >
n until n > 2d , this can be a large number if d is large. In rendering d can be in the three digits, so for the hard
bounds of quasi-Monte Carlo to come into play, the sample counts n need to be enormous, far beyond what is
achievable with practical means. Lastly, as the Koksma-Hlawka inequality is bounded by the total variation of f , if
f or its derivates jump around a lot, the bound becomes very loosemaking the bound on error of limited practical
use. All this being said, the empirical observation is that in practice, for functions f that are differentiable (maybe
except for a set of very small measure) integrals seem to converge much faster using quasi-Monte Carlo.

Background material The references used in this section are often directing the reader to very early dis-
cussions of the various subjects. It is well understood that this hasmostly historical value, and the reader is referred
to classic texts in mathematical analysis such as [Apostol, 1991,Rudin, 1953, 1987, Spivak, 2006] for a more peda-
gogically oriented,contemporary treatment. Further classic andmoremodern references are provided throughout
the text as appropriate.
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2.2 Problem statement

The problem we are discussing is how to compute the integral θ of a real-valued function f ∶ U → ℝ over some
domainΩ ⊆ U :

θ = ∫
Ω
f (x) dx f ∶ U → ℝ (47)

Focusing for a moment on the case in which the domain of f is the set of the real numbers U = ℝ, and the
integrationdomainΩ is a compact subset of it, such as an interval [a, b], this turns into themore familiar symbolic
form

θ = ∫
b

a
f (x) dx f ∶ ℝ → ℝ (48)

which corresponds to the familiar problem statement of computing the area under the curve: the area enclosed by
the curve at the top, two vertical segments on the sides, and the x axis at the bottom.

In order to avoid getting distracted by the specific shape of the integration domain, in what follows we will
focus our attention on domainsΩ = [0, 1]d which are unit cubes of dimension d. In one dimension this would
be the expression

θ = ∫
1

0
f (x) dx f ∶ [0, 1] → ℝ (49)

There is of course noneed that the domainU of our function f be a unidimensional space, in fact it’s quite clear
from the introductory examples and the other sections of these notes that our main focus is indeed on functions
that have a domain of dimension higher than one (often much higher).

To be more precise, in what follows we will assume that for all the functions f ∶ U → ℝ under consideration,
there exist apositive integerd andadifferentiable isomorphismφ ∶ [0, 1]d → U thatmaps the functiondomainU
into a hypercube of some appropriate dimension. Then our integral over a given domainΩ ⊆ U can be expressed
as

∫
Ω
f (x) dx = ∫

φ−1(Ω)
f (φ(u))

∣∣∣∣
det

∂φ
∂x

∣∣∣∣u

∣∣∣∣
du (50)

where we have used ∂φ
∂x ∣

u
for the Jacobian of our map φ evaluated at u:
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(51)

and the correction factor for the integral, ∣det ∂φ
∂x ∣

u
∣ is the absolute value of the determinant of the Jacobian of φ at

u. This quantity represents the local change of density of coordinates at u imposed by our map φ with respect to
the coordinates at the corresponding location φ−1(u).

2.2.1 The Riemann integral

Of course, integration is a fundamental construct in mathematics, and the first formal approach to the specific
meaning of this symbolism that students normally encounter was proposed by Bernhard Riemann in [Riemann,
1868]5: start by approximating the area we’re looking for as the sum of areas of rectangles under the curve, then
refine this approximation using a larger and larger number of rectangles. In the limit the sum of the areas of these
rectangles converges to the area under the curve.

5Riemann’s definition of the definite integral was proposed in 1854 as part of his qualification to become professor in the university
of Göttingen. The paper, titled “On the representability of a function by a trigonometric series”, was published fourteen years later in the
proceedings of the Royal Philosophical Society atGöttingen. Riemann’s definition and discussion of the integral appears in section 4,pages
101–103
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More specifically: in the case we need to integrate the function f over the interval [a, b], let’s subdivide the
interval [a, b] into n subintervals by picking n − 1 locations6 x0 = a, … , xi, … , xn = b. We will call this a
partition of the interval [a, b], and given it has n subintervals [xi, xi+1], we will give it a corresponding subscript:
Pn.

The most important trait of a partition Pn is its norm ‖Pn‖, being the size of the largest subinterval in the
partition

‖Pn‖ = max
i

{xi+1 − xi} (52)

Given a partition, we can pick n sampling locations tni ∈ [xi, xi+1], one sampling location per subinterval.
This gives us a quantity θn(P, t) called the Riemann sum,defined as:

θn(P, t) =
n−1
∑
i=0

f (tni )(xi+1 − xi) (53)

This is an approximation of the integral of f over [a, b] obtained by first replacing f with a piecewise constant
function ̃f , and then integrating this new functionover [a, b]. Note that the integral of ̃f is easily computed exactly,
due to how ̃f was constructed and is in fact the expression in equation (53).

With regards to sequences of partitions of a given interval, we say that a sequence of partitions is contracting
if the sequence of its norms is decreasing and converges to 0. Given two partitions P1 and P2 we say that P2 is a
refinement of P1 if P2 contains all the partition locations of P1 plus potentially more, in other words if P2 can be
obtained fromP1 by splitting some subintervals. In this casewewriteP2 ≥ P1. A sequence of partitions is refining
if all later elements are refinement of earlier elements: Pi ≥ Pj ⇔ i > j. Note that refining sequences of partitions
do not have to be contracting (imagine for example a refining sequence that never splits its first subinterval: if all
the other intervals do get split, eventually the size of the first subinterval becomes the norm of the partition and all
of its refinements constructed this way, preventing convergence to 0). In the same way, contracting sequences are
in general not refining.

2.2.2 Integrable functions

Theeagle-eyed readerwill have noticed that theremight be a possibility that if a function f is sufficiently contorted,
one could find strategies for picking partition sequences and sampling locations in a few different manners, say
tni and sni , to produce two sequences θn(P, t), θn(P, s) that are not only different element by element, but also
converge to different values. This gives rise to the concept of Riemann-integrable function: these are all functions
for which the limit of the θn(P, t) sequence exists, it is finite and takes the same value independent of the choice
used for the partitions Pn and sampling locations tni , with the important hypothesis that the partitions make a
contracting sequence. Note there is no requirement the sequences for the associated Riemann sums to have the
same values, it is just the limits that need to agree.

Theactualdefinitionof Riemann-integrable function is slightlydifferent, though. It states thatθ = ∫b
a f (x) dx

if and only if for every real value ε > 0, however small, there exists a value δ > 0 so that for all partitions Pn for
which ‖Pn‖ < δ and all choices of sampling locations tni in them one has |θ − θn(Pn, tn)| < ε. Note that there
is no requirement that the partition sequence be refining, it only needs to be contracting. However, if the limit of
the Riemann sums exists and is the same for all contracting refining sequences, then it exists and is the same for all
contracting (not refining) sequences as well.

Incidentally, it is easy to show that if f is integrable over [a, c], the integral can be computed proceeding in
pieces:

∫
c

a
f (x) dx = ∫

b

a
f (x) dx + ∫

c

b
f (x) dx ∀a < b < c (54)

The lefthandsideof the equation tellsus thatwhencomputing theRiemannsums for f over[a, c], their limit values
are the same independent of what specific partition sequence is used (this is the definition that f be integrable).
Now looking at the right hand side: merging the partitions over [a, b] and [b, c], one obtains partitions of [a, c]

6Without loss of generality, these locations will be assumed to be in increasing order: i < j ⇒ xi ≤ xj
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that just so happen to have a partition location at b, so these merged partitions are just a subset of all possible
partitions of [a, c] and our statement is proved.

One example of function that is not Riemann-integrable is constructed as follows: we start with the character-
istic function of a setA, being the function χA(x) that has value 1 onA and 0 otherwise:

χA(x) =
⎧{
⎨{⎩

1 if x ∈ A
0 otherwise

(55)

the characteristic function can be applied to any set. Let’s look at a few examples: the characteristic function of an
interval [b, c] can easily be integrated over any interval [a, d]. Let’s look at the case a < b < c < d:

∫
d

a
χ[b,c](x) dx = c − b (56)

the result is easily proven because the function is piecewise constant.We can restate our original integral as a sum
of three terms

∫
d

a
χ[b,c](x) dx = ∫

b

a
χ[b,c](x) dx + ∫

c

b
χ[b,c](x) dx + ∫

d

c
χ[b,c](x) dx (57)

where for the first and third term on the right hand side the integral is 0 and for the second term the integral is
c − b, in all three cases independent of how the partition locations or sampling locations are chosen.

A second simple example is starting from a set of one valueX = { ̄x} and computing the integral of χX ,which
is a function that is everywhere 0 except at one location ̄x, where it is 1:

∫
b

a
χX(x) dx = 0 (58)

assuming ̄x ∈ [a, b] (otherwise the integral is 0 because χX is everywhere 0) there are two possibilities for par-
titions of [a, b]: either ̄x is a partition location, or it’s not. If it is not, there is one subinterval in our partition that
contains ̄x: if the sampling location on that subinterval is at ̄x, we have θn be the size of this subinterval, otherwise
θn is 0. However, in the case inwhich all partitions in a sequence do have a sampling location at ̄x, the convergence
of the norm of the partitions in the sequence to 0 brings the limit of the associated Riemann sums θn to 0. The last
case to analyse is the case in which ̄x is a partition location: in that case there are two subintervals instead of one
that have a chance of making θn non-zero in case the corresponding sampling locations happen to be at ̄x. Once
more, as the norms of the partitions converge to 0, so do the associated θn, proving our statement. Of course the
same results applies for all finite setsX = { ̄x0, … , ̄xn}, which is easily proven by first subdividing the integration
domain in regions around the various ̄xi and then applying the previous result.

Now the question is what happens if we have infinitely many points in X, for example what if X = ℚ, the
set of rational numbers. Turns out that χℚ(x) is not Riemann-integrable over the interval [0, 1]: in fact we can
choose a sequence of partitions

Pn =
⎧{
⎨{⎩

[
i
n

,
i + 1
n

]
⎫}
⎬}⎭i∈{0,…,n−1}

(59)

and two sequences of sampling locations tni , sni :

tni =
i + 1

2
n

sni =
i + (√2 − 1)

n
(60)

where it can easily be seen that

χℚ(tni ) = 1 χℚ(sni ) = 0 ∀n, i ∈ ℕ (61)

and these make two Riemann sums θn(P, t) = 1 and θn(P, s) = 0 for all values of n.
In fact this example of bounded function that is not Riemann integrable captures the essence of the problem:

the trouble for integrability in the Riemann sense comes from jump discontinuities, namely when there are too
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many and too finely spaced. If our function f has a finite set of jumps and is elsewhere continuous, the refinement
of the partitions will eventually isolate the discontinuities, eventually minimizing the influence from the jumps
away to the point where they don’t make any contribution to the final value of the integral. The alternative view is
that the way to deal with jump discontinuities is simply splitting the function in branches just at the discontinuity
locations, so that the integral over the whole domain is simply a sum of separate integrals of continuous functions
over a few smaller, contiguous subdomains. If instead the set of jumps has infinite cardinality (countable ormore)
it becomes impossible to cut the function into branches as before,because each integration domain is smaller than
the current means can appropriately capture (in fact it’s 0 sized).

2.2.3 Interlude: the Fundamental Theorem of Calculus

Analysis takes back with one hand what it gives with the other. I recoil in
fear and loathing from that deplorable evil: continuous functions with no
derivatives

C������ H������

The Fundamental theorem of calculus can be loosely stated as saying that the operation of derivative and indefinite
integration are inverses of one another. In fact it is the case for all f that are Riemann integrable that the indefinite
integral is a continuous differentiable function, and that the derivative of this function equals f :

d
dx

∫ f dx = f (62)

and it can be shown that the opposite relation is also true, up to a constant: the indefinite integral of the derivative
of f is equal to f + C for some constant C ∈ ℝ. Indeed this result is so powerful that symbolic integration of a
given function f is in practice performed by finding the antiderivative of f (being a function g so that its derivative
equals f ) and then evaluating it at the boundary of the domain of definition,while direct proofs of integrability in
the Riemann sense are generally framed as academic curiosities.We invite the reader to carefully reconsider such
a position in order to maximize the value of what follows in these pages.

2.2.4 The Lebesgue integral

There is also another way of looking at the integration process, proposed by Henri Lebesgue in [Lebesgue, 1904]:
this is a far more powerful approach and was used by Andrey Kolmogorov in the 1930’s as the foundation of his
probability theory. In Lebesgue’s approach, instead of starting by slicing the domain of the function into vertical
regions,and then summing the areaof rectangles spanning these regions,one startswith slices of the set of function
values, and then proceeds to ask the question of what is the set ωi ⊆ Ω over which the function f actually does
take values in the selected ranges. Formally these are the sets defined as ωi = {x ∈ U ∶ f (x) ∈ [yi, yi+1]}, or
with some rather abusive overload of notation ωi = f −1([yi, yi+1]). Do note that while the value intervals are
closed and compact, the topology of the sampling intervals ωi can be more complex, especially in cases in which
f is not continuous.

The key new ingredient in this approach to the integral is a function μ called the measure, which given a set
ω ⊆ U returns its measurement μ(ω) ∈ ℝ, a non-negative real number. Once a measure over sets in U is
available, the process of integration can be described in amanner similar to the Riemann integral: first the range of
f ∶ U → ℝ is divided into n segments picking value locations y0, … , yn as well as one sample value per segment
si ∈ [yi, yi+1] , then the corresponding sets ωi = f −1([yi, yi+1]) are determined, and the sequence of θn is
defined as

θn =
n−1
∑
i=0

siμ(ωi) (63)

lastly the integral is defined,much like before, as:

θ = limn→∞ θn (64)
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There can be many functions defined from subsets of U and mapping to non-negative real numbers, but in
most cases just having a function that given any subset of U returns a positive real value is not good enough. For
such a function to be a measure onU it has to behave like our intuition tells us measuring things in the real world
would behave (for example, larger sets should have a measure higher than smaller sets, or the measure of unions
of sets should be the sums of their individualmeasures if the are no overlaps). It can be proven that it’s not possible
to exhibit a function μ that is both a good measure and capable to deal with any subset of U , and so it arises the
notion of measurable subset, being is a subset of U that μ is actually able to operate on.

Once we have μ and its associate family of measurable subsets, the last requirement is for μ to be σ-additive
that is, it must have the property that given a countable or finite collection {Ωi} of disjoint measurable subsets of
U the measure of their union equals the sum of their individual measures:

S countable Ωi ∩ Ωj = Ø ∀i ≠ j ∈ S ⟹ μ⎛⎜
⎝

⋃
i∈S

Ωi
⎞⎟
⎠

= ∑
i∈S

μ(Ωi) (65)

One interesting and very valuable property of σ-additive measure is that they turn out to be monotonic: if a
setω1 is a subset of a setω2, the measure of the first needs to be smaller than the measure of the second:

ω1 ⊆ ω2 ⟹ μ(ω1) ≤ μ(ω2) (66)

this also means that the measure of a set ω ⊆ U must be the measure of the smallest open set that contains it, or
more precisely:

μ(ω) = inf
ω⊆A
A open

μ(A) (67)

Reasoning about the properties of measures it becomes clear that given a few measurable sets it’s possible to
construct other ones that must be measurable, such as their union as well as their difference. In fact a little bit
more is possible: the space of measurable set for a σ-additive measure is called a σ-algebra: this is a collection of
subsets of U that includesU itself, is closed under complement, and is closed under countable unions. The defi-
nition immediately implies that any σ-algebra also includes the empty subset and that it is closed under countable
intersections, as complements of U and countable unions respectively.

In mathematics one meaning of the word algebra is to indicate a structure over a set that provides it with two
operations,which are often thought of as addition (+) andmultiplication (⋅). These operations each have a neutral
element, indicated respectively as 0 and 1, so that a + 0 = a and a ⋅ 1 = a, and have a distribution rule with
the same structure encountered in elementary mathematics: a ⋅ (b + c) = a ⋅ b + a ⋅ c. More often than not
when two operations are available on a set, the first (addition) is commutative (a + b = b + a) and invertible
(∀a ∃b ∶ a + b = 0), whereas the second may or may not be (non commutative is the space of matrices over a
field, non invertible is the set of integers ℤ).

In set theory one can almost have algebras of sets using union as the first operation and intersection as the
second, with the empty set being the neutral element for the first operation and the full set being the neutral
for the second. Distribution rules work out as expected. Unfortunately it so happens that with this definition
the first operation is commutative but not invertible. This issue can be solved introducing the symmetric dif-
ference operation A△B = (A ∪ B)\(A ∩ B) (the full story is quite intriguing and is explored in great detail
in [Kolmogorov and Fomin, 1960]). Our last note will be that the symmetric difference can be used to define a
metric d on a measurable space d(A,B) = μ(A△B) if the sets are considered equivalent when their symmetric
difference has zero measureA ∼ B ⇔ μ(A△B) = 0.

Note that the definition of the algebra structure involve finite quantities of operands: for example in ℚ any
finite addition or rational is still a rational, but it’s quite easy to find a series of rationals that converges to irrational
numbers, for a classic example consider Leibniz’s formula for π:

π
4

=
∞
∑
k=0

(−1)k

2k + 1
(68)

byway of contrast a σ-algebra is instead a structure that is closed under countable applications of either operation.
This can be somewhat delicate to achieve, the example in equation (68) shows how ℚ won’t admit a σ-algebra
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structure with the ordinary definition of operations, because closure under countable sums and products would
turn it into ℝ ∪ {−∞, +∞}.

Like in the case of the Riemann integral, a function f is Lebesgue integrable if the sequence of the approxima-
tions θn from equation (63) exists, it is finite and is the same value independent of the choice used for the various
value locations yi and sample values si. Like before, there is a requirement that the value intervals [yi, yi+1] are
constructed so that they all get smaller and smaller, in particular the largest needs in the limit to shrink to 0 height.
There is also one extra requirement: namely that themeasure μ is in fact able tomeasure the preimage of any value
interval: that is for any a, b in the image of f it is necessary that μ( f −1([a, b])) exists and be finite.

Let’s go over the sequence of events with an example: let’s say we want integrate χ[a,b](x) over [0, 1]:

θ = ∫
1

0
χ[a,b](x) (69)

under the condition 0 < a < b < 1. Given the function χ only takes on values 0 and 1, we pick for our values
of yi the sequence 0, 12 , 1 thereby having the intervals [0, 12] and [ 12 , 1] and the domain sets ω1 = [a, b] and
ω0 = [0, a] ∪ [b, 1]. Then our integral is

θ = 0μ(ω0) + 1μ(ω1) = μ(ω1) = b − a (70)

As a second example, we can show how the Lebesgue integral has a lot less trouble integrating functions that
are not integrable in the Riemann sense. The classic example is ∫1

0 χℚ(x) dx: the Lebesgue integral is of course
1 ⋅ μ(χℚ(x) ∩ [0, 1]) which leaves us with the question of what’s the measure of χℚ(x) ∩ [0, 1]. This is where
σ-additivity comes in to help: first off, singleton setsX = {x} must have measure μ(X) = 0:

X = ⋂
n∈ℕ

(x −
1
n

, x +
1
n

) ⟹ μ(X) = μ⎛⎜
⎝

⋂
n∈ℕ

(x −
1
n

, x +
1
n

)⎞⎟
⎠

= limn→∞
2
n

= 0 (71)

having this piece of information, we know from set theory that ℚ is countable, which means ℚ ∩ [0, 1] is also
countable. Thewecanuse equation (65)withS = ℚ∩[0, 1] to conclude thatμ(ℚ∩[0, 1]) = 0. Incidentally this
is also the reason why we have a limitation in the definition of σ-algebra that unions and intersections should be
finite or countable: if uncountable unionswere admitted,we could for example express the interval [0, 1] ⊆ ℝ as
a union of singletonsX as above, obtaining the contradiction 1 = μ([0, 1]) ≠ μ(∪Xi) = ∑ μ(Xi) = 0which
violates our hypotheses on the σ-additivity of μ.

Now that we know that Lebesgue integration can deal with functions that Riemann integration cannot, the
question is whether examples of the reverse exist: functions that are Riemann integrable but not Lebesgue inte-
grable. It turns out that this never happens if the integration domain has finitemeasure,but can happen for infinite
integration domains (these are called improper Riemann integrals) due to how the integration over infinite do-
mains is defined differently in the two cases. However, the focus of these notes is on integration of functions over
bounded domains only, sowe leave if to the interested reader to follow up on this thread on a book on real analysis
such as [Kolmogorov and Fomin, 1960].We conclude confirming that when a function f is integrable both in the
Riemann as well as in the Lebesgue sense, the two integrals have the same value.

2.2.5 A topological interlude

If geometry is dressed in a suit coat, topology dons jeans and a T-shirt

D���� S.R�������

One question naturally comes up: more often than not, even if the domain U of our function f is not a simple
subset of ℝd (say a ball or a hypercube), the spaceU has subsets that are open (and of course also has subsets that
are closed). The reader will recall a topological space is a spaceU and a family T of it subsets so that

U , Ø ∈ T the full space and the empty set are in the topology
{ωi}i∈I ⊆ T ⟹ ⋃i∈I ωi ∈ T closed under arbitrary union
{ωi}ni=0 ⊆ T ⟹ ⋂n

i=0 ωi ∈ T closed under finite intersection
(72)
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under this condition T is the family of the open sets contained inU . The setU will also contain closed sets defined
as complements of open sets. Note that the two notions of open and closed are not mutually exclusive: there
are sets that are both open and closed at the same time, for example U and Ø. Such sets are sometimes called
clopen. To give an example of some interest, consider the space ℚ with the ordinary topology induced by the
euclidean metric (in other words, start from ordinary open intervals on ℚ to build a topological space, and then
complete it by adding all the sets resulting from finite intersections and arbitrary unions of those). Now take the
set A = {q ∈ ℚ ∶ q > 0, q2 > 2} of all positive rational numbers whose square is bigger than 2. Given that
√2 is not in ℚ, one can show quite easily thatA is a clopen subset of ℚ (on the one side it’s open, because it’s the
union of all open intervals with the low end larger than √2; however it’s also closed because it’s the complement
of the union of all open intervals with the high end smaller than √2). InterestinglyA is not a clopen subset in the
usual topology over ℝ: it is neither open nor closed in ℝ, because infinite sets in ℝ that only contain elements of
ℚ (A is made of rationals) are not open nor closed (sets containing a finite number of elements of ℚ are closed
because they are finite union of closed sets).

Topology is the method to reason in an abstract way about the general notion of proximity (as intended in
natural language) between elements inU : the origin of the idea is that two objects are in proximity of one another
if they belong to the same open set. This is also a starting point for the intuition as to why it is that the open sets (as
opposed to the closed ones) are the fundamental concept in topology: it can be shown that the difference between
an open set A and its closure ̄A (defined the intersection of all the closed sets that contain A) is its boundary ∂A.
Thedual notionof closure is the interiorA∘,being the unionof all open sets contained inA. These definitions imply
that

A∘ = A ⇔ A open ̄B = B ⇔ B closed ∀A ⟹ Ā = A∘ ∪ ∂A (73)

and of course classic mental image for these concepts is that given a set A the interior of A is its “flesh” and the
exterior is its “skin”, which takes on extra significance when a geometric interpretation is added: it can be shown
that the boundary of a set has dimension strictly lower that the set itself. In fact if M is a sufficiently well behaved
geometric object of dimension d (by which we mean a smooth manifold, a generalization to any dimension of the
3-space concept of a smooth surface), its boundary is either a manifold of dimension d − 1 or it is the empty set.
For example, a ball in dimension 3 is a manifold, its boundary is a sphere (an object of dimension 2). In turn the
sphere has no boundary. Readers interested in this subjectmight like to follow the classic treatment in [do Carmo,
1976] or possibly the more modern approach of [Lee, 2003].

Topology helps us generalize everyday geometric notions to structures of increasing generality. Think for ex-
ample of the concept of distance between two elements of a set: in a somewhat roundabout way, one could define
the distance between two elements x and y as the result of the process of taking the infimum diameter over the
family of all the open balls that contain both x and y. This is based on the definition of the open ball at x of radius
r as

B(r, x) = {y ∈ U ∶ dist(x, y) < r} (74)

for some distance function dist(⋅, ⋅) ∶ U × U → ℝ≥0. Of course if our space has such a distance function, we
can easily prove that the distance between x and y is indeed as defined. However our new definition being based
only on a family of sets and the notion of their diameter (which is a construct similar to the set measure), it does
not require a distance being defined on the space at all.

The cardinality of the family of balls above is obviously very high, and its structure impedes imposing a total
order on it, although a natural partial order can be induced starting from inclusion: B1 ≤ B2 ⇔ B1 ⊆ B2. Even
with a natural partial order it’s still beneficial toworkwith families of balls with lower cardinality,because although
imposing a total order on the sets in the family is too restrictive a limitation, an order imposed“from the outside”
is still a useful machinery to have. In fact, building ordered countable collections of open sets in such a manner
that later elements are included in earlier ones is all that is needed to support the abstract notion of limit of a
sequence7 of which our generalized definition of distance is one specific application. The treatment of the subject
is certainly fascinating, but it gets quite technical very quickly, due to the highly abstract nature of the material,
classic references on the subject are the still excellent [Bourbaki, 1966] as well as themore recent [Munkres, 2000].

7In the field of topology, constructs of this kind are called filters or nets depending on the specific requirements for inclusion
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Given their nature of indicators for proximity, it is quite natural to wonder if a measure can be constructed so
that it would be able to deal with all open sets of a given topology onour function domainU . This is certainly quite
possible: Émile Borel introduced the notion of Borel sets, being the closure under countable union and countable
intersection of the open sets in a topological space. TheBorel sets form a σ-algebra which is the smallest σ-algebra
containing all the open sets of a given topological space. Ameasure able to deal will all the opens is necessarily able
to deal with all Borel sets in a given space, and it’s called the Borel measure on the space. The eagle-eyed reader will
have noticed how the Borel algebra of sets has two implications: one is that the corresponding measure is able to
deal with arbitrary unions of open sets (because all the opens aremeasurable),which includes finite unions, as well
as countable and uncountable (albeit uncountable unions of open sets can be difficult to wrap one’s head around).
The other is that although they are arguably not open nor necessarily closed, the measure can deal with countable
(as opposed to finite) intersections of open sets.

The requirement of ameasure to bemonotonic creates a link betweenmeasures and topology,especiallywhen
a measure is considered under the perspective coming from equation (67), which seems to indicate that for mea-
sures open sets have a special role. In fact we can now see why it is desirable for topology and measure to interact
in constructive ways. Further it might seem that proximity of one set to another, or elements from one set being
densely distributed into another might carry implications into the relative measures of the two.

However, it turns out this is not necessarily the case. Tounderstandwhy let’s consider a few examples sowe can
observe how the specifics work out. There are sets made of points that are arbitrarily near to other points, yet have
0measure: we have discussed before the case of ℚ, for example. From a topological perspective ℚ is everywhere
dense in ℝ: for any value r ∈ ℝ and for any ε > 0 there exists a q ∈ ℚ so that |r − q| < ε, or in other
words, the open sets of ℝ are unable to separate ℚ from ℝ: all points in ℚ are in proximity of points of ℝ, and
viceversa. However, given an interval [a, b] ∈ ℝ, we’ve seen before how the Lebesgue measure on ℝ will give
us μ([a, b]) = (b − a), as well as μ([a, b] ∩ ℚ) = 0. This may at first appear as some kind of contradiction,
but when approached from a probabilistic perspective it makes sense: having 0measure does not mean that a set
is empty, it means that the probability of picking a given point by chance from it is 0. Indeed, as much as ℚ is
dense in ℝ, it still is very “skinny”, and in fact we know contains far fewer elements than ℝ: [a, b] ∩ ℚ has ℵ0
points whereas [a, b] has ℵ1 = 2ℵ0 elements in it, which is a higher order infinity. Readers interested in general
set theory might find useful material in the classic [Kuratowski and Mostowski, 1967].

2.2.6 Integrals in higher dimensions

If thedomainof function f hasdimensiond > 1very fewchanges aredone formally to thedescriptions above. The
only potentially delicate discussion is around how the integration domainΩ is partitioned into subdomains when
considering Riemann integration: the crucial property here is that points inΩ are either in the interior of exactly
one subdomain or on the border of at least one subdomain. The first part of the hypothesis is easy to understand:
for x ∈ Ω to be in the interior of subdomain Ωi means that there exists a positive value ε > 0, likely small, for
which the d-dimensional open ball Bd(ε, x) of radius ε centered at x is entirely contained in Ωi. Observe how
such a ball has μ(Bd(ε, x)) > 0.

On the other hand, for a different point y ∈ Ω to be on the boundary ∂Ωi of the subdomainΩi, it means that
there exist a dimension c < d and a positive value ε > 0, likely small, for which the c-dimensional ballBc(ε, y) of
radius ε centered at y is entirely contained in ∂Ωi. Observe how in this case for all c < d, and for any value of ε,we
have μ(Bc(ε, y)) = 0. The euclidean intuition of this is a consequence of Bc(ε, y) having zero extent in the c − d
dimensions orthogonal to ∂Ωi at y: when themeasure is computed the volume of the ball will indeed be non-zero
as a c-dimensional object, but it will then be multiplied by 0 for the cospace covering the remaining dimensions8.

So given that the measure of all the subdomain boundaries is μ(∂Ωi) = 0, and that the subdomains are a
finite count and countably many in the limit, their collective measure μ(⋃i ∂Ωi) is also 0, and the behaviour of
f at these locations is of no consequence. The observing reader will see how making a purely Riemann argument
along these lines would be somewhat more delicate,while reaching the same conclusion.

8To visualize why the value of c is not always d − 1 as one might expect, consider for example d = 3 andΩi being a cube. If y ∈ ∂Ωi
a few cases are possible: either y is resting on a face of the cube, in which case we have indeed c = 2. However y could also lie on an edge
(c = 1) or on a corner (c = 0). This has to do with the fact that our chosen test uses open balls, not with the dimension of the boundary
manifold ∂Ωi which is indeed d − 1.

SIGGRAPH 2019 Course Notes: Path tracing in Production — Part 1 Page 30 / 105



P��� ������� �� P���������

2.3 Numerical integration

Nowthatwehave anunderstandingof the continuous setting for integrationwemoveonto thediscrete case,which
is necessary for numerical treatment of the integration problem. The first step is to understand what it means to
have a function in the discrete case, and one possible way of looking at this question is to think of it as the situation
inwhich values for our function are known for a set of given locations only, and an expression is wanted to provide
values at other locations.

For example, say that a few functions e0(x), … , en(x) ∶ Ω → ℝ were available to us, built so that we could
calculate

θk = ∫
Ω
ek(x) dx ∀k (75)

exactly making use of analytical expressions. If we also had a method so that for all the functions f ∶ Ω → ℝ of
interest to us we could determine a bunch of real numbersw0, … ,wn ∈ ℝ so that we’d have

f (x) =
n

∑
k=0

wkek(x) ∀x ∈ Ω (76)

then we could immediately conclude that our integral θ is simply

θ = ∫
Ω
f (x) dx = ∫

Ω

n
∑
k=0

wkek(x) =
n

∑
k=0

wkθk (77)

In this case we would say that the function set {ek(x)}k∈{0,…,n} is a basis for the space F of functions we’re
interested in working with. The usual concepts from linear algebra and vector spaces apply to the function space
we want to work with as well: we’d want that if two functions f , g ∈ F are given from our space, their sum is also
in the space f + g ∈ F as well as their scaled version by any real α ∈ ℝ ⇒ αf ∈ F .

As much as sometimes it is indeed possible to work with bases {ek(x)}k∈{0,…,n} that actually do span the
functions spaces F we’re interested in, a far more common occurrence is that the span of our basis is actually only
able to produce functions ̃f that are close to (that is, they approximate) our desired function f . There aremanyways
for two functions to approximate one another, so let’s establish that our notion of distance between two functions
is uniform. More precisely we’ll say that the distance between two functions is defined as follows:

dist∞( f , g) = ess sup
x∈Ω

| f (x) − g(x)| (78)

where the essential supremumoperator (ess sup) indicates the supremummay be exceeded over a set of measure 0.
This definition highlights the fact that if two functions behave differently only on a 0-measure set, their integrals
will have the same value.

Often times this is a reasonable trade-off: the functions f ∈ F we need to integrate are approximated by a
different set of functions ̃f ∈ G where G is spanned by a known basis {ek(x)}k∈{0,…,n}. Examples of function
spaces G that are in common use are polynomials of a given degree, sums of scaled and translated gaussians, sums
of sines and/or cosines of integer frequencies, and so on. Notwithstanding the fact that the functions in F are the
ones we need to integrate, it is really the functions in G that are the ones we can actually integrate. Sowhat we need
is a method that for each f gives us an approximant ̃f = ∑wkek ∈ G so that

dist∞( f , ̃f ) < ε (79)

for some small value9 of ε. This would then immediately tell us that

|θ − ∑wkθk| < εμ(Ω) (80)

Now the question becomes how to determine the wk (often called the weights). The first idea that comes to
mind to most people is projection,which has its simplest form when the basis for G is orthogonal. In that case, key

9There is a case in which the distance could actually be 0, when f differs from some element of G only over a 0-measure set
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ingredient for projection is the scalar product, which in this context is represented with angle brackets ⟨⋅, ⋅⟩ and
defined as follows:

⟨ f , g⟩ = ∫
Ω
f (x)g(x) dx (81)

The scalar product for functions is the continuous version of the scalar product (or dot product) for vectors.
The rest follows through the same constructs used in linear algebra: two functions f , g ∈ G are orthogonal

if their scalar product is 0, a basis for G is orthogonal if its elements are pairwise orthogonal and is orthonormal if
it is orthogonal as well as ⟨ek, ek⟩ = 1 for all k (that is, the basis elements are normalized).With these ingredients
projecting f onto G is simply computing weights as

wk = ⟨ f , ek⟩ ∀k ∈ {0, … , n} (82)

if the basis elements are not normalized, the expression for the weights needs to compensate for the length of the
basis elements.

There exists however an alternative approach: one could choose a set of sampling locations tj ∈ Ω, with
j ∈ {0, … , n} and set up a system of n + 1 equations:

⎧{{{
⎨{{{⎩

f (t0) = ∑n
k=0 wkek(t0)

f (t1) = ∑n
k=0 wkek(t1)

⋮
f (tn) = ∑n

k=0 wkek(tn)

(83)

If wewere to say that ̄t is the vector of dimension n+ 1 that has the various tj as its coordinates ̄t = (t0, … , tn), as
well as abuse notation a bit and say that applying a function to a vector returns a vector f ( ̄t) = ( f (t0), … , f (tn))
adding to the mix ̄w = (w0, … ,wn) and a matrix E containing the evaluations of the basis functions ek at the
sample points tj:

E =
⎡
⎢⎢⎢⎢
⎣

e0(t0) e1(t0) ⋯ en(t0)
e0(t1) e1(t1) ⋯ en(t1)

⋮ ⋮ ⋱ ⋮
e0(tn) e1(tn) ⋯ en(tn)

⎤
⎥⎥⎥⎥
⎦

(84)

we could follow standard practice for linear systems theory and restate the system in equation (83) as

f ( ̄t) = E ̄w (85)

which would give us a different method of finding our weightswk by inversion of E:

̄w = E−1f ( ̄t) (86)

The large advantage of themethod in equation (86) over equation (82) is that it requires onlyn+1 evaluations
of f at given single locations, advantage compounded by the fact that f doesn’t have to have a known analytical
integral form, nor actually be known analytically at all. Further,we can now deal not only with bases {ek} that are
not normalized,but also bases that are not orthogonal. There are however twodisadvantages,one is that thematrix
E must be invertible: this is usually a modest concern, because in typical cases the whole space G of approximant
functions is constructed deliberatelywith the needed properties. Theother, larger disadvantage is that thismethod
won’t be able to take into account the behavior of f away from the sampling locations tj,which in turnmakes giving
bounds on the distance ε between f and its approximant more complicated and often far more conservative.

2.3.1 Lagrange interpolation

As a classic example of practical application of the ideas expressed above, we’re going to look into using Lagrange
interpolation for numerical integration.We will start with the function space Pn being the space of polynomials of
degree n, which has a fairly obvious basis ek(x) = xk. This would be a workable basis per se, however if we were
to go and construct matrix E from equation (85) we would get a dense matrix in which the rows are geometric
series of the sampling locations tj, a specific structure called aVandermonde matrix. In many cases these matrices
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can end uphaving rather large condition numbers,making the numerical inversion behave poorly, a phenomenon
described for example in [Gautschi, 1975].

We can do better than this: it is more convenient to use as basis for Pn the Lagrange polynomials, which are
polynomials built as follows: first the set of n + 1 sampling locations tj ∈ Ω, j ∈ {0, … , n} is chosen, and then
our basis {lk(x)} is built as

lk(x) = ∏
0≤j≤n
j≠k

x − tj
tk − tj

(87)

It’s easy to see how the Lagrange polynomials have the following property

li(xj) =
⎧{
⎨{⎩

1 i = j
0 i ≠ j

(88)

because when i = j all the terms in the product are 1 and otherwise exactly one of them is 0. Given this property,
we can immediately conclude thatmatrixE from equation (85) is actually the identitymatrix I , so that ourweights
wk = f (tk).

At this point of course it’s natural to ask what’s the integration error when using this procedure. As it was said
before, a first conservative bound can be estimated from the interpolation error, per equation (80). In fact it can be
proven that if the function f has continuous derivatives all the way up to and including order n + 1 over domain
U , then the behaviour of such derivative f (n+1)(x) characterizes the interpolation error as follows:

∀x ∈ U ∃ξ ∈ U ⟹ f (x) − ̃f (x) =
f (n+1)(ξ)
(n + 1)!

n
∏
j=0

(x − tj) (89)

with the equal sign indicating that this is not an upper bound, but a value that is actually attained. We observe
this formula makes some intuitive sense if one thinks how the approximant ̃f must be fairly close to the Taylor
expansion of f , truncated at degree n, effectively the derivative of order n + 1 is a way of observing the behaviour
of whatever is left of f once the approximant has been taken out. This gives us a first, very conservative bound on
integration error as

∣θ − ∫
Ω

̃f (x) dx∣ ≤ μ(Ω) max
x,ξ∈Ω

f (n+1)(ξ)
(n + 1)!

n
∏
j=0

(x − tj) (90)

If we make the specific choice tj = j
n using this basis, we obtain the well-known Newton-Cotes quadrature

of order n. Given the interpolation error as above, it can be shown that if f is well-behaved (for example, if f is
analytic, or if the series of Taylor coefficients is absolutely convergent) the sequence ̃f n(x) of projections of f onto
the function spaces Pn as described above converges uniformly to f as n grows:

limn→∞
̃f n(x) = f (x) (for well-behaved f ) (91)

Trying to reduce integration error by raising the quadrature order n is thereby problematic when f has shapes
that are difficult to capture with polynomials (such as discontinuities, growing Taylor coefficients or other similar
traits) because the error introduced by the interpolant doesn’t actually decay to 0, making the integration scheme
much less useful than it first appears. Carl Runge exhibited in [Runge, 1901] a function for which the approxi-
mation error grows without bound as the interpolation order increases, if the sampling locations are chosen in an
equispaced manner. Runge’s fiendishly simple example is called the Runge function:

f (x) =
1

1 + 25x2
(92)

the first few derivatives of this function are already rather problematic:

d
dx

f (x) =
50x

(1 + 25x2)2
d2

dx2
f (x) =

50(75x2 − 1)
(1 + 25x2)3

d3

dx3
f (x) =

15000x(25x2 − 1)
(1 + 25x2)4

(93)
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it is useful to point out that Runge’s phenomenon has many theoretical and practical similarities to Gibb’s phe-
nomenon [Gibbs, 1898, 1899,Wilbraham, 1848] of overshooting near jump discontinuities in truncated Fourier
series.

Let’s look into integration error for Newton-Cotes formulas: if the samples are equally spaces at a distance h,
defining s = x−x0

h we can restate equation (89) as

∀x ∈ U ∃ξ ∈ U ⟹ f (x) − ̃f (x) =
f (n+1)(ξ)hn+1

(n + 1)!

n
∏
j=0

(s − j) (94)

with ξ ∈ [x0, xn] which gives us the following estimation for integration error

∣θ − ∫
Ω

̃f (x) dx∣ =
f (n+1)(ξ)hn+2

(n + 1)! ∫
n

∏
j=0

(s − j)ds ∃ξ ∈ U (95)

where the integral uses the variable substitution dx = d(x0 + sh) = hds and is extended over the corresponding
remapping of Ω.

Given the empirical observation that lower-order derivatives tend to be themost innocently-behaved, a com-
mon approach to the practical use of Newton-Cotes quadrature is the so-called composite rule, in which the order
of quadrature is kept fixed and low,often a value such as 0,1 or 2, and instead new sampling locations are added by
splitting the integration domainΩ into a number of subintervalsΩj. For example for order n = 2we would have

θ2m =
m−1
∑
j=0

∫
Ωj

n
∑
i=0

f (tj,i)li(x) (96)

where, as one expects, we have tj,i ∈ Ωj. Indeed it is immediately apparent that the composite rule for Newton-
Cotes quadrature of order 0 is effectively a form of the Riemann integral, equation (53):

θ0m =
m−1
∑
j=0

f (tj,0) ∫
Ωj
dx =

m−1
∑
j=0

f (xj,0)μ(Ωj) (97)

2.3.2 Improving convergence for numerical quadrature

One of the sources of error for numerical integration comes from the fact that the specific choice of sampling
locations affects the approximation error, thereby having a high potential of affecting the integration as well (and
certainly at a minimum making it harder to express tight bounds on error). Much research has gone into this
aspect,which culminated into a general theory callsGaussianquadrature, that focuses on rules todetermine thebest
placement of sampling locations for integrands of known specific forms. However, the general process requires
some information on the specific analytical form of the integrand, so it is of limited usefulness for functions that
don’t have an analytical expression.

As we have observed before, it turns out that it is often the case that f is locally well approximated by a line
segment, in which case the so-called midpoint rule can be surprisingly effective: the idea is simply to do an order
n Riemann sum θmid

n over our function where the sampling locations ti are in the middle of their corresponding
interval.With a minimum of thought it’s easy to see that the expected integration error in this case is

∣θ − θmid
n ∣ ≤

(b − a)3

12n2
sup

x∈(a,b)
| f ′′(x)| (98)

further thoughts in this general space will be picked up again in the discussion of Monte Carlo integration, in
Section 2.4.4.

As a fairly commonplace inspiration coming from the concept above, an idea that has been around for a long
time is to introduce adaptive sampling in the numerical integration process. The bound above can be tightened as
follows:

∣θ − θmid
n ∣ ≤

(b − a)2

12n2
n−1
∑
i=0

sup
x∈(xi,xi+1)

(xi+1 − xi) | f ′′(x)| (99)
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which is derived by localizing the general bound frombefore to the various single intervals. So it’s conceivable that
given ameans to estimate themagnitude of the second derivative of f , one could decide to refine certain segments
of a partition andnot others, in order to achieve a given budget in integration error. This is the general area of study
for adaptive quadrature.

Sometimes it so happens that the sampling values ti endupbeing close enough to one another to induce exces-
sive stress on the numerics of the implementation, and numerical errors start to affect the stability of the compu-
tation of the integral. In this case, Romberg’s method, introduced in [Romberg, 1955], was developed on the basis
of Richardson extrapolation [Richardson, 1911]. Richardson extrapolation was conceived to avoid having to work
with and excessively tight spacing of sampling locations. Further reductions in the number of evaluations of f can
be obtained using rational interpolation as outlined in [Bulirsch and Stoer, 1967].

It is sometimes necessary to estimate integrals to an extremely high degree of precision. The currently best-
performing method in this space is called Double Exponential formula, and was proposed in [Takahasi and Mori,
1974]. The somewhat counterintuitive process entails expanding the integration domain to the entire real line us-
ing the specific change of variable x = tanh(π

2 sinh t), and using trapezoidal integration to compute the result.
The improvement in convergence speed and accuracy comes from the fact that the change of variable is effectively
conditioning for the better the behaviour of the original function f , especially around large derivatives and singu-
larities at the endpoints.

2.3.3 Integrals in higher dimensions

Turning our attentions to domains of higher dimension the formal structure of the discussion so far does not
change. There are however two complications that arise: the first is about the structure of the integration domain,
and the second is about the number of function evaluations needed to compute our integral. Usually the struc-
ture of integrations domains relevant for problems in graphics is not a problem, as in practice all that is needed
is to remap the domain toΩ = [0, 1]d and potentially extend the function a little so to evaluate to 0 outside the
original domain of definition. However the number of evaluations needed for the algorithms discussed this far,
when ported to higher dimensional domains, grows at the same exponential rate: the expectation is that if a func-
tion requires n evaluation in one-dimensional form, a d-dimensional integral of a similarly structured function
would requirend evaluations. For example 100 samples in 10 dimensionswould require 1020 evaluations,hardly a
comfortable amount of work for current (and likely future) hardware.Weobserve 10dimensions on a path tracing
path are likely to not be enough to cover the needs of 3 vertices. The reference estimation for the integration error
of a high dimensional quadrature rule is

E = O⎛⎜
⎝

1

n
r
d

⎞⎟
⎠

(100)

under the assumption that the integrand f has r continuous derivatives.
There is an approach introduced in [Smolyak, 1963] based on sparse grids, providing a structure which can

be thought of as approach the integral one dimension at a time, as one would have applying Fubini’s or Tonelli’s
theorems on the change of order of integration in the analytical setting [Apostol, 1991, Fubini, 1907,Rudin, 1953,
Spivak, 2006, Tonelli, 1909]. In this manner d one-dimensional integrations are performed computing through
the recursive operator formula

Q(d)
l [ f ] = ⎛⎜

⎝

l
∑
i=1

(Q(1)
i − Q(1)

i−1) ⊗ Q(d−1)
l−i+1

⎞⎟
⎠

[ f ] (101)

where Q(d)
i is the integration operator resulting, and Q(1)

i is a one-dimensional quadrature rule discretized over
O(2i) sampling locations. With this framework, the error estimate for a function f with r continuous derivatives
is then estimated as

E = O⎛⎜
⎝

(log n)(d−1)(r+1)

nr
⎞⎟
⎠

(102)
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2.4 Monte Carlo integration

The Monte Carlo method was proposed by Nicholas Metropolis and Stan Ulam, in [Metropolis and Ulam, 1949].
The idea is that the estimator θn to our integral over domainΩ can be simply

θn =
μ(Ω)
n

n−1
∑
i=0

f (ξi) ξi ∈ Ω (103)

which would look suspiciously close to the Riemann integral in the special case in which the sampling locations
xi are uniformly spaced (thereby lying at distance μ(Ω)

n ), if it wasn’t for the fact that the function f is not sampled
with uniform spacing xi, but at n locations ξ0, … , ξn−1 chosen as the realization of n independent and uniformly
distributed random variables X0, … ,Xn−1. All things considered, it is quite possible that some readers would
find equation (103) to be instead most similar to the Lebesgue integral, equation (63). This would be an insightful
observation,we’ll come back to that.

Given thatwe considerθn an approximationof the valueθwe’re actually looking for, it comenatural towonder
how good this approximation actually is. The estimation error is thus introduced and defined as expected10:

εn = θ − θn (104)

and this lets us reason about the convergence of the sequence θn to the value θ in terms of the estimation error
εn. The first result is naturally whether we can say that the error decreases for growing values of n and of course it
does, but in a probabilistic sense. Indeed it is an immediate consequence of the strong law of large numbers that:

P( limn→∞ εn = 0) = 1 (105)

One point to note is that inMonte Carlo integration there is a specific focus on discussing absolute errormet-
rics instead of relative. This is because of how the absolute value of the function to be integrated affects the intro-
duction of error into the estimator: large function values make small sampling defects have a larger effect on total
error than small function values. This observation is the starting point for most variance reduction techniques,
starting from importance sampling, inwhich the sampling density of the function is increased around large values
and decreased around small ones.

A second property of the integral estimator θn is whether it has bias, that is whether the expected value E(θn)
for constant n across different realizations of the random variables X0, … ,Xn−1 differs from θ. Again, from the
strong law of large numbers we can see that the estimators θn constructed per equation (103) are unbiased, that
is to say their bias is 0, and E(εn) = 0: this is a consequence of the random variable Xi being independent and
identically distributed and the associativity of the sum. In fact, you can see that equation (103) for n that grows
towards infinity canbe thought both as thedefinitionof θ, aswell as the summationneeded to compute the average
value of a large number of realizations of θn, confirming how in the end the two expressions must have the same
value.

2.4.1 Estimation error in Monte Carlo integration

The third property of the estimation error εn that we will discuss is its magnitude: from the central limit theorem
we can show that εn must be normally distributed with variance σ2:

εn ∼
σ( f )
√n

ν(0, 1) (106)

where ν(0, 1) is a normally distributed variable (of 0mean and unit variance) and

σ( f ) = √∫
Ω

( f (x) − θ)2 dx = √‖ f ‖22 − θ2 (107)

10However, do note it is customary to have the expression for the estimation error to be signed, the reasons will become clear in what
follows
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being the standard deviation of f .Wewill also occasionally use in the text the notion of variance of f which will de-
note β( f ) = σ2( f ). As we were saying, this implies Monte Carlo error is inherentlyO(σ( f )/√n) under the hy-
pothesis that the sampling locations xi are independent and identically distributed. The error estimation inMonte
Carlo is a consequence of the Central Limit Theorem, so it’s effectively saying that εn is within a certain number
times themagnitude of the process’s standard deviation as a consequence of it being normally distributed. In other
words there is about 1% probability (measured across all possible combined realizations of the random variables
involved) that the error will be higher than 3σ , for example. By way of contrast we recall the Newton-Cotes error:
if the function is well behaved enough (and as we’ve seen from Runge’s function, this can be a counterintuitive no-
tion) the error bound for sampling locations distributedon a regular lattice is deterministically a quantityO(n−m

d )
wherem is the order of the Newton-Cotes formula and d is the dimensionality of the space we’re integrating over.

From this estimate you would conclude that for low dimension domains, in particular if d < 2m, Newton-
Cotes has an advantage over Monte Carlo, whereas if 2m < d the opposite is true. In particular, for dimensions
d ≤ 3 and well-behaved functions f (for example f for which derivative magnitudes or Fourier coefficients decay
quickly) it is quite clear that classic, non-stochastic integrations schemes can have an efficiency advantage.

2.4.2 Interlude: random number generation

Random numbers should not be generated by a method chosen at random

D����� E.K����

There is obviously a question regarding the quality of the random number generators used to implement a Monte
Carlo integrator in software,because thehypothesis of independent and identical distribution is to key toprove the
estimation error bounds. It turns out (see for example [Caflisch, 1998]) that the lowly linear congruential genera-
tor with a decent implementation, say from [Press et al., 2007] or [Knuth, 1997], is viable up tomaybe 109 samples
or so (in other words roughly for 32 bits of precision), and that once the sample counts go past 1012 or so, things
should be taken seriously. Do note that at these counts some error propagation analysis is probably in order, to
make sure that the implementation of the numerics and accumulation algorithms themselves are stable (in other
words it’s not going to be very useful to have fantastically well distributed randomnumbers if the numerics are im-
plementedcarelessly). For counts thishigh,better generators shouldbeused,besides thenow-ubiquitousMersenne
Twister fromMatsumoto, introduced in [Matsumoto and Nishimura,1998],one couldmaybe considerMarsaglia’s
Monty Python or Ziggurat generators, introduced in [Marsaglia and Tsang, 1998] and [Marsaglia and Tsang, 2000]
respectively.

There are indeed many questions to be asked as to how the concept of independent random variable can or
should be reconciled with a fixed numerical procedure such as a linear congruential generator. However, we’ll
postpone our thinking in this space until we’re past our discussion of quasi-random sequences, later in the section.

2.4.3 Variance reduction techniques

We now understand the most important aspect of Monte Carlo integration is keeping the variance σ2 of the inte-
gral estimator θn as low as possible, as that’s the true key for an accurate estimation of θ in a given computational
budget (that is, a given maximum value for n). One perspective that may not be completely obvious at first is to
envision θ as the value thatminimizes σ : after all we know that θ = θn + εn, andwe have an expectation that εn be
effectively a quantityO(σ) (because as we said,we have little control onn). Then it follows that θn will of course be
closest to θwhen σ is at its lowest. There are a few classicalmethods to do this,which are described inwhat follows

Antithetic variables A surprisingly effective idea for domains that are symmetric around the origin is for
each sampling location xi to actually use both xi and −xi. The effect of this method is to make the standard devi-
ation σa of the estimator θan equal to σ2,which is particularly good news if the situation wewere starting fromwas
otherwise achieving already small values of σ . The way this works is easy to see: all we need to do is expand f in a
Taylor series around 0 and then apply the change of variable xi = σ ̂xi:

f (xi) = f (0) + f ′(0)σ ̂xi + O(σ2 ̂x2i ) (108)
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when we go to compute our estimator using both antithetic variables xi and −xi, our integral is effectively

∫
Ω
f (x) dx = ∫

Ω+
f (x) + f (−x) dx (109)

when theTaylor expansion is substituted for f (x), thefirst order termsare equal andopposite andcancel eachother
out. Now given that the 0-th order terms contribute no variance, because they don’t depend on xi, the standard
deviation has now become a quantity of order σ2.

Control variates Another technique that is extremely effective can be employed when we have available a
second function g(x) for which we know that | f (x) − g(x)| is small and either ∫ g(x) dx is known exactly, or
maybe it has a standard deviation σ(g) much smaller than σ( f ). In this case we can write

∫
Ω
f (x) dx = ∫

Ω
f (x) − g(x) dx + ∫

Ω
g(x) dx (110)

where the term on the left has high variance, but both the terms on the right have been carefully constructed to
have low variance, resulting in a new estimator with low variance.

An interesting point to draw attention to is that it is actually the very fact of | f (x) − g(x)| being small in
magnitude that forcesσ( f −g) to be small: it followsdirectly from thedefinitionof variance in equation (107) that
if the function’s oscillation around its average are small, the variance has now way to become large, but just as well
the standard deviation and the expectation operators commute with the product with a scalar: E[αf ] = αE[ f ]
and σ(αf ) = ασ( f ).

Stratified sampling The idea of stratification comes from the intuitive observation that deviation from the
local average tends to be smaller than deviation from a global average. More precisely: if the integration domain
Ω is partitioned intom subdomainsΩ1, … ,Ωm (in this context called strata), the expression of the variance over
the full domain can be compared with the variance over them subdomains as follows:

σ2( f ) = ∫
Ω

( f (x) − EΩ[ f ])2 dx ≥
m

∑
k=0

∫
Ωk

( f (x) − EΩk
[ f ])2 dx = σ2stratified (111)

the inequality is the mathematical version of the intuition in the opening paragraph: it comes from the fact that
each expected value for f over the stratum EΩk

[ f ] minimizes the variance of f over that one stratum.
These formulas are possibly a bit opaque about one very important detail: the inequality holds as a conse-

quence of the sampling density being constant overΩ as a whole (as one would expect) which in particularmeans
that the sample count in each stratumΩk has to be proportional to its measure μ(Ωk) (as one might instead over-
look): in this case the sampling distribution is called balanced. On the other hand it possible tomeasure the empir-
ical variance during sampling of the various strata, and adjust sampling densities until a relation of some interest
between the various σk is achieved. Naturally when doing this, the weighting of the various samples taken from f
needs to be adjusted accordingly.

Importance sampling Given a function p(x) so that μ(p−1(0)) = 0we can obviously write

∫
Ω
f (x) dx = ∫

Ω

f (x)
p(x)p(x) dx (112)

which may at first seem a simple algebraic manipulation of terms. However, if p(x) is additionally a probability
distribution,one can think of the combinedp(x) dx as a change of variable operationon the integral, an operation
that effectively alters the density of x. Now,say thatX is a randomvariable distributed so that its sampling locations
xi have density according to p, if one were to compute a Monte Carlo estimator θpn of this variable, the probability
of sampling each p(xi) would need to be balanced out:

θpn =
1
n

n−1
∑
i=0

f (xi)
p(xi)

(113)
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and this estimator has standard deviation

σp = √∫
Ω

(
f (x) − θ
p(x) )

2

p(x) dx (114)

The first observations is that if the ratio f (x)/p(x) is a constant we obtain σp = 0 (or if the ratio has small
amplitude we have σp ≤ σ( f ), similar argument as in the case of control variates).

The second observation is that p(x) can be employed to concentrate the sampling around difficult areas, or
simply areas of Ω that for a reason or another happen to produce high variance. This second point of view is
effectively an interpretation of importance sampling as the continuous equivalent of stratified sampling.

2.4.4 Quasi-Random sequences and Monte Carlo

Randomness is a negative property: it’s the absence of any pattern

R������W.H������

Up to this point, the critical hypothesis underlying all of our conclusions is that the sampling locations xi are real-
izations of a set of random variablesXi which are independent and identically distributed (iid). This is the funda-
mental underpinning of our variance analysis (in equation (106) and following), because the whole story follows
as a direct application of the Central Limit Theorem. Given that this was going well, the next idea is to stop using
iid variables and instead move to a specific way of choosing dependent sampling locations called quasi-random
sampling, the classic reference on the subject being [Niederreiter, 1992].

The impetus for the idea of moving away away from random sampling towards quasi-random sampling stems
fromtheobservation that thedistributionof samples fromMonteCarlo samplers is (arguably bydesign)uneven in
density. Aswe said the task at hand is to integrate a function f over the interval [0, 1], so we can compute Riemann
sums taking an increasing sequence of samples 0 = x0, … , xn = 1, and then multiplying the extent of the i-th
subinterval

Δi = xi+1 − xi (115)

by the value f (ti) of the function at some sampling location ti ∈ [xi, −xi+1]. InMonte Carlo this process is sim-
plified by using randomvalues for the sampling locations ti and assuming a corresponding supporting subinterval
of constant size 1

n . So if we look at a specific instance of the integral estimator with n samples, we can pull it back
into the perspective of a Riemann integral placing our partition locations xi inbetween our sampling locations ti:
xi = ti−1+ti

2 (for 0 < i < n). So now we can look at the difference between the Monte Carlo estimator θMC
n and

its corresponding Riemann sum θRn computed through this specific associated partition:

θMC
n =

1
n

∑
i
f (ti) θRn = ∑

i
f (ti)Δi (116)

and it’s easy to see how defining

δi = Δi −
1
n

(117)

we can show that
θRn − θMC

n = ∑
i
f (ti)δi (118)

which is a quantity that in some ways lines up with the intuitive notion of noise in Monte Carlo integration. This
shows that especially for regions where the function is large in magnitude | f (ti)| it is quite important that the
spacing of our samples ti be as close as possible to its corresponding target density 1

n . There is a very important
kind of functions for which there is no difference in the two methods: constant functions. In this case we have
f (ti) = f (tj) for any two i, j so that the expression for θRn − θMC

n becomes f (t0) ∑i δi = 0, because the δi must
sum to 0 by construction.

As much as the Δi multipliers do a better job than a constant 1
n would do at estimating interesting areas to

use in our Riemann sums, it remains the problem that f could have a very large or a very small amount of travel

SIGGRAPH 2019 Course Notes: Path tracing in Production — Part 1 Page 39 / 105



P��� ������� �� P���������

over the subinterval [xi, −xi+1] around ti. If the function is well approximated by a line over the range, given
that ti is in the center of the subinterval, we would be effectively using some kind of trapezium rule, or midpoint
rule, keeping the integration error under control. However in the common case where a straight line is not a good
enough approximation of f , such as near maxima or minima, there is plenty of chance for the error to increase
substantially. This iswhere switchingperspectives andconsidering the situation fromthepoint of viewof Lebesgue
integration might provide useful insight: the idea here is to reason about the difference between our subinterval
[xi, −xi+1] and the actual support for yi = f (ti), which is f −1([yi − ε, yi + ε]). It’s clear that the largest the
difference inmeasure between the two sets, theworse the quality of our integral estimator will be. From a practical
point of view, the expectation is that although a global inverse won’t be available, even as a coarse approximation,
arguments could be made for good fits valid for moderately-sized neighborhoods of yi.

Random sampling is carefully constructed so that it won’t distribute the sampling locations ti to have even
density: in fact the reductionof estimationerror inMonteCarlo integrationcomes fromthe late regimeestablished
for large values of n in which it’s not so much the case that the distribution is effectively even density (as we said,
this is never the case), but much more that the function f (ti) is sampled so finely that in the support spanned by a
few nearby sampling locations it ends up being very nearly constant.

This is where the properties of quasi-random sequences come to help: a quasi random sequence is a structure
very carefully constructed in such a manner that the average density of the sampling locations ti is instead very
even, in other words, it’s a sequence built so that the various δi have a very high probability of being very small.

2.4.5 A quality metric on sequences

Asmuch as sequences are not independent,we need a sense of how effective they are at sampling the given domain
Ω that we want to integrate our functions over. This quality metric is called discrepancy, it is a property of the pro-
cess and is defined as follows: first we need a sense for a given subset J ⊆ Ω of the qualityRn(J) of the distribution
of n sampling locations

Rn(J) = |μ(J) − θMC
n (χJ)| (119)

whereχJ(x) is asbefore thecharacteristic function for J (see equation (55)),which implies thatμ(J) = ∫Ω χJ(x) dx.
The other term θMC

n ( f ) is the Monte Carlo estimator for the integral of the function f obtained using our given
sample sequence. Applying the definition to χJ(x) one obtains

θMC
n (χJ) =

1
n

n−1
∑
i=0

χJ(xi) =
#({x0, … , xn} ∩ J)

n
(120)

with #(X) being the function that counts the number of points inX. In other words,Rn quantifies the error that
the sequence itself injects in estimating themeasure of the subset J . Of course the performance on one given set is
not the most useful way of measuring the quality of a sequence, so the discrepancy is actually defined in a couple
different ways: one isDn, being the worst case for Rn over all rectangles R (Ω) contained inΩ

Dn = sup
J∈R (Ω)

|Rn(J)| (121)

You can think of this as the L∞ norm of Rn as a function over R (Ω), and that makes good background for the
other measure for discrepancyTn, being the L2 norm (the ��� integral if you will) of Rn:

Tn = √∫
J∈R (Ω)

R2
n(J) (122)

For completeness it’s worth mentioning that there exist so-called star forms of both metric, defined by integrating
over the set R ⋆(Ω) of rectangles pinned around a fixed point (as we said, Ω is usually the d-dimensional unit
interval [0, 1]d and the pinning happens at 0)

D⋆
n = sup

J∈R ⋆(Ω)
|Rn(J)| T⋆

n = √∫
J∈R ⋆(Ω)

R2
n(J) (123)
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Now that we have somemachinery in hand to discuss qualities of various sequences of sampling locations,we
cangive anames to various traits of our sampling sequences. First off,wewill call a sequence tj uniformlydistributed
if

limn→∞Dn(t) = 0 (124)

whereas we will say the process is quasi-random if

Dn(t) ≤ c
(log n)k

n
(125)

for given k and c positive, not dependent on n, but possibly dependent on the dimension of Ω. The common
quasi-random sequences have k = d.

2.4.6 Error bounds

Now that we have a quality metric on the sequences themselves, we can give some upper bounds on the expected
estimation error, the most important bound being the Koksma-Hlawka inequality [Hlawka, 1961]:

εn( f ) ≤ VHK[ f ]D⋆
n (126)

whereVHK[ f ] is the total Hardy-Krause variation of f . This bound is in general very conservative and the proof of
it in dimensions d > 1 is rather technical, due to complications that arise when generalizing the concept of total
variation to higher dimensions, a detailed modern treatment is found in [Owen, 2005].

However the fundamental intuitionof the inequality,which is theoriginal theoremfromKoksma found in [Koksma,
1943], is much simpler to reason about. For one-dimensional functions, the total variation over an interval [a, b]
is

Vb
a [ f ] = ∫

b

a
∣
d
dx

f (x)∣ dx (127)

assuming of course the first derivative of f is absolutely integrable. There exist expressions for the total variation
operator suitable formore general functions, these are important because the simpledefinitiongivenherehas trou-
ble even with simple jump discontinuities, for example. The bound is then simply a general form of our statement
in equation (118): things cannot go any worse than the whole potential travel of the function over the integration
domain multiplied by the measurement error of the domain’s measure. As a matter of fact it’s quite intuitive to
see how this bound is extremely conservative, as it can only be attained if the function were to travel or oscillate
with all its might in every single region where the support estimation induced by the sampling sequence was off.
A beautiful rendition of the proof of the Koksma-Hlawka inequality is found in [Caflisch, 1998].

TheKoksma-Hlawka bound is a key result in quasi-MonteCarlo theory,and has been studied and generalized
in a very active field of research over the last century, but the issue is that it becomes far too conservative for func-
tions that vary rapidly or even have a small number of jump discontinuities. In practice it is extremely common to
have functions g for which εn(g) ≤ kD⋆

n for values of k ≪ VHK(g).
The second result in this space is theWoźniakowski identity [Woźniakowski, 1991] which gives a closed form

for the expected (squared) error of the estimator:

E(ε2n) = (T⋆
n )2 (128)

note that in this case the expectation for the error is computed integrating over the space of all sufficiently well-
behaved functions using the Brownian Sheet measure. In other words the Woźniakowski identity can be loosely
stated in natural language as: it’s likely that the square of the integration error resulting from a given sequence is
just about the square of theT⋆ discrepancy of that sequence.

Combining the Koksma-Hlawka inequality and theWoźniakowski bound you can see that

εn( f ) ≤
T⋆
n

D⋆
n
VHK[ f ] for a“reasonably behaved” f (129)

SIGGRAPH 2019 Course Notes: Path tracing in Production — Part 1 Page 41 / 105



P��� ������� �� P���������

2.5 Markov chain Monte Carlo

Adifferent approach to approximating the valueof an integral is basedonMarkov chains. In this context, similar to
independent Monte Carlo,we are creating an ensemble of samples, and use these to compute the average of some
quantity. In contrast toMonteCarlo, the samples are not independent: tentative samplesxt are insteaddrawn from
a conditional distributionwhich has thememory of one sample: T(xt |xc). Here,xc is the current sample, the state
variable of the Markov chain. xt is dubbed tentative because it is not immediately turned into the next state xi+1

c .
There is great freedom to choose the so called transition probability density functions T(xt |xc), but we need to
take a bit of care to steer the Markov chain to reach the equilibrium distribution we want.

This can be facilitated by the Metropolis-Hastings acceptance probability:

ac→t =
f (xt)/T(xt |xc)
f (xc)/T(xc|xt)

. (130)

The tentative sample xt is accepted as the next state of the Markov chain only if ξ < a for some uniformly dis-
tributed random number ξ ∈ [0, 1). This acceptance probability is designed to maintain detailed balance:

f (xt) ⋅ T(xc|xt) ⋅ at→c = f (xc) ⋅ T(xt |xc) ⋅ ac→t , (131)

intuitively taking care that the Markov chain stays in the right distribution once it reached it: we want the Markov
chain to generate stateswith a distribution proportional to f (x) in the limit. equation (131) states that all probabil-
ity mass that flows out of xt to xc is counterbalanced by an equal amount of mass going the opposite way, coming
back from xc. In fact it would be enough to constrain that all probability flowing out of a state somewhere comes
back from anywhere. This condition is called general balance but is harder to achieve, especially for continuous
state spaces.

To make sure the Markov chain actually converges to the desired equilibrium distribution, there is one more
condition we need to fulfill: ergodicity. This states that all of our state space needs to be accessible via mutation
from any starting point. In practice this can easily be achieved by mixing in one mutation strategy which draws a
completely independent sample.

There is an excellent introduction to Markov chain Monte Carlo (MCMC) in [Betancourt, 2017, p.11],where
three phases of MCMC are discussed:

(1) convergence to the typical set, here we have strong bias.
(2) first round through the typical set, very fast convergence.
(3) draw more samples, take more rounds through the typical set, convergence slows down.

Now we are interested in the error bounds we can derive for this method.We know that in the third phase the
central limit theorem holds again and we can compute a probabilistic error estimate as:

εRMS = √ σ2

ESS
, (132)

where ESS is the effective sample size. Intuitively this means how many real independent samples your sampling
was worth. If the individual samples are too correlated, they contribute less to reducing the error of the estimate.
For completeness, the ESS can be computed as

ESS =
n

1 + 2∑∞
l=1 ρl

, (133)

where ρl is the lag-l autocorrelation of f over the history of the Markov chain.

Hamiltonian MC There are a couple of shortcomings in random,Metropolis-Hastings style Markov chains.
First, the convergence to the typical set can be slow. It would be great if we could assist the chain in finding it faster.
Second, if the mutation strategy is ill-adapted to the state space, there can be many rejections, resulting in chains
getting stuck, skyrocketing autocorrelation and thus estimation error.
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One elegant way of addressing these issues isHamiltonianMonte Carlo. In a sense this a specialisedmutation
strategy. It comes, however, with a few properties that set it apart from Metropolis-Hastings. First, this method
uses analytic derivatives to guide the mutation. Also, in a certain sense it maintains the energy of a state, such that
no more samples have to be rejected in theory.

To achieve this, the method employs an analogy from classical mechanics. The random walk is performed
in phase space, where the state is split into position and momentum. To keep the overall volume of the density
measure arounda samplebefore andaftermutationconstant, it is enough tomaintain theHamiltonianas invariant.

The Hamiltonian corresponds to the negative log joint target function in phase space. We denote the tradi-
tional target function as f (q), and artificially extend it to phase space f (q, p) by introducing a dependency on
momentum p:

f (q, p) = e−H(q,p). (134)

The HamiltonianH is the sum of kinetic energy and potential energy, and can be written as:

H(q, p) = − log f (q, p) (135)
= − log f (q|p) − log f (q) (136)
= K(p, q) + V(q). (137)

We know from classical dynamics that Hamilton’s equations will keepH constant. So all we need to do is simulate
the corresponding differential equation to draw new samples.

dq
dt

=
∂H
∂p =

∂K
∂p (138)

dp
dt

= −
∂H
∂q = −

∂K
∂q −

∂V
∂q . (139)

Here, t is the integration time, i.e. going from one state to the next sample. To solve these equations, we require
∂V/∂q, the derivative of our target function. We also need to provide a derivative of the kinetic energy we chose
to augment our state space to phase space. This usually leads to very simple choices of K , in the simplest case even
independent of q. For a more in-depth discussion also about implementation details we refer the reader again to
the excellent summary by Betancourt [2017].

2.5.1 Discussion

For MCMC, the smoothness of the integrand is essential. This is more obvious for Hamiltonian Monte Carlo,
where the derivatives explicitly go into the design of the mutation strategy. But the whole concept of small step
mutations is based on an implicit smoothness assumption. Neither of the two methods help exploring highly
fractureddiscontinuous function spaceswitha largenumberof isolated islands.Asimilarproblemarises for fractal
functions. This could be the density of a cloud or the multi-scale displacement of the surface of rough rocks: the
derivative at the finest scale will do nothing to guide the sampler into a good direction for larger scales.

Another issuewithMCMCis that it usuallydoesnot incorporate the conceptof an image. That is, the ensemble
is generated to estimate an average, not to estimate a set of pixels uniformly well. This is often times visible as
clumping artifacts or uneven exploration in image space.

Appendices

2.A Riemann on Riemann’s integral

Follows a short extract from [Riemann, 1868], introducing the definition of integral. The ex-
cerpt has been translated into modern English, retypeset and the symbols designating the various
quantities brought in line with the ones used in this document.
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Proceedings of the Royal Philosophical Society at Göttingen
Vol. 13, pg. 101–103, 1868

v v
On the representability of a function by a trigonometric series

B������� R������
Section 4

On the notion of the definite integral and the range of its validity

vv

The vagueness which still prevails over some fundamental points on the study of the definite integrals forces us to
provide some clarifications about the notion of definite integral and the range of its validity.

But firstly: What should be understood under ∫b
a f (x) dx? We define this taking between a and b a sequence

of values a = x0, x1, x2, … , xn−1, xn = b increasing in size and denote for the sake of brevity δi = xi − xi−1,
and by εi some positive real quantities. Then the value of the sum

θn =
n

∑
i=1

δi f (xi−1 + εiδi) (140)

will depend on the choice of intervals δi and the magnitude of the various εi. If it has the property, however the
choice of δi and εi, to approach in the limit for n going to infinity a fixed value θ to arbitrary small difference, as
all δi become infinitesimally small, then this value is called ∫b

a f (x) dx. If it doesn’t have this property, then the

expression ∫b
a f (x) dx has no meaning.

In several instances it has been attempted to assignmeaning to this expression,and fromall these extensions of
the notions of definite integral is one from all mathematicians attained. Namely, if the function f (x) takes values
arbitrarily large when its argument x approaches a value c in the interval (a, b), in such a manner that the sums
θn, regardless of the degree of smallness one prescribes to the δi, can attain any arbitrary value, we conclude that
∫b
a f (x) dx as defined above would have no meaning. If however, ∫c−σ1

a f (x) dx + ∫b
c+σ2

f (x) dx approaches a

fixed limit as σ1 and σ2 become arbitrarily small,we will say that this limit will be the value of ∫b
a f (x) dx.

Other definitions by Cauchy about the notion of definite integral (given for cases in which the value does
not exist according to the fundamental concepts expressed here) may in separate classes of investigations be con-
venient. However these have not been introduced with appropriate generality and therefore, owing especially to
their arbitrariness, are hardly suitable.
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3 Amodularpath sampling framework
M��� D�����,Weta Digital

It is remarkable how long some software architectures persist in practical use even in fast-moving industries with
complex and ever-growing requirements such as visual effects production. Prime examples are P����’s Render-
Man [Christensen et al., 2018] andmental ray that have been used in professionalmovie production since the late
80’s. Probably one of the most important factors for their success over the years is that they are both very flexible
architectures that provide a high degree of programmability and could therefore adapt very well to new and often
unforeseeable technical challenges.

Since path tracing made its way into the movie industry, the need for programmability has taken a different
form.With theneed touse����sduring light transport,programmable shaders inmodern shading languageshave
shifted predominantly towards calculating the inputs of the ����s and defining the layering stack instead of ac-
tually calculating a“color”algorithmically as in previous programmable shading,which would have involved sam-
pling, tracing rays and soon. Inmodernpath tracing renderers, light-transport has become increasingly decoupled
from shading by separating pattern generation from sampling decisions.We refer to [Pharr and Bala, 2018] for an
overview of the current state as well as historical overview of existing production renderers.

This decoupling is crucial for a renderer tomake informed decisions and to combine different techniques that
are often delicate to implement already in isolation into a common framework. In this section we would like to
give an overview over a range of considerations that flowed into the design of Manuka,W��� D������’s in-house
production renderer.

Rendering software architectures are inherently complex and may have to satisfy a wide range of needs and
hardware architectures. Thus, their design can be highly controversial and there is probably no one-fits-all ap-
proach. This section summarizes our perspective, built as a result of the work we have done on the movies that
have been in production at W��� D������, which in turn have shaped and influenced the development of our
rendererManuka [Fascione et al., 2018]. We would like to extend on the previous sections on the importance of
good sampling decisions and to go through some relevant sampling techniques to motivate our modular design.
Here, we focus the discussion on the different types of paths that can be generated rather than how the various
techniques work in detail, which will be elaborated on in the following sections.

Due to the progressive nature of path tracing, simply increasing the amount of samples will always give the
desired result, however the importance of good sampling strategies is recognized throughout the industry. Of
course, the two concepts don’t contradict each other: for example, theArnold renderer from S����A���� names
itself a brute-force renderer but their research team also emphasises the importance of investing in good sampling
strategies [Georgiev et al., 2018]. Even though denoising techniques for Monte-Carlo path tracing have become
increasingly powerful in recent years, it goes without saying that avoiding noise in light transport by employing
good sampling strategies remains the most effective and robust way of reducing render times.

3.1 Path integral formulation including participating media

As a quick recap of section 1.2, a general formulation of the rendering contribution as an integral over the space of
paths that connect vertices on surfaces has been given by Veach [1998] and has later been generalized to include
participating media [Pauly et al., 2000, Raab et al., 2006]. Path space can be described as the union of the spaces
Ωk of paths of fixed length:

Ω ∶= ⋃
k∈ℕ

Ωk whereΩk ∶= {x̄ = (x0, … , xk) ∶ xi ∈ ℝ3} (141)

In this section we enumerate the vertices starting from the light source. Let us consider a partition of three-
dimensional Euclidean space into subspaces of codimension 0 and 1, i.e., volumes and surfaces: ℝ3 = V ∪ ∂V ,
where H d−1(∂V ) < ∞ and V open and H d−1 denotes the d − 1 dimensional Hausdorff measure. In practice
V is a finite partition of volumes ⋃ Vi, bounded by closed surfaces in ∂V .

For a measurable subsetA ⊂ ℝ3,we define λ(A) ∶= L(A∩ V ) + H d−1(A∩ ∂V ),which is used to equip
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each of the spacesΩk with a product measure

μk(A) ∶= ∫
A
dλ(x0) ⋅ dλ(x1) ⋯ dλ(xk) forA ⊂ Ωk. (142)

The measure μ on path spaceΩ is the natural expansion on the disjoint subsets:

μ(A) ∶= ∑
k∈ℕ

μk(A ∩ Ωk), (143)

which allows to write the sensor response Ij corresponding to a pixel j compactly as the integral

Ij ∶= ∫
Ω
fj( ̄x)dμ(x̄), (144)

where fj is called themeasurement contribution function, given as

fj( ̄x) = Le(x0 → x1)G(x0 ↔ x1)T(x0 ↔ x1)⋅
k−1
∏
i=1

f (xi−1 → xi → xi+1)G(xi ↔ xi+1)T(xi ↔ xi+1) ⋅ Wj(xk−1 → xk). (145)

Here Wj models the sensor response and Le the emission function which is derived by simply unrolling the re-
cursive nature of the rendering equation. At first glance, this looks exactly likeVeach’s formulation, and indeed the
only difference to his surface-only formulation are extensions of some of the terms to the new domain:

• The classic visibility functionV(x ↔ y) has been replaced by the transmittance

T(x ↔ y) ∶= V(x ↔ y)e− ∫L
0 μt(r(t))dt (146)

for a ray segment r of length L = ‖x − y‖ going from x to y and μt being the extinction coefficient.
• The definition of the geometry term is extended to volumes:

G(x ↔ y) ∶=

⎧{{{{{
⎨{{{{{⎩

| cos θx|| cos θy|
‖x−y‖2 if x, y ∈ ∂V

| cos θx|
‖x−y‖2 if x ∈ ∂V , y ∈ V
| cos θy|
‖x−y‖2 if x ∈ V , y ∈ ∂V

1
‖x−y‖2 if x, y ∈ V

(147)

• The scattering distribution function is either surface ���� f∂V or a phase-function fV

f (xi−1 → xi → xi+1) ∶=
⎧{
⎨{⎩

f∂V(xi−1 → xi → xi+1) for x ∈ ∂V
μs(x) ⋅ fV (xi−1 → xi → xi+1) for x ∈ V (148)

where μs denotes the scattering coefficient.

In practice we also need to integrate over the spectral and time domains, i.e.,

Ij ∶= ∫
Λ

∫
t1

t0
∫
Ω
fj(t, λ, x̄) dμ(x̄) dt dλ, (149)

where all parts of the integrand may depend on these variables as well.
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Figure 1: Transmittance across different volumes bounded by fully transparent and semi-transparent interfaces. Free-path
sampling typically aims to sample proportional to that profile, which involves alternatingly sampling within the media and
potentially transparent surface boundaries until termination.

3.2 Computing the integral

3.2.1 The Monte Carlo approach

As outlined in section 1.3 the integral Ij can be numerically computed by the Monte Carlo method, which draws
samples from a probability distribution with density p and computes the estimate as

̂Ij =
1
N

N
∑
i=1

fj(x̄j)
p( ̄xj)

. (150)

It is well-known that the quality of the estimator depends to a large extent on how well p represents the shape of
f . Using a probability density that resembles the structure of f is called importance sampling, and it can easily be
shown that if p is proportional to f the variance in the estimator can be eliminated completely.

Probably themost fundamental path sampling technique for paths is to start by sampling a vertex on the cam-
era and extending it incrementally by local sampling, i.e., for a path of length k + 1:

xk ∼ pA,sensor( ⋅ )
xk−1 ∼ ⃗pA,sensor( ⋅ |xk)

xi ∼ ploc( ⋅ |(xi+1, xi+2)) for 0 ≤ i < k − 1

(151)

hoping to reach a light source at x0 (recall that we enumerate vertices starting from the light source). The path
probability is then given as the product of initial and conditional probabilities:

⃗p( ̄x) ∶= pA,sensor(xk) ⋅ ⃗pA,sensor(xk−1|xk) ⋅
k−2
∏
i=0

ploc( ⋅ |(xi+1, xi+2)). (152)

The local sampling stragegy ploc can be chosen to resemble the product of thematerial response and the geometry
term G(xi ↔ xi−1) by importance sampling the ���� with a probability that is commonly given in projected
solid anglemeasure, applying a ray-casting operator to get the next hitpoint and converting the probability to area
measure. This technique, in anutshell, iswhat is commonly referred to as path tracing and is thebasic buildingblock
for many other techniques. More generally, to account for volumes and transparent interfaces, the ray-casting
operator is replaced by free-path sampling, which samples a distance according to the transmittance profile (see
figure 1). The endpoint can lie either in amediumwith continuous probability,on a transparent volumeboundary
or the next opaque surface with discrete probability.

Completely analogously, the path can also be initiated by choosing a point on a light source, and extending
the path at every interaction with a material and finally explicitly connecting to the sensor. Since this mimics how
photons flow in the physical world, this technique is called light tracing.

Unfortunately, there are various factors that can make the integrand extremely complex in practice. Com-
plex occlusion, high-frequency detail in geometry, highly directional-dependent material response, focused light
sources and high dimensionality give raise to little hope of being able to importance sample the whole integrand
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in closed form. Indeed it is easy to construct extremely simple scenes with only very basic types of materials and
without complex occlusion that are very hard to render with unbiased rendering algorithms that are commonly
used in practice (see figure 2). Kollig and Keller [2000] refer to this as the problem of insufficient techniques.

3.2.2 Multiple Importance Sampling

Themain challenge for efficient path sampling lies indevising samplingdistributions that are roughly proportional
to f and at the same time efficient to draw samples from. Inpractice, there aremultiple sampling strategies available
that are each tailored to resemble a specific part of f accurately while being less accurate on other parts. Veach has
proposed amethod for combiningmultiple importance sampling techniques into a single estimate, calledMultiple
Importance Sampling. This approach seeks to draw samples from multiple distributions and combine them in a
weighted average that aims to automatically adjust to give preference to the technique that is best suited to sample
a specific contribution:

̂Ij =
1
N

N
∑
i=1

∑
t∈T

wt(x̄j)
fj( ̄xj)
pt( ̄xj)

. (153)

It remains anunbiased estimate as long theweights are chosen to ensure,firstly, that for any sample ̄xwith a positive
contribution the weights for all techniques sum up to 1:

∑
t∈T

wt(x̄) = 1 (154)

and, secondly, that a positive weight implies a positive sampling probability for the corresponding technique. A
very useful weighting function is the so called balance heuristic,which is defined as

wt(x̄) ∶=
pt(x̄)

∑t′∈T pt′( ̄x) . (155)

Veach showed that it is in some sense the best possible choice in the absence of further information. Intuitively, a
technique is assigned a highweight if the probability of sampling a path is large compared to the other techniques,
or in other words, if a technique has a difficulty of sampling an important contribution, an alternative technique
that handles it better will take over: it’s the basis for team-work between the techniques.

The beauty of ��� is that it allows to modularize light transport into separate sampling techniques for which
the weighting adjusts itself automatically. It has hence become a key building block for probably all production
path tracing renderers. However, as we will discuss in more detail, even though multiple importance sampling is
conceptually simple (it only requires to compute the probability for each path that has been realized by a sam-
pling technique), efficient and extensible implementations are far from being straight-forward and can be heavily
constrained by the software architecture. As specifically tailored sampling techniques have proven to be very suc-
cessful for variance reduction,an important design goal is to remain flexiblewith regard to adopting new sampling
techniques in the future,while keeping the architecture easy to maintain.

3.2.3 Practical MIS

Let us go through somemotivating basic examples. For simplifiednotation, let us define by ⃗pi( ̄x) the probability of
sampling vertex xi conditioned on the knowledge of the previous vertices xj,0 ≤ j < i for sampling from the light
source towards the sensor (light tracing) and analogously ⃗pi( ̄x) for the reverse direction (path tracing). Therefore

⃗p(x̄) =
k

∏
i=0

⃗pi(x̄) (path tracing),

p⃗(x̄) =
k

∏
i=0

⃗pi(x̄) (light tracing).
(156)

Clearly, pure path tracing can become very inefficient in the presence of small, bright light sources, since it relies
on the local path extensions to sample directions that will eventually reach a light. Instead, the last vertex can be
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Figure 2: Two simple examples of notoriously difficult to render paths. Left: Caustics seen through specular bounces, often
referred to as ��� (specular-diffuse-specular) paths. Right: Indirect lighting of sunlight bouncing of the moon onto the earth.
Both are hard to sample even with full bidirectional path tracing.

sampled by explicitly connecting to a light source vertex, which is commonly referred to as next-event estimation.
The path probability

⃗pNEE(x̄) =
k

∏
i=1

⃗pi(x̄) ⋅ pNEE(x0|(x1, x2)) (157)

where pNEE(x0|(x1, x2)), denotes the probability of sampling a point on an emitter, using some light sampling
strategy that may for example depend on the position and vertex normal at x1 and incoming direction to account
for importance sampling of G and material response.

On-the-fly MIS Naturally, it is exploited in practice that the first k vertices of pure path tracing can be used
to construct both a next-event estimation path and a path tracing path of length k + 1, by sampling a light source
or local extension respectively instead of drawing completely independent samples. Thismeans that a simple path
tracing algorithm can be built around a loop of locally extending the local path an, at each iteration, applying next-
event estimation to the current prefix. When a contribution is found, the ��� weight needs to be computed by
evaluating both ⃗pNEE(x) and ⃗p( ̄x) to plug into (155). Clearly, since these probabilities have a lot of terms in com-
mon, some of them cancel out and the weight can be computed based only on the local sampling probability and
the light sampling probability, i.e., the history of the path is no longer needed.

The computation of the probability is often a light-weight by-product of sampling,which can be exploited by
computing the ��� weight directly when the contribution has been found, allowing to discard the probabilities,
which minimises storage because usually the probabilities are no longer needed afterwards. This is particularly
appealing for ��� path tracing algorithms.

However, this approach comeswith the cost of being difficult to extend tomore sampling techniques or longer
connections. Let’s assume we have to come up with an imaginary sampling technique to sample paths that illu-
minate objects on the earth indirectly by moonlight scattered from the sun (figure 2(b)) and the ��� supervisor
refuses to bake the light on the moon, as this would look completely unrealistic.We could do this more effectively
than path tracing by instead sampling a moon-sun connection explicitly: a 2-vertex extensions is made by first
sampling a vertex on the moon surface facing the earth and then connecting it to a random point on the sun’s
surface, i.e.,

⃗plunatic(x̄) =
k

∏
i=2

⃗pi( ̄x) ⋅ pmoon(x1|x2) ⋅ psun(x0). (158)

Adding this technique into the mix for on-the-fly ��� computation means that more intermediate calculations
need to be carefully stored to be able to compute the missing terms for each technique. For example, when pure
path tracing hits the sun, the two previous vertices are required to be able to compute pmoon(x1|x2).

This may appear to the reader as a very contrived example, since in conjunction with powerful light sampling
(such as described in the next section) and firefly suppression techniques,path tracing pairedwith next-event esti-
mation is still well-suited in a wide range of situations. Nevertheless this casemay be less far-fetched than it seems:
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(a) ��� (b) Manifold ��� (c) ����

Figure 3: Some examples of common path extension techniques on surfaces.

some concrete real-world problems can be very specific and thus need very specific solutions, as we’ll outline fur-
ther in the next section.

3.3 Path sampling technique zoo

Before we discuss the design considerations for a production path tracing architecture, let us briefly categorize
some techniques that have proven to be effective in movie production.

3.3.1 Path extensions

Fortunately, sampling paths of various lengths can be simply achieved by forward path tracing and applying dif-
ferent sampling techniques to find“good”extensions, next-event estimation (cf. figure 3(a)) being of course the fun-
damental prototype of that idea. Path tracing by local material sampling, followed by free path sampling along the
sampled direction, can be seen as the master technique, which drives the main path forward, while the extension
techniques create new branches that terminate at their corresponding end vertex.

A few other useful extension techniques that are not limited to extending by a single vertex are:

• Partial sub-paths starting from the light, generating using the light tracing algorithm, can be connected to
partial eye-path to create a complete path, which is called bidirectional path tracing (����) . An example
connecting only a path of length twowith the camera path is shown in its simplest form infigure 3(c),which
can improve situations where light sources concentrate their emission onto a small region. Full ���� first
builds independent paths from the eye and from the light source and then creates new paths by connecting
all their respective sub-paths. Each index that defines at which vertex a connection between the eye and
light subpath is made corresponds to a sampling technique.
Naturally, the techniqueshavevarious terms in common,whichVeach [1998] exploited topropose a scheme
to efficiently compute balance heuristic weights. It is however serial in nature and requires access to all
vertices. vanAntwerpen [2011] proposed a new scheme that computes specific quantities while the path is
built, that can be used later to compute ��� weights by combining these quantities with local information.
It is therefore much more ���-friendly, however it requires a very specific algebraic structure that is not
straightforward to combine with other techniques.

• Hanika et al. [2015] introduced Manifold next-event estimation that improves over classic next-event
estimation by adding the ability to connect through refractive surfaces (figure 3(b)). The sub-path is found
by an iterative solver that searches for a connection that is valid in the sense that it obeys the refraction con-
straint at each interior vertex. This can potentially add multiple vertices between the receiver and the light
source and therefore requires access to multiple vertices and their differential geometry at each iteration.
Speierer et al. [2018] extend this approach to connect to light sub paths.

• Equi-angular sampling [Kulla and Fajardo, 2012] is a volume sampling technique for single scattering,
that first samples a point on a light source and then places a vertex on an open segment from an eye-path
as shown in figure 4(a). By sampling the opening angle as spanned by the segment uniformly it effectively
importance-samples the geometry termbetween the light source and the intermediate vertex. Note that the
candidate segment is usually chosen to be the ray segment starting from a vertex in the direction of local
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(a) Equi-angular sampling (b) Joint importance sampling

(c) Subdivision ��� (d) MultipleVertex ���

Figure 4: Some examples of common path extension techniques on volumes.

sampling as constructed by path tracing up to the next occluder. This may cause vertices to be sampled
behind the vertex that was determined by free-path sampling during path tracing.

• Georgiev et al. [2013] takes this idea one step further by introducing Joint importance sampling which
samples two vertices from a joint distribution for double-scattering as shown in figure 4(b).

• Subdivisionnext-event estimation [Koerner et al.,2016] aimsat creatingpaths throughrefractivebound-
aries from within volumes. As depicted in figure 4(c), it creates paths by sampling an exit point on the sur-
face, refracting backwards into themedium from the light source and connecting the open segment back to
themain path using for example equi-angular sampling. Since by construction the extension obeys thema-
terial at the interface it is well suited to handle dielectric boundaries. However, since the construction starts
from an interior vertex and adds one more vertex in the medium it is not able to sample single-scattering
paths.

• Multiple vertex next-event estimation (�����) is a technique for improvingmultiple scattering in rela-
tively dense, forward-scatteringmedia by constructing relatively long path extensions (∼ 4− 10 vertices in
practice) towards the light source as proposed by Weber et al. [2017]. This is achieved by perturbing a seed
path deterministally by adding new vertices and shifting them in a way that aims to yield high throughput
on the phase-function (figure 4(d)).

Clearly, there is some variation in the number of vertices being appended to the path between the different tech-
niques. Even within a technique the number can vary, which makes it difficult to limit the amount of storage for
��� purposes or to compact the expression (155) a-priori.

3.3.2 Splitting

The efficiency of path tracing can be improved by introducing splitting,which can create multiple sub-branches at
the current vertex by iterated local extension of the path. This can be beneficial in cases where the random walk
has reached a region that is worth exploring further,however the splitting ratesmust be chosenwith care to avoid a
combinatorial explosion. Vorba and Křivánek [2016] have proposed a unification of path-termination via Russian
Roulette and splitting using an estimate of incident radiance to fold into a contiuous stochastic decision process
which determines whether to terminate or apply a splitting factor. Intuitively, the efficiency is improved because
the prefix of the path can be shared by multiple different path realizations.
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Figure 5: Shift mappings applied to the beginning of the path. Depending on materials on the vertices at the beginning of the
path, different shift strategies may applied, which can cause the shifts to touch more vertices.

3.3.3 Shift mappings

Path tracing generates new independent paths for each pixel. The longer the path becomes, the more likely that it
becomes worthwhile to reuse available information to generate new correlated paths by shifting the path prefix.
Bekaert et al. [2002] introduced the idea of reconnecting the endpaths to different primary vertices, which can in
a sense be seen as splitting applied to the reverse direction.

Gradient-domain path tracing [Kettunen et al., 2015] uses primary shifts similar to those to compute estimates
of screen-space derivatives of the measurement function, which are then used to reconstruct the image via the
the Poisson equation. The quality of the shift plays an important role in the estimation of the gradient. While a
simple primary shift (figure 5(a)) is effective if the primary vertex is diffuse, the shifts have to intrude deeper into
the path via so-called half-vector shifts if the primary vertices are near-specular (figure 5(b)). They avoid that the
throughput of the path breaks down at vertices at which thematerial is highly directionally dependent by ensuring
the incoming and outgoing directions have the same half-vector. The depth of the shift can therefore be variable
depending on the type of primary vertices. Generally, the quality of the result hinges upon the design of good shift
mappings in various scenarios (for example, shifts in participating media) and naturally these mappings can also
be used in an explicit path-reconnection approach as described earlier by employing the shift Jacobian to account
for the density changes.

In the next session we will describe how shift mappings are also a natural candidate to introduce path-reuse
formultiple cameras anddistribution effects such asmotionblur. In a previous course [Fascione et al.,2017]Heck-
enberg described how local path perturbations can be used to accelerate the convergence of depth of field via lens
shifts.

Tessari et al. [2017] proposed to apply local shifts to explore the local neighborhood of a path and ensures
good stratification by an explicit deterministic sampling scheme. By a similar heuristic, they aim at merging the
shifted path as early as possible down the chain to the base path to reduce the amount of recomputation needed to
evaluate the shift.

3.3.4 Markov-Chain methods et al.

Metropolis light transport (���, [Veach, 1998] and related sampling methods, such as energy-redistribution path
tracing [Cline et al., 2005] and primary-sample space ��� [Kelemen et al., 2002] can be powerful techniques to
solve complex light transport problems. They are based on applying various differentmutation strategies thatmay
modify an existing path at different depths.

They are yet rarely applied to movie production rendering, mostly because of correlation patterns that can
cause noticable temporal instability and are harder to denoise than fully stratified sampling. However, this field
remains an area of active research and recent papers have demonstrated very significant improvements to address
some limitations, in particular introducing the ability to mix previously incompatible frameworks [Bitterli et al.,
2017,Otsu et al., 2017, Pantaleoni, 2016] bringing this class of methods closer to practicality.
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Figure 6: Example of a combination of extensions, shifts and splitting.

3.3.5 Multi spectral sampling

As mentioned earlier, chromatic noise can be effectively reduced by computing the measurement for multiple (n)
wavelengths simultaneously. This can be achieved by constructing sampling techniques shifted in the spectral
domain in such a way that the vertices remain the same [Wilkie et al., 2014]. The overall number of techniques
thus multiplies by n: one for each shift, where one contains the “hero”-strategy, which behaves as classic spectral
sampling, i.e., importance sampling as well as possible based on the given wavelength.

For computing ��� weights, this implies that the probabilities for sampling the entire path are relevant. For-
tunately, this approach is straight-forward to implement: the main difference is that whenever a probability for
some technique is computed, it has to be done for all n spectral channels, which is amenable to an efficient SIMD
implementation.

3.3.6 Local techniques - path guiding

As mentioned earlier, extending the path by ���� sampling is an example of a local sampling technique. More
information of the light transport incident to the vertex can be exploited by modifying such a local sampling de-
cision. Dwivedi sampling [Meng et al., 2016] and path guiding [Vorba et al., 2014] are some examples. They are
typically ratherminimally invasive since they can be encapsulated in the local sampling decision,whichmight be-
come a stochastic decision between these different local techniques or emitter sampling and therefore fit very well
into the path tracing eco-system. This might be an important factor as to why these methods have become quite
successful inmovie production (cf. also the course byVorba et al. [2019] onPath Guiding in Production this year).

3.3.7 Discussion

The overview given above suggests that in practice, even though the fundamental path tracing algorithm is very
simple, it would be beneficial to combine the various different techniques into one common framework. Pro-
duction rendering has to deal with a very wide range of different scenarios and since a single shot may contain
a combination of factors as complex lighting, volumetric scattering, distribution effects and dielectric interfaces
a sampling situation as shown in figure 6 is not unrealistic. It might be worth noting that a significant portion
of the path sampling techniques described has been developed specifically for the needs of rendering in movie
production.

The lack of a sampling strategy canoftenbe compensated to somedegree by othermeans, for example discard-
ing some hard to sample contributions such as caustics,manuallymodifying the scene or introducing approxima-
tions. Adaptive sampling can be quite effective by focusing the sample density in problematic areas.

However, being able to apply optimized sampling techniques to specific parts of the integral remains themost
effectiveway to reduce render times [Pharr,2019]. Thisdirectly leads to thequestionof howa light transport system
can scale with the number of sampling techniques to evolve into an ecosystem of methods that can be configured
as needed. Even though not all of the techniques might be necessary for all types of scenes it is, for the sake of
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Figure 7: Combining forward path tracing with next-event estimation extensions (blue) with realizations (x0, x1, x2),
(x0, x1, x6, x7), (x0, x1, x6, x8, x9) and equi-angular sampling (green) with realizations (x0, x1, x4, x3) and (x0, x1, x5, x3).

usability, desirable in practice that all of the different methods can be combined arbitrarily. It is well-known that
there is no guarantee that the combination of techniques with ��� has lower variance than any of the techniques
in isolation. But even though it is not always optimal, it does improve robustness and removes part of the burden
of having to fine-tune the optimal settings.

Practical production aspects When designing a rendering architecture the choice of methods to be
combined is an important factor to keep in mind. Apart from scalability and performance, other practical pro-
duction requirements need to be taken into account. For example, the ability to deduce different output channels
(also known as arbitrary output variables ���s,aRenderManname) such as light groups,direct vs. indirect lighting
or other path expressions such as caustics, and various specific channels for denoising purposes and compositing
workflows. Hint: we haven’tmentioned biased rendering techniques such as irradiance caching,not because errors
would be unacceptable in principle,but because possible artifacts are harder to get under control, they limit the use
of AOVs and are sometimes harder to combine with other techniques.

3.4 Modular light transport via the vertex graph

As outlined before, reusing partial paths to create new contributions as well as avoiding redundant computations
are important ingredients to efficient path tracing algorithms. Some of this has been previously achieved by elim-
inating common terms and carefully breaking down the algebraic structure of the ��� weights into quantities that
are efficient to compute (see for example [vanAntwerpen, 2011,Veach, 1998]). However, this usually comes at the
price of introducing a strong coupling between all techniques, that can lead to prohibitive growth of code com-
plexity.

We are instead aiming for a modular plug-in architecture for sampling techniques, which requires the tech-
niques to be independent fromeachother. Theweighting scheme in section3.2.2 alreadyhas a verymodular struc-
ture. A sampling technique needs to do be able to do only two things: sample a path and evaluate the probability
for any given complete path. Our design goal was to maintain a code structure that resembles the mathematical
structure of the path space integral formulation as closely as possible: to compute the probability of a path, it is
desirable to recognize for example equations (156) and (157) in the code.

3.4.1 Path extensions

Extension techniques asdescribed in section3.3.1 arebuilt on topof abasepath thatwas sampledbyuni-directional
forward path tracing by local sampling. A somewhat minimal technique interface could look something like this:

class ExtensionTechniqueInterface

{
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virtual ReturnCode SamplePath( const Path& basePath,

VertexGraph* graph,

GraphCache* graphCache,

Path* newPath,

PathRecord* record ) const = 0;

virtual double ComputeProbability( GraphCache& graphCache,

const VertexGraph& graph,

const Path& path ) const = 0;

};

where the input arguments to the SamplePath method carry along any kind of information that could be useful
for the path extension, for instance the probability of sampling the current base path. The output record contains
a description of the path, and quantities like the measurement and sampling probability. Computing probabilities
is usually a relatively cheap side-computation of the sampling method, so it is useful to store it so that it can be
used directly in the ��� weight computation. The method to compute the probability needs to have access to all
information that is needed to replay all conditions that could have influenced the sampling.

A path vertex provides directionally independent information such as local frame and differential geometry.
Crucially, the material ���� is stored on the vertex as well, since it will be needed by evaluations of other connec-
tions and ��� calculations. Hence, it is a relatively heavy-weight structure that we would rather not replicate for
each path contribution. Instead, we store every vertex exactly once in a graph (called a ���11) whose edges de-
scribe the connectivity of path construction and thereafter describe paths in a light-weight way by referencing the
vertices by node ids of the graph vertices.

Themain path tracing loop thus simply starts with an empty graph, samples a root node on the camera or light
source, then iteratively extends the path by local sampling and calls into the registered extension samplers. Figure 7
illustrates the process of incrementally building up newpaths. The conditional, local probabilities for constructing
a path are repeatedly required for computations of whole path probabilities. Therefore,we augment the graphwith
a caching structure that allows reuse of any previously computed quantity and evaluates it lazily only if necessary,
which makes sure that the implementation of the probability methods do not need to know about what terms
have already been computed. Naturally, all computations that fall out of the sampling methods (such as sampling
probability of a ���� as a path is extended) should be injected into the graph cache when they are generated.

Some typical records in the cache are the following:

• Keyed on the vertex id, incoming and outoing directions, a ���� record stores quantities like the evaluation
and sampling probability of thematerial. Directions are internallymapped froma pair of vertices onto a di-
rectional key to account for the fact thatmultiple,different verticesmay lie on a ray segment. For example, in
figure 7,x6 is sampled by free-path sampling from x1,while x4,x5 by construction of the equi-angular sam-
pling technique share the same direction. The ���� record may also contain adjoint quantities, depending
on the query direction.

• Segments as simply identified by a pair of nodes, can contain information about the volume(s) between the
endpoints, volume stack changes, volume sampling probabilities, emission and transmittance.

• Information on the beginning and end of the path, i.e., sensor and emitter data.

3.4.2 Shift techniques

Asoutlined in section3.3.3,determining the typeof shiftmapping tobe appliedmaydependon someprior inspec-
tionof the sampledvertices down fromthe rootnode. Fortunately, the vertex graphcontains sufficient information
tomake that decision and canbe extendedby creating secondary rootnodes and thenmerging them into the graph
with the existing nodes. The decision of whether to reconnect may depend also on the depth and complexity of
the graph: for short path-lengths the amount of work required to create connections relative to tracing completely
new paths might be too high to pay off, especially if primary vertices are specular. Therefore, we decided to apply
shift techniques independently from the previous path tracing stage as an independent post-process.

11Thismeans directed acyclic graph,and it is easy to see how this graph is directed,because the edges haveorientation,and acyclic,because
cycles in this construction cannot arise

SIGGRAPH 2019 Course Notes: Path tracing in Production — Part 1 Page 57 / 105



P��� ������� �� P���������

3.4.3 Volumes and Transparency

Participating media are first-class citizens in our framework: ray-casting is rarely used explicitly, instead free-path
sampling (cf. section 3.2.1) that handles transparency and volumes in a unified manner is applied. Transitions
between volumes may not only occur at explicitly sampled vertices, but also at transparent interfaces. Similarly, a
transmittance method replaces the classic occlusion query in a very natural way.

Thismeans that at every vertex andpotentially at every point along an existing segment, the information about
the current volume needs to be available. We track the active list of nested volumes in a volume stack structure
similar to what is described in [Schmidt and Budge, 2002], which is augmented with various additional informa-
tion about the volume such as entry-point information.Weprovide change-listmechanisms to be able to roll-back
changes and to reconstruct volume transitions along rays in a light-weightway by storing a volumehistory for each
segment. For example, an extension techniquewill retrieve the current volume stack at the current end-vertex and
needs to roll-back any local changes before continuing in the main path tracing loop. The volume stack may also
be important when computing the probability of a technique, which requires reconstructing all conditions that
would have influenced the samplingmethod, for example the end-point of the ray-segment used for equi-angular
sampling.

The volume stack structure also carries a mapping that describes which emitters are contained within a given
volume and can thus be used for emitter selection, to avoid for example next-event estimation to lights that can
never be connected to. We hide the specific structure of a type of volume from path-space sampling as much as
possible. Even though some methods may be more efficient than others on certain types of volumes, a path sam-
pling technique should work regardless of whether the volume is a homogeneous fog-volume or an atmosphere
model.

3.4.4 Photon mapping / VCM

So far we have mainly looked at typical unbiased sampling methods, but since generality is an important design
goal we ought to investigate how the decoupling approach could hold up in other cases such as photon-mapping.
Note that (apart from path guiding) none of the sampling methods described before is yet able to handle the ���
paths in figure 2(a) effectively. The���weights computation for ��� [Georgiev et al.,2012,Hachisuka et al.,2012]
serves as a good stress-test. Similar to the carefully optimized ��� evaluation schemes for ���� in section 3.3.1,
Georgiev [2012] developed an efficient evaluation scheme for ���. However, it is restricted to a specific set of
techniques and is rather complex to maintain and generalize.

As an exercise, let us see what terms are required to get an idea of how compactly the data on a photon could
be represented, without of course having to store full light paths. Given a merge radius r (in the following, for the
sake of simplicity, globally constant) the vertex merging sampling probability of a path with a merge occurring at
light vertex j is:

pVM,j( ̄x) ∶= πr2
j

∏
i=0

p⃗i( ̄x)
k

∏
i=j

⃗pi( ̄x). (159)

Denoting the set of active techniqes byT , the ��� weight for technique t∗ (w.l.o.g. balance heuristic) is

wt∗( ̄x) =
nt∗pt∗(x̄)

∑
t∈T

ntpt(x̄) + nVM
k−1
∑
j=1

pVM,j(x̄)
, (160)

which needs to be computed for any vertex merged contribution as well as for paths sampled by other techniques.
Here,nt denotes the number of samples drawn from technique t.

The main task is to determine a compact set of quantities to store on the photon such that the weight can be
computed once a connection has been made. Therefore, the sum of vertex merging probabilities at photon index
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s can be rewritten as

k−1
∑
j=1

pVM,j(x̄) =
s−1
∑
j=1

pVM,j( ̄x) +
k−1
∑
j=s

pVM,j( ̄x)

= πr2 ⃗ps−1(x̄)
⎛⎜⎜
⎝

s−1
∑
j=1

j

∏
i=0

⃗pi( ̄x)
s−2
∏
i=j

⃗pi( ̄x)⎞⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶ ⃗vs−1

k
∏
i=s

⃗pi( ̄x)

+ πr2 ⃗ps+1( ̄x)
s

∏
i=0

⃗pi( ̄x)
⏟⏟⏟⏟⏟

⃗ws

⎛⎜⎜
⎝

k−1
∑
j=s

j

∏
i=s+2

⃗pi(x̄)
k

∏
i=j

⃗pi( ̄x)⎞⎟⎟
⎠

.

Computation breakdown The structure of terms above allows us to seperate the quantities that may be
stored with the photon, the quantities that depend on the path up to the merge location and some terms that need
to be computed as the connection is being made:

• ⃗vs−1 depends only on photon path vertices → stored in photon map.

•
k

∏
i=s

⃗pi( ̄x) is the iteratively built pathprobability of the eyepathup to themerge vertex and is usually a simple

side-computation of path tracing.
• The local sampling probabilities ⃗ps−1( ̄x) and ⃗ps+1(x̄) depend on the photon direction and incoming path

direction. They can therefore only be computed when connecting the photon to the eye path. In principle,
this would also require the ���� at the vertices involved in the merge. Reconstructing these for each vertex
is too costly, so most implementations simply reuse the material at the connecting vertex and pretend it
doesn’t change too much within the merge region.

• ⃗ws depends only onphotonpath vertices and is a side computation of light tracing→ stored in photonmap.

•
k−1
∑
j=s

j

∏
i=s+1

⃗pi(x̄)
k

∏
i=j

⃗pi(x̄) depends only on eye path vertices and can be computed as a side product of for-

ward path tracing.

Hence, similar to [Georgiev, 2012], a compact photon payload can be achieved by storing the direction xs−1 − xs,
⃗vs−1, ⃗ws with each photon. This formulation is not optimal in reducing the number of floating point operations

but remains relatively simple, and terms like ⃗vs−1 are straightforward to compute efficiently.

Weighting a vertex merge against other techniques For simplicity, let us consider how themost
standard techniques can be included in section 3.4.4:

• Forward path tracing sampling probability

⃗p( ̄x) =
k

∏
i=0

⃗pi( ̄x) = ⃗ps−1

s−2
∏
i=0

⃗pi( ̄x)
k

∏
i=s

⃗pi( ̄x).

Thefirst term is computed at connection, the second can be stored in the photon, the last is computed from
the connecting path.

• Forward path tracing with next-event estimation has the probability

⃗pNEE(x̄) ∶= ⃗pNEE(x0)
k

∏
i=1

⃗pi( ̄x) = ⃗ps−1 ⃗pNEE(x0)
s−2
∏
i=1

⃗pi(x̄)
k

∏
i=s

⃗pi( ̄x).

Light tracing can be handled completely analogously. Now, the structure is relatively obvious, the probability can
usually be broken down into a part that only depends on the light path the photon traveled, a part that only de-
pends on the eyepathup to themerge and apart that needs to be computeddynamically as the connection ismade.
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Therefore the technique ��� only needs to be augmented by functions to prepare the photon payload and to com-
pute the probability of a connection path based on the payload, the knowledge of the forward path and some local
computation. Some terms are of course common, for example note that ⃗vs−1 and the terms from the two forward
path tracing techniques can be aggregated into a single value.

This rather explicit approach also allowed us to extend ��� to multispectral sampling in a straightforward
way: recall from section 3.3.5 that this mainly requires the computation of the sampling probabilities for all wave-
length channels independently. In practice however, we rely increasingly on path guiding for difficult light trans-
port paths such as caustics [Vorba et al., 2019].

3.4.5 Memory management

Theamount of dynamism that is required in such a framework is rather high,making an efficient implementation
that is not negatively impeding the performance of light-transport challenging. The vertex graph, the attached
caching structure and the volume stack are highly dynamic structures. Furthermore, sincewe don’t want to impose
a limit on path length and the size of the graph and the amount of cached data is not bound a-priori. ����s may
be temporarily allocated during free-path sampling and then attached to vertices when an endpoint is reached.

We heavily rely onmemory pools tomake sure that (apart from an initial warm-up phase) no heap allocations
are required down to the finest level such as allocation of connectivity edges in the vertex graph or control blocks
for sharedpointers. Path tracing construction for a single vertex graph, including extensions and shifts is scheduled
sufficiently fine-grained on a single thread,which allows us to place thread pools in a local thread context without
incurring any contention.

3.4.6 Discussion

Pros We found that the proposed approach has proven to be very flexible and has allowed us to experiment
and prototype without introducing any coupling with the rest of the system, thus improving robustness. Light
transport algorithms can be algorithmically very complex to implement because a lot of details and special cases
need to be accounted for. Even though a small amount of computation could in theory be saved by transforming
the ��� weight terms into a different form, this is from our point of view and experience not worth the price of
having to give up modularity, especially since in practice the vast majority of the computations go into evaluat-
ing probabilities for light hierarchy sampling and the ����, which the cache structure guarantees not to evaluate
redundantly.

Cons Storing vertices,materials, potentially caching volume voxel data along segments increases the memory
footprint, which obviously would become a limitation for scaling up the number of threads under memory con-
straints, so it is in its full generality not straightforward how to map such an approach onto ��� architectures and
integrate into a wave-front architecture in particular [Laine et al., 2013]. ��� renderers therefore often deliber-
ately restrict themselves to a smaller set of techniques that can be specifically optimized for and thus still be quite
powerful (see for example the design decisions made by Keller et al. [2017]).

Long paths can require extra care for two reasons: First, even though the amount of compute needed to calcu-
late the path probabilities by putting together known values, such as geometry terms and local ���� probabilities,
is negligible compared to other computations, this is no longer true for long paths. This can however be accounted
for by caching aggregate path contruction probabilities for interior chains, since extensions and shifts happen usu-
ally at the beginning and end of the graph. Secondly, some extra care is necessary to avoid numerical precision
problems, for example when accumulating local probabilities for long subsurface scattering chains on which the
geometry term is small.

Quest for performance and flexibility Of course,optimizingperformance and scalability is extremely
important to reduce artist iteration times and rendering costs. Also, having the flexibility to adapt to unforeseen
technical challenges is a huge benefit for an in-house production renderer. It is therefore worth paying close atten-
tion toavoid imposing too severe algorithmic constraints througha tight couplingof different sampling techniques
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or by imposing, for example,a complex scheduling system that intrudes deeply into path sampling. In an early pro-
totype stage,Manuka in fact employed a wavefront scheduling scheme,which was later on abandoned as the need
for more algorithmic flexibility become more and more apparent.

Programmable integrator vs programmable technique architecture A programmable in-
tegrator architecture that provides access to rather low-level functionality, such as ray casting and shading, ensure
a high degree of flexibility for implementing rendering algorithms for different purposes, such as a final-frame
renderer versus a very specific renderer for utility passes.

The programmable technique approach is in comparison more high-level, and allows sharing of a large part
of the light transport infrastructure, such as the volume handling, free-path sampling, imaging etc. and facilitates
the usage of a unified feature rich integrator. It therefore avoids sitations inwhich a feature X andY can’t be used in
combination because they might be implemented in different integrators, even though they might be completely
unrelated.
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4 Findinggoodpaths
J���� S�����������,Weta Digital

Rendering film-quality images has always been a complicated endeavor, because producing images that real-
istically merge into plate photography requires simulating the complex interactions between lights and materials.
In that sense, the rise of path tracing renderers has been a boon to the visual effects industry, because the gener-
ality afforded by Monte Carlo integration allows for solving even the most challenging light transport situations.
Unfortunately, this doesn’t mean that they can necessarily be solved efficiently.

Making path tracing practical for use in visual effects means dealing with noise. The complexity of the scenes
that need to be rendered is such thatmany (many!) paths need to be traced for every pixel in the final image so that
the end result will have an acceptable level of noise. This complexity comes from many places: complex light rigs
illuminating complex, animated characters featuring complex materials inserted within complex environments.
The resulting noise is similarly complex, because different parts of the scene vary in their complexity, meaning
the noise is not uniform across the final image; the illumination hitting one character may be entirely direct, for
instance,while aneighboringoneonly receives indirect illumination,or somesurfaces in a scene feature reasonably
simple materials while others have interesting sub-surface scattering or other effects. Some parts of the scene may
be moving while others remain static, or depth-of-field can be simulated and parts of the scene are in focus while
others are not. With this in mind, there are several complementary ways of dealing with the problem of noise
within a path tracing renderer.

The simplest one is to give the renderer enough time tracing paths so that the final image is of sufficient quality
throughout. This works! Unfortunately, time is generally a very precious resource, and this approach is inherently
inefficient, as making sure the most noisy pixels in an image have sufficiently low noise levels necessarily implies
that other parts of the image have hadmore paths traced for them thanwas necessary. This observation leads quite
naturally to the development of another way of dealing with noise — adaptive sampling of the image plane.

Adaptive sampling means the renderer has an understanding of which parts of an image are noisier than oth-
ers, and can use that knowledge to drive the path tracing engine towards tracingmore paths through noisier pixels
and fewer through those that are less noisy. It has been our observation atW���D������ that a good, robust adap-
tive sampling engine is not just ”nice to have”; it is absolutely essential for delivering an efficient workflow to the
artists. This is because the levels of noise across an image can vary substantially, sometimes by orders of magnitude,
and the days where scenes were sufficiently simple for artists to tweak a couple of parameters affecting local sam-
pling decisions are long gone. W���D������’s renderer,Manuka, allows artists to specify a desired final noise level
and let the renderer figure out which parts are noisier. However, notice how this doesn’t say anything about how
long the renderer will take to reach that noise level. Some scenes feature light transport situations so complicated
that tens (or hundreds!) of thousands of paths may be required in small or large regions of the image. So what can
we do about this?

Perhaps the best (but hardest) way of dealing with noise in a path tracer is to find ways of simply producing
less of it, that is comeupwith techniques and improvements that canmake our humble path tracer better atfinding
good paths. WithinManuka, we approach this goal from two distinct angles: increasing path-sampling efficiency
by re-utilizing the information gathered froma single path across several pixels,and implementingbetter sampling
techniques that reduce the variance of our Monte Carlo integrators.

4.1 Path reconnection techniques for stereoscopic rendering and distribution
effects

What if youwere to take a look under the hood at what is happening as a path tracer is going about the business of
rendering an image? Youwould probably seemany paths being traced through the scene being rendered,with rays
either landing on surfaces or crossing through volumes, generating path vertices. From there, new directions are
sampled to continue the path and so on, until paths are terminated after fulfilling some condition, such as landing
on a light source or escaping the scene into the environment around it. If you were to take a quick snapshot of this
process, it is quite likely that these pathswill exhibit very little coherence,as eachpath is sampled in an independent
manner. But if you were to observe this process for an extended amount of time it will become glaringly obvious
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Figure 8: Rendering from multiple cameras. Left: Path created from sensor 0 using classic sampling. Right: The secondary
technique starts a path from sensor 1 and applies the sampling lobe at the first surface point as if coming from sensor 0. Using
correlated sampling, the remaining vertices coincide.

that at least some, and possibly a lot, of the work being performed has been performed previously and is being re-
done. For example, the camera from which the paths originate may be moving, such that a single surface element
is visible through several pixels, or there may be multiple cameras, as happens in stereoscopic rendering. In these
cases, we’ll have independent estimators that are evaluating extremely similar — possibly identical — integrals,
leading to lots of redundant work being performed. If we are trying to be as efficient as possible, then, it seems that
trying to exploit these redundancies is crucial. To paraphrasewhat artists observed to us repeatedly—“if my stereo
renders look almost identical,why should I pay twice the price of rendering them as mono?”.

The answer is of course that they shouldn’t. But how do we go about exploiting these redundancies in a way
that results in acceptably correct images? To that end, the path sampling architecture that is developed in the prior
section becomes quite useful, and we exploit it quite severely in implementing what we internally refer to asOpti-
mized Stereo,Motion Blur and Depth-of-Field.

4.1.1 Multi-view rendering

Extending a path tracer to support rendering tomultiple sensors in a single pass is easily achieved by incorporating
the sensor domain into the standard measurement equation:

Ipsi = ∫
R
We,psi(x̄)Li( ̄x) dμ( ̄x), (161)

where Li is the incoming radiance,We,psi corresponds to the importance of pixel i in the sensor s evaluated for
a path x̄ = (x1, … , xn) in the path space R . In practice, this can be sampled for all pixels and sensors simulta-
neously, sampling initial path vertices over the whole domain and assigning the result to the respective pixel via
rejection sampling Veach [1997].

This formulation allows a very effective amortization of the various scene preprocessing costs (such as tesse-
lation and acceleration structure creation), while light transport simulation costs remain essentially unchanged.
The technique as described is robust and easy to implement correctly, yet remains unsatisfactory with respect to
efficiency as previously discussed.

4.1.2 Primary path reconnection

Now, while light tracing makes it trivial to reuse paths emanating from the light source by simply connecting to
all sensors, some extra work is required for the case of path tracing. A naïve approach to exploit the low disparity
across different sensors is to simply reconnect the primary vertex of a sampled path to all other sensors, which
would allow us to amortize all of the potentially expensive computations performed for the secondary vertices of
the path.

In the Monte Carlo integration setting, we can achieve this by constructing a new sampling technique that
reconnects a path generated by a known sampling technique to the other sensor(s). Specifically for stereoscopic
rendering, we define two sampling techniques, with T0 being the known base technique as described above for
sampling from the primary sensor into the scene, and T1, which after sampling the secondary sensor effectively
delegates back to T0 for the remainder of the path. By applying the same random number sequence to both tech-
niques, under the mild assumption that the samplers reproduce the same values for the same random number,
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Figure 9: Cases in which path reconnection is ineffective: occlusion, sample density mismatch, strongly glossy ����.

identical sub-paths (x1, … , xk) are generated. In this initial form, the approach still has a number of limitations as
illustrated in figure 9: except for trivial scenes, there are points that are primary visible only in one of the two sen-
sors, either due to occlusion or because they fall outside the image domain. In the end, after adapting the weights
of the techniques to avoid introducing bias, it is necessary for the renderer to trace as many paths as it originally
would have to resolve the noise in these disparity regions. Within Manuka, we deal with this particular limita-
tion by using adaptive sampling, which effectively understands that these disparity regions receive fewer samples
overall and compensates accordingly.

A similar issue arises at surface points that have a strongly varying primary sampling density, so that the sam-
ples inherited from one of the sensors are sparser than the other, degrading the efficacy of the reconnections. Re-
evaluation of reconnected paths yields zero throughput in the case of specular materials. For strongly glossy ma-
terials, the secondary technique is inefficient, as the lobe is importance sampled as seen from the primary sensor,
and hence the variance can become unbounded.

Thenatural remedy is to applymultiple importance sampling (���)Veach [1997] to avoid increasing variance at
the cost of evaluating the probability of sampling the paths with the other technique,which involves an occlusion
test and evaluating the ��� of the surface ���� at the primary path vertex x1. Let’s see how this operates in practice.
First,we use our previously described known techniqueT0 to create a path through the scene. This path starts at a
sensor s which has been sampled with uniform probability. So far, this is exactly the same as you would do when
sampling a path in a stereo path tracer. Once this base path ̄x(s) has been sampled, we fire up our secondary
technique, T1, which takes ̄x(s) and creates a secondary path ̄x(s′), with s′ the other sensor, by replacing vertex
xs,0 with a new vertex xs′,0 on s′. This is done by projecting the position of x1 to s′. Disregarding for now the
jacobian of the projection, the ��� weights for paths ̄x(⋅) sampled by each of the two techniques are expressed as
follows in the case of the balance heuristic:

w0( ̄x(s)) =
p0( ̄x(s))

p0( ̄x(s)) + p1(x̄(s)) =
p1(x̄(s′))

p1( ̄x(s′)) + p0(x̄(s′)) = w1( ̄x(s′)),

(other ��� heuristics are modified similarly) so that, effectively, only two ���s have to be evaluated to compute
the weights for both paths; in simple terms, the ��� weight coincides for both techniques. If we also incorporate
next-event estimation at each vertex,we increase thenumber of ���s that need to be evaluated by two,as described
by Wilkie et al. [2014]. Multiple importance sampling provides a means to avoid increasing variance due to po-
tentially inefficient shifted techniques, that is, in situations where reconnection becomes deficient, the weighted
combination degrades to the efficiency of the base technique. In these situations we prefer higher variance,which
can be addressed by locally increasing sample density, for example by (once again) using an image-space adaptive
sampling engine, rather than suffer potential artifacts resulting from forcing path reconnection.

4.1.3 Higher dimensions

The technique as described so far can be interpreted as a simple and robust way to combine regularly-sampled
paths with explicitly constructed perturbations using shifted techniques, similar to Bekaert et al. [2002]. This is
appealing for other dimensions of the integrand as well. For example, the domains of depth of field and motion
blur effects are often small enough to make reuse of long paths attractive in our quest for improved renderer ef-
ficiency. Conventionally, the number of ��� evaluations needed to compute weights for ��� grows as the square
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Figure 10: Path warping: an initial path is sampled and evaluated at t = t0. The shifted technique yields the path ̄x(t1) =
(x0, x̂1, x̂2, …) at t = t1.

of the number of techniques and it becomes prohibitively expensive to simply raise the dimensionality of the per-
turbations. In the stereo case, we saw from the previous section that, by construction and due to the sampling
correlation, some of the ���s end up matching and the ��� weights coincide. Employing appropriate perturba-
tions, the same holds for an arbitrary number of techniques, yielding a linear instead of quadratic cost for ���
weight computation with respect to the number of perturbations. So let’s try applying this to some distribution
effects.

4.1.4 Motion Blur

Incorporating temporal dependencies into a path tracer is formulated as an additional integration over the time
domain; that is, each sampled path is traced against the geometry and materials for a specific sampled moment in
timeCook [1986]. Though the result looks smoother undermotion blur, a significantly greater number of samples
are needed to explore the enlarged integration domain in order to obtain a comparable variance to the static case.
Even when employing efficient acceleration structures for time-dependent ray-tracing, such as time-interpolated
���s Christensen et al. [2006], Grünschloss et al. [2011] or hyper-trapezoids Hou et al. [2010], there is still a sig-
nificant overhead attributable to node interpolation during traversal, as well as the fact that the tree topology is
commonly only optimized for a fixed time.

Whatwewant is to apply the correlated sampling frameworkdescribed above to exploit the special structure of
the spatio-temporal lightfield: the variationof non-local lighting changes are typically small alongmotion trajecto-
ries,whereas occlusion causes discontinuities along the time axisHachisuka et al. [2008],Lehtinen et al. [2011]. In
particular, analogous to reusing indirect lighting calculations by reconnection in the stereo case,we reuse indirect
sub-paths for a sampled time t0 toN shifted times ti within a time domain ̂T :

• Shift time t to ti such that ti = (t + i
N

̂T) mod ̂T .
• Copy path ̄x(t0) to x̄(ti) and warp the path vertices to time ti.
• Compute the measurement of path x̄(ti) and weight the result using ���.

Moving path vertices to arbitrary times (cf. figure 10) is a natural operation for most path tracing architectures,
where one requirement is the storage of information sufficient to determine the position of a point on a surface at
any moment in time. This will generally be a polygon id,uv coordinates and sampled time. A further requirement
is a warping method that, given this information and arbitrary time, results in the correct position and shading
frame of the point at the given time.

4.1.5 Computing path throughput

In fully dynamic scenes, moving all vertices to the shifted time and evaluating the throughput would defeat the
purpose of the algorithm,because there would be little chance to reuse any secondary subpaths. Because a full re-
evaluation involves occlusionqueries andmaterial evaluations, the computational cost per samplewouldmake the
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technique impractical. However, the strategywehave outlinedpreviously allows us to easily implement schemes of
different degrees of accuracywith consequently different computational overhead. The simplest scheme is to avoid
all material re-evaluations and occlusion tests and use the exitant radiance at vertex x1(t) for time t and weight
the results equally for all i. However, while the effect of self-occlusion is usually quite subtle, accounting for inter-
object visibility is important to avoid leaking light through occluders that are closer to camera. Since occlusion and
motion across the image regionmayprevent someof the techniques fromhaving apositive probability of sampling
the warped vertices, it is crucial to incorporate visibility into the ��� weight.

Figure 11: A scene with furry balls. Top row compares path throughput computation methods for motion blur with varying
degrees of accuracy: Left: no material or occlusion;Middle: occlusion only;Right: full evaluation.

To evaluate the material on the transformed primary vertex at a requested time, the incoming and outgoing
directionsωi andωo can simply be computed after transforming the camera vertex x0 and the secondary vertex x2.
Reevaluating the material for even slightly perturbed directions can have a strong effect on the path throughput
at specular and highly glossy vertices, and we have found that the added overhead is low enough that we never
recommend our users disable this step. This is because the artifacts that arise from avoiding this computation can
be distracting and hard to diagnose, as they don’t generally look flat-out wrong, just slightly“off”. (cf. figure 11).

4.1.6 Adapting to projected velocity

We choose the numberN of shifts applied in the time domain depending on the amount of motion in the scene,
because for low velocities the shifted paths are too close to the original path to amortize the additional cost. We
can easily achieve this using a pre-processing pass that shoots a fixed number of rays into the scene and estimates
the number of pixels covered along the motion trajectory for each hit. Once this global estimate is known, the
number of shifted rotations is chosen proportional to it and used for all paths. A better alternative exists though,
which is to locally adapt this number; this is valid as long as the criterion is the same for all sampling techniques
that are weighted together usingmultiple importance sampling. Thatmeans that we can use a local estimate of the
pixel footprint of the motion trajectory, computed by using the warping functionality. This approach is obviously
advantageous when the amount of motion in a scene is very non-uniform — on static objects for example, the
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Figure 12: A scene with furry balls. Top row compares path throughput computationmethods for depth of field with varying
degrees of accuracy: Left: no material or occlusion;Middle: occlusion only;Right: full evaluation.

number of perturbations reduces to 1. This reduces the overhead of the method in those regions that benefit less
from it.

4.1.7 Depth of Field

As for the case of motion blur, depth of field can be incorporated into a path tracer by adding integration over
the lens area domain: each path is traced for a specific sampled position on the lens. While this adds no further
complexities to the path tracing algorithms, the enlarged integration domain leads to higher variance for areas of
the image that are out of focus. We can apply the correlated sampling framework to this effect as we did for time,
under the expectation that the variation of non-local lighting changes will be small for perturbations across the
lens domain, with occlusion being the dominant effect. Thus, we reuse indirect subpaths as in the motion blur
case. As for stereoscopic rendering, no warping of the primary sampled vertex position is necessary.

The lens shifts can be thought of as connections to secondary sensors, though in this case there is an infinite
number of them thatmust instead be sampled. Therefore, the computation of path throughput and��� weights is
performed similar to that case, except that the lens area ���must also be accounted for.We have implemented the
same throughput evaluation schemes for ��� as we presented for the motion blur case, and found that while oc-
clusion is again an important effect to take into account, the effect of an accuratematerial re-evaluation is generally
small and can be ignored in practice in most cases (see figure 12).

In the case of depth of field effects, the size of the circle of confusionwill changewith the distance of a sampled
scene location to the camera. As in the case of motion blur we locally adapt the numberN of shifts for each path:
in-focus objects devolve to the standard case having a single path,while out-of-focus objects generate a number of
shifts in proportion to how blurry they appear, keeping the overhead of the technique low for cases where it isn’t
effective.
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4.1.8 Simultaneous effects

So far we have derived the application of our framework independently for stereo,motion blur and depth of field
effects. In realistic production cases however,all these effects takeplace simultaneously in a scene,and it is therefore
interesting to investigate the implications of applying our method to all techniques at once. The straightforward
approach would be to apply the techniques independently, for example by first perturbing the sensor dimension
to each of M sensors, then perturbing each of the resulting paths through time N times, and finally perturbing
these paths across the lens a further O times. However, this leads to a combinatorial increase in the overhead
imposed by the techniques, which may render it impractical for, e.g., surfaces that are simultaneously out of focus
and undergoing fast motion. When considering the sensor dimension, this approach seems correct since each
sensor will give rise to an independent image, while for motion blur and depth of field a less expensive approach
seems desirable.

Our experience has shown that a better approach in this case is to combine the adaptively determined number
of shifts to perform formotion blur and depth of field through addition and thenwarp the samples along both the
time and lens domains simultaneously. This has the side effect of increasing the sample rate of both effects when
compared to the naïve approach,while keeping the computational overhead under control.

4.1.9 Summary

We have developed a simple and efficient path sampling framework targeted at exploiting similarity during sam-
pling of stereo anddistribution effects. Akey aspect of our approach is its simplicity andminimal invasivenesswith
respect to integration into a path tracing rendering architecture: it builds upon common ���� sampling, evalu-
ation and ray tracing components which are readily available in a physically based path tracer. Since shifts are
constructed from a single base path,no synchronizationwith other paths is required,which avoids expensive stor-
age of potentially heavy path state and thread synchronization. Apart from higher per-path splatting throughput,
the algorithm does not intrude into the imaging pipeline: important production features such as progressive ren-
dering, the handling of ���s and alpha channels are unaffected. It is very easy to use, as no un-intuitive parameters
have to be exposed to the end user.

For stereoscopic rendering, the proposed method is unbiased. Our experience using this technique atW���
D������ has been that it improves efficiency by an average of 75 percent when compared to rendering the left and
right images independently, and a key side effect of our method is that indirect noise is purposefully replicated at
corresponding locations in the images. This noise can be interpreted as texture, which is an important secondary
depth cue for the human visual system [Hubona et al., 1999] and helps reducing visual strain on the observers.

In the case of motion blur, the gains are less substantial, because while there is almost always motion within
visual effects renders, it is usually very non-uniform,withmany regions of the image remaining almost static. Nev-
ertheless, the fact that the overhead of the technique is negligible precisely in caseswhere there is little to nomotion
allows us to keep it enabled in our default workflow and reap the efficiency benefits for regions of renders that have
significantmotion. Depth-of-field receives some of themost impressive benefits from this technique, andwe have
seen render time reductions of over 70 percent in some cases with extremely out-of-focus features.

We should point out that the development of this systemwithinManuka has beenmade immensely easier by
the path sampling architecture described in the previous section. Because the entire path sampling state is avail-
able,we have been able to implement this system completely as a group of post-sampling techniques, applied only
after the base path has been sampled entirely. The vertex-graph interface allows us to query for any required quan-
tities without having to worry about whether they’ve been computed or not, as evaluation occurs lazily, keeping
efficiency high. New path vertices created by the techniques are simply added to the vertex graph and connected
to the appropriate existing vertices, allowing the renderer to evaluate the shifted paths without any modification.

4.2 Efficient next-event estimation in Manuka

Next-event estimation is one of the classic techniques that help to reduce the variance of pure path tracing. The
main idea is to directly sample a position on an emissive surface in the scene and explicitly connect it to a sampled
path vertex, as opposed to sampling an outgoing direction and continuing the free path sampling. It isn’t hard
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to see how this can be much more efficient in some cases, like for example for emitters that subtend a very small
solid angle as seen from the path vertex, which would be extremely hard to hit by chance. Combining next-event
estimation with traditional ���� sampling can be done using ���, resulting in a robust path sampling algorithm
that is reasonably good in most lighting situations Veach [1997].

Arguably themost important part of a next-event estimation technique is the one that determines the emissive
location that is sampled. The idea is to sample it with probability proportional to its contribution to the specific
path vertex we are trying to connect to, as that will minimize the variance of our estimator. This is not too hard
to do for some simple cases; the incident radiance due to diffuse emitters, for example, can be evaluated in closed
form for polygonal sources; for Lambertian surfaces, the reflected radiance doesn’t depend on the incoming and
outgoing directions other than by the orientation cosine term,which is well behaved. If the number of emitters in
a scene is limited, a possible implementation can even simply sample all of the emitters, guaranteeing low variance
even while giving up some computational efficiency from evaluating the illumination from poorly contributing
sources.

Unfortunately the reality of production rendering for visual effects is almost always more complex. Surfaces
have beautiful but complicated material definitions with interesting glossy appearance, there may be hundreds
or thousands of independent emitters, and the emission itself may be focused in some way to simulate the effect
of spot lights or other real-world fixtures. This makes the implementation of a good, robust next-event estima-
tion technique challenging for any visual effects studio planning to make use of path tracing in production. It is
therefore incredibly exciting to see recent work within this area: Estevez and Kulla [2018] describes the approach
taken by S��� P������� I��������� to solve the challenge of next-event estimation with many light sources;
Vévoda et al. [2018] introduces the use of bayesian regression to increase robustness and reduce noise in many-
light sampling,while Atanasov et al. [2018] improve sampling of distant sources by using a visibility cache.

4.2.1 A history of NEE in Manuka

The scalability of sampling on the number of emitters is of particular importance for us at W��� D������. The
architecture of Manuka relies on tessellating all surfaces down to micropolygon level, which of course includes
light sources. Thismeans that even for trivial scenesweusually endupwithmany thousandsof emissiveprimitives.
In complex situations, this number can easily climb to themillions. Anymethodwe used to implement next-event
estimation inManuka needed to be able to scale accordingly.

Ourfirst implementation started off bybuilding ahierarchyover all emissivemicropolygons in a scene, similar
to a ���,where eachnode in thehierarchy stored a small amount of relevant information aggregatedover all prim-
itives within its subtree: the aggregated light flux and an approximate value for the angle of maximum variation in
normal orientation, as well as the axis-aligned bounding box. A second step then created a global cut through this
hierarchy which stored the 16 highest-level nodes for which the fluxwasmost similar. This was done by starting at
the root node and descending into its children, then further descending into the child node with the highest flux,
continuing until we gathered the 16 nodes we were interested in.

Sampling then proceeded in three distinct steps. First, we evaluated an approximate measure of the incident
radianceL(x, ←) towards thepositionxwe’re sampling from,whichwas derived from the stored light flux amount
multiplied by the solid angle subtended by the node ����. At this point we could also cull away nodes that would
fall completely below the upper hemisphere at x (if it was a surface), as well as nodes whose surface orientation
information would tell us that it would not emit any illumination towards x. The evaluations would be gathered
into a ���,which would then be sampled to obtain the subtree from which to continue sampling. From there,we
would keep evaluating L(x, ←) for the left and right child of each node and sampling one in proportion to those
measures, until we reach a leaf node containing actual emissive geometry, usually in the order of 6 to 8 microp-
olygons. Finally, we would estimate L(x, ←) due to each emissive element and sample again proportional to that
measure. Thismethodworked quite well and,because of its hierarchical nature, allowed ��� sampling inManuka
to scale sub-linearly with the number of emitters. However,we had strong intuitions that we could do better than
this,which led to the first rewrite of our light-hierarchy sampler in early 2015.

Our main observation was that a single, global cut through the hierarchy was probably suboptimal in many
cases, inparticularwhen thedistributionof emitters arounda scenewashighly irregular,and thathaving adynamic
cut could instead improve the sampling efficiency and reduce noise. We modified our algorithm to discard the
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global cut creation and instead the algorithm would create a new, bespoke cut when we drew a sample from the
light hierarchy. This relied on threemethods: the first would take a node in the hierarchy and cull it using the node
clustered normal as well as the surface normal at the sampling position x, to avoid expending any processing on
nodes that would provably not contribute any illumination; the second method would quickly gauge whether a
given nodewas suitable for evaluating directly, and the thirdwould estimateL(x, ←) due to a node towards x. The
cut creation algorithm worked in a recursive fashion: starting from the hierarchy root node, we would first try to
cull the children nodes. Nodes not thus culled would be tested for evaluation suitability; if this test was positive,
then the node became part of the cut, otherwise we would descend into its children and repeat. Once descent
terminated, such that all tested nodes were either culled or became part of the cut,we evaluatedL(x, ←) for all cut
nodes and built a sampling ��� using those evaluations. This ��� would be sampled as described in the previous
paragraph, and the rest of the sampling algorithm remained unchanged.

A second important observationwas that by considering all emissivemicropolygons as a single“soup”wewere
discarding too much information. Considering instead that it’s a collection of fixtures, each of which contains one
ormore emissive primitives,would allow us to improve both how the node hierarchy is built and to use more spe-
cific and accurate methods to estimate L(x, ←) from any given node; for example, knowing that a node contains
a spherical emitter tells us immediately that at least half of its aggregate flux can’t reach any given location in a
scene, and it also allows us to bound it more accurately than by using an ����.We’ll discuss later howwe estimate
L(x, ←) for different types of fixtures later. This observation also gave rise to the current way in which we build
the light hierarchy,which we’ll go into detail further on.We have continued to refine and improve various aspects
of our light hierarchy through the years (and there remainmany new ideas for improving it further). Now let’s dive
in to some practical details.

4.2.2 Building a light hierarchy

The first step towards sampling a light hierarchy is of course to build it. As detailed previously, Manuka’s light
hierarchy in its current incarnation is a hierarchy of hierarchies, with bottom-level trees built over fixture collec-
tions of micropolygons, and the top level tree being built over them. Apart from the benefits outlined above with
respect to sampling efficiencies, this also allows us to support instanced fixtures through the use of intermediate
reference nodes. We would be remiss not to thank and acknowledge the work of our colleague Shijun Haw, who
has been the main developer of our instancing system and who spent countless days making sure instanced lights
work correctly within our light hierarchy implementation.

First some definitions. Let pi be the i-th emissive micropolygon and f represent a set {p0, p1, … , pk} that we
have so far referred to as a fixture. Swill be the set {f0, f1, … , fl} of all fixtures in the scene.

∀f ∈ S, we first go through all pi ∈ f and gather some information for each; we initialize its material and
evaluate the radiant exitanceM(pi), converting it to fluxΦ(pi)whichwe can then aggregate across primitives.We
also evaluate and cache the emissivematerial lobe’s exponent factor,which is used by artists to focus light emission
and corresponds to a Phong lobe’s exponent parameter, as well as the primitive’s geometric normal ̄n(pi) and its
axis-aligned bounding boxB. For geometric quad lights,we also build and store an ortho-normal basis that serves
to orient the space in which the hierarchy will be built.

Once this step is complete,we build the hierarchy for f using a bespoke ���-inspired binned top-down recur-
sive builder. We spatially partition the primitives into 32 bins across the three cardinal axes, except that for quad
area lights we do this in only two dimensions in the fixtures’ tangent space, with the tangent and bi-tangent ori-
ented according to the principal axes of f. Constraining ourselves to a single fixture for simplicity of exposition,we
let B(f) be the axis-aligned bounding box for the fixture and say that B(f)x = [xmin, xmax] describes its spatial
extents along the x axis.We also define Ex ∶= xmax − xmin to be its range.We can then define that

bx,j ∶= [xmin + j
Ex
32

, xmin + (j + 1)
Ex
32

]

describes the j-th bin along the x axis. Analogous definitions hold for the other axes.We also define a function that
tests whether a primitive belongs to a bin:

Bin(p, b) ∶=
⎧{
⎨{⎩

1 if p ∈ b
0 otherwise (162)
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For each bin,we compute the aggregate flux

Φ(b) =
k

∑
i=0

Bin(pi, b)Φ(pi) (163)

and average geometric normal

̄n(b) = normalize(
k

∑
i=0

Bin(pi, b)n̄(pi)) (164)

For the case of arbitrary geometric fixtures we have a second step that cycles through the primitives onemore time
in order to compute the cosine of themaximumdeviation for any primitives’normal to the average one for the bin

c(b) = min
∀p∈b

( ̄n(p) ⋅ n̄(b)) (165)

We must then select the partitioning point. Our initial implementation did this using only the aggregated bin
flux values,which resulted in a nicely balanced tree from that point of view,butwehave found thatwe candobetter
by taking a few more things into account. Let l be a possible partitioning bin, where 0 < l < 32, and we say that
the left side then corresponds to all primitives that belong to bins [0… l) and the right side to those belonging in
bins [l … 32). First we compute the ratio of flux in the left and right side to the total flux being considered

fluxRatioL =
∑l−1

j=0Φ(bj)
Φ(f)

fluxRatioR =
∑31

j=l Φ(bj)
Φ(f) (166)

where we’ve abused our notation a bit and use Φ(f) to denote the aggregate flux over all primitives in f. We also
compute two penalty factors, one that depends on the maximum normal deviation from the average normal, as
well as a measure of the anisotropy of the bounds. For the normal deviation we have:

Penaltyn̄,L = 1 + 3√1 − ( min
j=0→l−1

c(bj))2

Penalty ̄n,R = 1 + 3√1 − ( min
j=l→31

c(bj))2 (167)

while the anisotropy penalty is simply the ratio between the maximum and minimum extents of the bounds for
each side:

PenaltyA,L =
max(Ex,L,max(Ey,L,Ez,L))
min(Ex,L,min(Ey,L,Ez,L))

PenaltyA,R =
max(Ex,R,max(Ey,R,Ez,R))
min(Ex,R,min(Ey,R,Ez,R)) (168)

where we’ve again abused our notation a bit and denote by Ex,L the extents along the x axis of the union of the
bounds for all bins belonging to the left side, likewise for the other axes and for the right side.We then evaluate the
“cost”of the left and right sides and sum them up:

CostL = fluxRatioL × Penaltyn,L × PenaltyA,L log4(
l−1
∑
j=0

k
∑
i=0

Bin(pi, bj))

CostR = fluxRatioR × Penaltyn,R × PenaltyA,R log4(
31
∑
j=l

k
∑
i=0

Bin(pi, bj)) (169)

Cost(l) = CostL + CostR

SIGGRAPH 2019 Course Notes: Path tracing in Production — Part 1 Page 73 / 105



P��� ������� �� P���������

We include the base-4 log of the number of primitives within each side, as that roughly translates into the cost of
later traversing down that subtree. This causes the builder to prefer building shallower subtrees when appropriate,
which improves sampling performance. We choose the splitting axis and bin that minimizes the overall traversal
cost as defined above, and partition the primitives accordingly.

We have thus described the first step of our fixture hierarchy builder. The builder then proceeds recursively,
executing the same procedure on the left and right sub-sets of primitives, until 8 or fewer primitives remain in
the working set. At that point, a leaf node is created, which stores references to each primitive it includes. Leafs
are aggregated in sets of 4 as the recursion unwinds (that is, fixture-level hierarchies have a branching factor of 4),
creating inner nodeswhich contain references to their children, the aggregate bounds,and some extra information
that is used during traversal to estimate the incident radiance L(x, ←) at a scene position due to that node

• directionalFlux, which is a 6-dimensional vector containing the total flux towards positive and negative x,
y, and z directions for non-planar emitters.

• flux, which is the total flux towards all directions.
• n̄, the average normal within the node.
• threshold, the sine of the maximum deviation from n̄within the node.
• exponent, the flux-weighted focusing exponent for the node.
• minExponent, the minimum focusing exponent for any primitive within the node.
• maxExponent, the maximum focusing exponent for any primitive within the node.
• cullCosAngle, the cosine of the aperture half-angle for a cone used during culling.

Of these quantities, cullCosAngle deserves some further explanation. During traversal, being able to cull nodes
that don’t effect illuminationona sampling location is important to improve efficiency. In the caseof focused lights,
we can do this by building a cone that bounds the node’s illumination; though a Phong lobe emits illumination
towards its entire upper hemisphere, for evenmild values of the exponent the exitant radiance quickly falls towards
zero for off-axis directions. We compute the cosine of the angle within which an amount m of the emission is
contained as follows

cullCosAngle = (1 − m)
2

2+exponent (170)

and use that to create the bounding cone for culling. We use 99.99% form. While this means that we sometimes
cull nodes that actually emit a negligible amount of energy towards a sampling location, this is robustly handled
by ��� between next-event estimation and ���� direction sampling.

Once all fixture-level hierarchies have been built, any instanced fixtures have their reference nodes created,
which include the instance’s transform as well as scaled data for directionalFlux and flux. Note that scaling these
quantities only works well if the scaling transformation is uniform;we warn users if they use non-uniform scaling
transforms that the sampling quality will deteriorate.

Finally, the top-level hierarchy is built. Thisproceeds similarly to thefixture-level buildwithone importantdif-
ference; our top-level hierarchy has an arbitrary branching factor,which we use to place important fixtures higher
up in the tree to maximize traversal and sampling performance. The first set of important fixtures for these pur-
poses are those whose flux is more than either 10% or 1

N , whichever is higher, of the total flux of all fixtures being
considered (with N the number of fixtures). It’s easy to see that there can’t be more than min(N − 1, 9) fixtures
with such high flux, and those are added immediately as children of the current node. The second set includes
all fixtures whose focusing exponent is higher than 50. These are aggregated together and placed into their own
sub-tree.

4.2.3 Sampling the light hierarchy

With our freshly-built light hierarchy in hand,we can nowproceed to draw samples from it. Theprocedure for this
was quickly sketched out in sec. 4.2.1 and we shall further describe it now.

The first step is to build the initial sampling ���,which consists of the estimated values for L(x, ←), towards
the sampling position x, of a number of nodes within the hierarchy which collectively define a cut through the
hierarchy. Starting at the root node,we traverse into all its children, and for each perform two operations:
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Culling This operation discards nodes from which we can ascertain that no illumination will be received at x.
First we test to see if x is contained within the bounds of the node, in which case we never discard it. If we have a
culling normal for x (there may not be one if, for instance, the surface at which we’re doing the sampling has both
reflective and transmissive material lobes, or if x is on a volume), then we test all points on the node’s bounds and
discard it if they all lie behind the half-space defined by x and the culling normal. Otherwise, we check to see if
we have a valid orientation normal for the node (again, this could be invalid if the normals within the node span
the entire sphere, as in the case of spherical emitter fixtures); if so,we use that normal and the previously described
cullCosAngle value to discard the node if x can’t receive illumination from this node. For quad area lights culling
is also simplified, as we can quickly test whether x lies in the half-space towards which the fixture illuminates and
discard the node if it doesn’t.

Suitability and incident radiance evaluation Thisoperation tells uswhether a givennode is suitable
for evaluation of L(x, ←) and, if so, also provides it. Suitability is determined mainly geometrically and should be
thought of as an approximate “score” of how accurate we expect the estimate of Lx, ←) to be. As in the case of
culling, if x is contained within the bounds of the node then we say it’s unsuitable, as it results in fairly inaccurate
evaluation, except that if the node is a leaf node itmust always be evaluated (as there are no children left to descend
into), in which case they get assigned a score of ∞. If x is not contained within the bounds, then we compute the
solid angle subtended by the node as seen from x and compute a suitability score:

suitabilityScore =
0.75

solidAngle(node) (171)

the formula for which we have determined empirically. This means nodes subtending a solid angle of more than
0.75sr receive scores lower than one,while smaller ones receive a higher score. L(x, ←) is given from the product
of the node’s flux, its subtended solid angle and the receiver’s cosine term if there is a normal provided for it.With
⃗d = |(center(B) − x)| the normalized direction vector from x towards the bound’s center we have:

L(x, ←) = flux × solidAngle(node) × n̄(x) ⋅ ⃗d (172)

where ̄n(x) is the normal at x, not to be confused with ̄n, the node’s average normal. If no normal is provided, then
this factor is omitted. If the node includes directionalFlux information (as mentioned previously, we don’t store
this for planar emitters), then we can obtain a better evaluation,

L(x, ←) = − ⃗d ⋅ directionalFlux × solidAngle(node) × n̄(x) ⋅ ⃗d (173)

whereweabusedotproductnotation forbrevity andnote thatwecreate a3-dimensional vector fromthedirectionalFlux
that only keeps components that match the sign of components of − ⃗d. For cases where a node also has a focusing
exponent larger than 1, we improve the accuracy of the estimate by dividing the flux or directionalFlux by the
angularNorm

angularNorm =
2π

exponent + 2

and also taking into account the exponent in the cosine term for the orientation of the node (note that we have
omitted this cosine term above as it is implicitly accounted for an exponent of 1 in the computation of solid angle):

L(x, ←) =
flux

angularNorm
× solidAngle(node) × n̄(x) ⋅ ⃗d × (n̄ ⋅ − ⃗d)exponent−1 (174)

with the same modification done for the case where we instead use the directionalFlux.
The suitabilityScore andL(x, ←) for evaluatednodes are stored in an array,alongwith a reference to theperti-

nentnode.At this time,we cycle throughall elements in the array and, if there are any forwhich the suitabilityScore
is zero,we descend into their children and repeat the previous operations,proceeding in thismanner until we only
have elements with non-zero suitability scores or we have accumulated more than a maximum allowed number
of nodes,which is set by the user and defaults to 128. If we have not yet reached this maximum number of nodes,
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then we proceed with a second refinement step that proceed as follows. For a number k of elements in the array,
we accumulate the sum of the L(x, ←) values

L(x, ←)sum =
k

∑
i=0

L(x, ←)i

then compute for each element i a descentScore as follows

descentScorei = suitabilityScorei ×
L(x, ←)sum
4L(x, ←)i

and descend into the node whose descentScore is highest if it’s greater than 1. This procedure continues until we
reach themaximumnumberof nodes allowedorwehavenonodes forwhich thedescentScore is high enough,and
has the effect of descending deeper into subtrees of the hierarchy that are expected to provide the most important
illumination. As mentioned previously, leaf nodes have a suitabilityScore of ∞; these nodes are skipped during
descentScore evaluation.

We now have an array of nodes we consider the cut through the hierarchy and appropriate evaluations of
L(x, ←) for them.We build the sampling ��� array from the array:

CDF0 =
L(x, ←)0
L(x, ←)sum

CDFi = CDFi−1 +
L(x, ←)i

L(x, ←)sum
(175)

and use that to select a node from which to continue the sampling procedure. This is quite simple. We descend
into all children of the node and run our culling routine on them, evaluating L(x, ←) using eqn. (174) for nodes
that are not culled, then build a ��� using those values and sample a child to continue our descent. This continues
untilwe reach a leaf node. Samplingwithin the leaf node follows the samegeneral approach,except that culling and
evaluation of L(x, ←) is done for the primitives instead of further nodes. Once we have selected a primitive, we
sample a position within it with uniform distribution, and sampling is complete. We return the sampled position
to the renderer and we’re done.

4.2.4 Occlusion and radiance biasing

There are a number of sources of noise resulting from next-event estimation, of which one of the most significant
is the sampling algorithm’s obliviousness to the existence of occlusions within a scene — that is, when one of our
carefully sampled light positions actually contributes no illumination at all at x because there’s another piece of
geometrybetween them. In somecases the effect of this canbequitepronounced;becausewe sample inproportion
to the incident radiance discarding occlusion effects, bright light sources can overwhelm the sampler and cause
almost all samples to be drawn from within them. When there’s an occluding piece of geometry between such a
bright source and x, but a secondary dimmer emitter actually reaches x, the result is high variance as the effective
incident radiance at x does not match the quantities we are using for sampling.

A second source of noise, that can be quite severe for hierarchical sampling schemes such as the one we use,
is when our estimates for L(x, ←) for a given node end up being inaccurate, which is not too hard when we see
that some nodes will invariably end up being aggregations of very dissimilar emitters, some of which may be fo-
cused, some not, and being oriented differently. If our estimates of L(x, ←) were correct, we’d generally expect
that L(x, ←) for a given node would correspond roughly to the sum of the estimates of L(x, ←) for its children.
In practice we have found that this is sometimes not the case. The end result again is a noisy estimator, as the sam-
pled importance doesn’t correspond to the actual importance we would like to sample.

So how can we deal with this problem? For a long time we didn’t, as our trusty adaptive sampler came to the
rescue again and allowed artists to keep receiving nicely converged images, but we knew we could do better and
improve the overall efficiency of the renderer.

Our solution is touse an image-spaceocclusion and radiance biasing cache that biases theL(x, ←) evaluations
such that they are a closer match to the effective incident radiance, similar to Donikian et al. [2006]. The first step
towards using this is to define a structure to hold the data we want:
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struct BiasCache
{
struct BiasCacheElt
{
float radianceBias;
unsigned radianceBiasCount;

float occlusionBias;
unsigned occlusionBiasCount;

};

BiasCacheElt* elts;
unsigned xCount;
unsigned yCount;

};

and add a pointer to it to the node structure. This pointer can be null if biasing is not enabled, or it can point to
a per-node BiasCache. Each BiasCache stores and array of xCount × yCount BiasCache elements. We allocate a
fixed 256MB of memory to this technique. When the light-hierarchy build phase is completed, we check to see
if biasing is enabled and, if so, traverse through the hierarchy top-down in a breadth-first manner, allocating the
BiasCache elements such that nodes higher in the hierarchy have a higher image-space resolution (in our case, the
highest resolution is 64 × 32 elements) and progressively reducing the resolution as we move down the hierarchy
until we either use up our allotted memory or all nodes have had their BiasCache’s allocated. BiasCache elements
are initialized so all their members are zero.

The BiasCache information is both used and updated during our sampling steps outlined previously, and we
make no attempt at cross-thread synchronization to avoid its expense, but have found this does not result in ob-
jectionable artifacts in practice.

The way it operates is as follows. When estimating L(x, ←) for a given node, its BiasCache is queried for the
relevant BiasCacheElt. This is done by projecting the sampling location x to the sensor that originated the path in
which it exists and using the ��� coordinates of this projection as an index into the BiasCacheElt array such that

index = ⌊NDC(x)y × yCount⌋ × xCount + ⌊NDC(x)x × xCount⌋

We then query the stored quantities:

radianceBias =
⎧{
⎨{⎩

radianceBias if radianceBiasCount > 32
1 otherwise

occlusionBias =
⎧{
⎨{⎩

occlusionBias if occlusionBiasCount > 32
1 otherwise

and define a new quantity

L(x, ←)biased = L(x, ←) × radianceBias × occlusionBias

that is subsequently used instead of L(x, ←) for all sampling decisions. We avoid using the biasing information
until we have done at least 32 updates for a given cache record to minimize sampling artifacts. But what is it that
we store for these quantities?

In the case of the radianceBias, we store the average ratio between the sum of the estimates of L(x, ←) of a
node’s children and the estimatedL(x, ←) for thenode itself. If wehave thatN is a node andwe say that child(N , i)
refers its i-th child and that L(x, ← N) is the incident radiance due to illumination fromN then

radianceBias(N) =
∑k

i=0 L(x, ← child(N , i))
L(x, ← N) (176)
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In essence thismeans that we believe the estimates we get for a node’s children aremore accurate than the estimate
we get for the node, which makes sense intuitively as a node’s children aggregate fewer emissive primitives and
thus there is less uncertainty when estimating L(x, ←) for them. Once we have this biasing factor we update the
cache; the stored radianceBias value is updated using a running-mean operation and the radianceBiasCount is
incremented by 1. Note that we only compute bias factors for nodes we actually traverse during sampling, which
reduces the overhead of the technique but implies the cache is updated relatively slowly.

In the case of theocclusionBias,we store the average transmittancebetweenx andhierarchynodes. This quan-
tity is computed by the renderer after we have returned a sampled location, so we have a secondary method that is
called on the light hierarchy to update these values. During sampling traversal we build a list of indices that records
the pathwe took through the hierarchy andupdate the occlusionBias values similarly as for the radianceBias case.

The BiasCache has been used in generating production renders for the past 2 years resulting in significant
efficiency improvements, but we noticed there were some scenes where noise from next-event estimation seemed
to increasewhen the feature was enabled. Investigating the cause of this issue we found that in some cases there is
very high variance in the L(x, ←) estimates for some locations in the scene.When they share BiasCache records,
this can result in a sharp increase in variance of the estimator. If we additionally track and store theminimum and
maximum values for L(x, ←) for a given cache record,we can deal with this robustly:

radianceBias =
⎧{
⎨{⎩

radianceBias if radianceBiasCount > 32 and maxRadianceBias
minRadianceBias < 6

1 otherwise
(177)

One major limitation of the BiasCache as we have implemented it is that it only works well for primary ver-
tices, that is, the first vertex after the sensor within a path. This is not too much of a problem in practice, because
variance at the primary path vertex is usually the most noticeable, but in some cases it does reduce sampling effi-
ciency severely. A straight forward solution to this is to store the cache records in world- or scene-space, and we
are investigating approaches to do that.

4.2.5 Product sampling

Another significant source of noise in next-event estimation arises when the material at the sampling position is
far from matching the assumptions of our sampling routine — that is, it’s not a Lambertian reflector. For cases
with low material roughness this isn’t much of a problem, as forward path tracing is usually efficient in that case,
and ��� combination of the techniques is fairly optimal. Even then, for surfaces illuminated with very small light
sources, there can be significant sampling noise. In cases where the material is in a middle regime between diffuse
and specular, neither next-event estimation nor ���� direction sampling are efficient, requiring many samples to
resolve the noise.

A relatively simple solution to this problem is to incorporatematerial information intoour samplingdecisions,
such that we no longer sample in proportion to the incident radiance L(x, ←) but instead sample in proportion
to the reflected radiance

L(x,ωi) = L(x,ωo) × f (x,ωi,ωo) (178)

where L(x,ωo) = L(x, ←) with ωo the direction towards the light fixture,ωi the direction from x towards the
previous path vertex, and f (x,ωi,ωo) the material response at x.

The main problem with this approach is the expense of evaluating the material,which needs to be done every
time we need an estimate of L(x,ωi), and which may have many lobes. In production cases atW��� D������, it’s
usual for materials to have tens of ���� lobes, layered together. So how can we do this?

As we start the process of sampling the light-hierarchy, we decompose the material at x and inspect the indi-
vidual ���� lobes. We discard any fully specular lobes immediately, as these can have no contribution for next-
event estimation samples. We query the roughness of remaining lobes and remap the value using a ����-specific
scale that causes a roughness value of 1 to correspond roughly to a lambertian surface while a value of 0 would
be perfectly specular. We have found that lobes with roughness higher than 0.9 are usually well represented by a
lambertian ����, so we query their albedo and layering weight and store the sum of their product, across all such
rough lobes, to represent the aggregate diffuse material response.
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For the remaining lobes,we evaluate each ���� towards themirror directionwith respect to the lobe’s shading
normal andωi,which results in the highest possible evaluation for each lobe.We then compare the product of this
value and the lobe’s layer weight to the aggregate diffuse response we computed previously; if it’s larger than 1

2 of
the diffuse response then we say the lobe is important and store a pointer to it. If not,we query its albedo and add
it to the aggregate diffuse response. We have found that this generally leaves us with only one or two ���� lobes
that will need to be evaluated during the light-hierarchy traversal, which is much more reasonable. For nodes we
consider important, we also store the layer weight, mirror reflection direction and the evaluation of the ���� we
just computed.

We shouldnote that an important aspect inmaking evaluationof these ���� lobes practicalwithin this setting
has been the implementation of highly-optimized, vectorized ���� evaluation functions that allow us to perform
the evaluation for several outgoing directions at once.Wehave implemented these functions for the ����s that are
most often used in production atW��� D������; some ����s remain that have no such implementations but are
hardly ever used. When we encounter a material that has “important” lobes that use a ���� for which we haven’t
implemented the optimized evaluation method we locally disable the product sampling feature.

Armedwith thedeconstructedmaterial informationwearenowready toperformthe samplingoperation. The
sampling algorithmpresented previously remainsmostly unaffected, except that we replace theL(x, ←) estimates
by L(x,ωi) as in eqn. (178), though we don’t directly evaluate the material but instead compute an approximation
of the material evaluation using the information we have stored for it.

This is done in a couple of steps. For a given node N we first gather a number of points on the surface of its
bounds — the four corners for quad area lights and the eight corners for other nodes. To these we add one more
point located at the center of the bounds. If we let P be the set of all points so chosen for a node,we then have

f (x,ωi,ωo) ≈
1
|P| ∑

∀p∈P

⎛⎜⎜
⎝
diffuseResponse + ∑

∀bsdf
bsdf(x,ωi,ωp) × layerWeight(bsdf )⎞⎟⎟

⎠

where we have again abused notation slightly to say that ωp is the direction from x towards a point p. Note that
we had previously also stored the “important” ���� lobe evaluations in the mirror direction. We use that here by
creating a ray from x towards that direction and testing the bounds of N for intersection with that ray. If the test
is positive, then we also add that evaluation to f (x,ωi,ωo). We have noticed that this is important as it biases the
sampling more strongly towards emission coming from the direction towards which the material has the highest
response, further reducing variance.

Another thingwenoticedwas that, evenwith the use of the optimized evaluation procedureswe implemented
for the ����s, evaluating the material response at every step where L(x,ωi) is estimated results in too high of an
overhead. To alleviate this, we further keep track of the maximum and minimum ���� evaluations towards all
points within a given node.When the ratio of these quantities falls below a certain threshold for a node we choose
to descend into,we locally disable the product sampling feature.We have found a threshold of 5 works well.

4.2.6 Summary

We have developed through this section a complete and functional system for generating high-quality next-event
estimation samples for scenes consisting of many light sources while maintaining high efficiency.

While the sampling method described in section 4.2.3 gives good results, augmenting it with the extensions
described in sections 4.2.4 and 4.2.5 delivers, in some cases, orders of magnitude higher overall efficiency, and we
believe there are still many improvements possible. We are particularly interested in drawing inspiration from
Vévoda et al. [2018] and modifying the biasing cache to be stored spatially rather than in image space, as well as
using the bayesian framework to improve the robustness of our algorithm.

We shouldnote that,whilewehavedescribedhowwedonext-event estimation sampling starting fromsurface
path vertices,weuse the same lighthierarchy todrawsamples forpath vertices sampledwithinparticipatingmedia.
Section 5.2.3 describes how this changes the quantities that need to be estimated for light hierarchy nodes.
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5 Volumes
C���� K����,Sony Pictures Imageworks

Figure 13: Stills from Spider-Man: Far FromHome. ©Columbia Pictures, 2019, featuring heavy use of volumetric elements.

Volumes are essential to describing real world scenes as they encode what happens to rays as they travel between
surfaces. This includes interaction with smoke and fire but also simpler homogeneous media like air or water that
can surround the scene.Volumetric properties are also used to describe the interaction with translucent materials
like marble or skin where one cannot assume that light enters and exits from the same point on the surface. In
addition to the complexity of sorting out the light transport through volumes,filmproduction renderingmust rely
on large datasets tomatch the scope of the dramatic sequences they portray. The scene depicted in figure 13 relied
on several hundred distinct volume elements, totalling tens to hundreds of gigabytes on disk, per frame. These
volumes must be illuminated by complex light sources (often represented as either detailed meshes or volumes
themselves) that lie inside the volume, in addition to the environment lighting required for integration with the
surrounding scene.

Modern path tracers must treat volumes as an integral part of the scene description so that all shadowing and
inter-reflections between surfaces and volumes are properly accounted for. This poses a number of challenges for
renderer authors which we hope to cover in this section.

Section 1.1 presented the formalism behind the radiative transfer equation (���) and some of the key physi-
cal effects it models. Our goal in this section is to focus less on the mathematical formalism of the ��� and more
of the algorithmic and software design considerations one has to consider when integrating volumes into a ren-
derer.While the textwill be discussingmany of the implementation decisionsmade in S��� I���������’Arnold
renderer [Kulla et al., 2018],we will also try to contrast our design decisions with that of other production render-
ers such as Manuka [Fascione et al., 2018a], Hyperion [Burley et al., 2018], and others [Christensen et al., 2018,
Fascione et al., 2018b,Georgiev et al., 2018] where appropriate.

An excellent introduction to volume rendering (and path tracing methods in general) can be found in the
���� textbook [Pharr et al., 2016]12. For a more in-depth survey specific to Monte Carlo sampling methods for
light transport in volumes, we recommend the following reports: Novák et al. [2018a], Novák et al. [2018b]. Fi-
nally,Eugene d’Eonhas an excellent book [d’Eon,2016] onmultiple scattering that collects references fromoutside
computer graphics.

5.1 Intersecting Rays with Volumes

Surface intersections are typically represented with a primitive ID together with a parametric distance t along the
ray that indicates where the intersection occurred. On the other hand, for volumes there is no such singular point.
Instead one usually needs to know the interval of distances where a volume covers the ray. The natural representa-
tion is simply a pair of values: [t0, t1]. Unlike with surfaces, it is possible formultiple such intervals to occur along
a ray, thus requiring the storage of a list of such records.

Very simple convex primitives like spheres or cubes naturally bound a region of space. Their intersection tests

12Now freely available in its entirety online: http://www.pbr-book.org/!
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Figure 14: Coarsely modelling the atmosphere as a volume with blue scattering density is sufficient to reproduce the main
features of daytime and sunset illumination. A single distant light provides all illumination in this scene, with all fill light
coming from multiple scattering inside a planet-sized sphere volume.

already produces a pair of distances so it is very easy to adapt the code from surface intersection to volume inter-
section.

The most typical volume primitive used in production rendering is likely the voxel grid. The details of how
such (sparse) grids are stored is detailed in Section5.3.1. For thepurpose of intersection, themain goal is to identify
which groups of voxels the ray traverses, and quickly discarding rays that miss the volume entirely. A simple ���
traversal of the coarse level of the grid is usually sufficient for this purpose. We discuss perspective warped grids
(frustum buffers) in Section 5.3.1 as they require a bit more care to quickly determine overlap bounds.

Meshes may also be rendered as volumes by simply collecting all hits along the ray and pairing them up. If an
even number of hits is found, the ray must have started outside the model, while an odd number of hits indicates
the ray started inside the mesh13. In the latter case the first hit is paired with the origin: [0, t0], before pairing all
remaining pairs: [ti, ti+1]. In this context,no surface hits are generated as the ray enters the volume. Counting hits
in this manner will automatically figure out the inside/outside status of a volume for every ray (which avoids the
stack tracking discussed in Section 5.1.3) but does require tracing every ray all the way through the mesh which
can be costly if the model has a wrinkled boundary or complex topology.

Finally, it is common for rendering software to provide a global atmosphere that encompasses the entire scene
(with infinite extents). Such a volume is inherently non-physical and can be problematic to combine with distant
light sources. Either the light will get fully attenuated due to the large distance, or if attenuation is ignored the ray
will collect an infinite amount of in-scattered light. As such, these types of convenient features are falling out of use
in exchange for simply modelling atmosphere containers around the scene. For outdoor landscapes, modelling
the sky as a planet sized sphere with a proper density distribution of air particles [Kutz,2013] will produce realistic
results and allow seamless transition to planet scale rendering [Fascione et al., 2018b, Section 8.2]. Even without
precise spectral modelling, artistically defined exponential densities of blue scattering particles can also produce
pleasing results (see figure 14).

5.1.1 Dealing with Overlap

When a ray returns from the intersection routines, it will typically contain a list of several, potentially overlapping
intervals. To enable efficient front toback raymarching, it isworthdividing this list intodisjoint segments as shown
infigure15.As thenumberof segmentsoverlappinganygiven ray is typicallynot too large,abasicO(n2) algorithm
is usually preferable to more sophisticated alternatives that have lower asymptotic cost, but higher overhead.

It is alsoworthpointingout that this sorting step is only required if a front to back traversal is important.When
estimating the throughput between two points (along shadow rays for instance) only the transmittance integral
needs to be estimated which can be done on each volume independently. Therefore the overlapping segments can
be marched independently without sorting them first. More details of transmittance estimation are discussed in
Section 5.2.

13This presumes the mesh describes a closed model and that no intersections are missed for numerical reasons. This requirement for
well-formed data can be a hindrance, particularly with geometry generated procedurally or through simulations. However because this
method resolves overlap from scratch for every ray, any misclassification usually do not“spread”beyond a single path segment.
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Figure 15: A list of unsorted overlapping ray intervals representing volume hits (top) should be split into sorted disjoint
segments (bottom) so ray marching can proceed from front to back.

5.1.2 Aggregate Volumes

Analternative design to intersecting volumes by intervals and having to sort the hits into overlapping segments for
every ray is to build an acceleration structure upfront over the entire scene that partitions space into regions inside
of which the list of volume primitive is known. This approach [Fong et al., 2017, Section 4.4.2] has a number of
advantages as it allows the raytracer to rely on non-overlapping bounds along the ray and provides a convenient
place to store density bounds (discussed in Section 5.2.2). Instead of implementing a ray intersection function
that returns an interval, one must implement a function that detects if a given bounding box overlaps the given
primitive. Thenakd-tree (oroctree) canbeproduced thatpartitions thevolumeprimitives into smaller and smaller
cells until some termination criterion is met. In contrast, the previously mentioned approach can utilize a regular
bounding volume hierarchy and terminates on the granularity of a single top-level object.

5.1.3 Boundary Driven Volumes

In the previous sections,we described handling of volumeswhose densities should simply be summedwhen over-
lapping. This is thedesiredbehaviorwhenmixingclouds,atmosphere andsmokeandother such standalonemedia.
However,when describing volumes on the interior of surfaces, exclusive overlap ismore desirable. In other words,
only a single set of volume properties should be active at a time.

This is commonly accomplishedbyusing a variant of constructive solid geometry (���)basedonuser-defined
priorities [Schmidt and Budge, 2002] (see figure 16). The idea is to let artists slightly overlap meshes and leave the
renderer in charge of clipping away the volumetric regions where two (or more) objects co-exist. This greatly sim-
plifies themodelling problem,particularly for situations involving liquids inside glass. A short stack ismaintained
on every ray which defines what should happen when rays are transmitted to the other side of a mesh boundary.
A small set of rules that take the incoming ray’s stack together with the currently hit object’s properties can be run
to update the stack in place as well as accept or reject the current shading point. In case the hit is rejected, the ray is
simply continue forwardswith anupdated stack.Whenahit is accepted, the renderer can consult the stack to know
themediumproperties on each side of the boundary. Thismeans the proper index of refraction can be computed,
and the right volume properties can be applied to reflected and transmitted rays as needed.

The use of user-configured priorities is important for very precise control of which medium which win over
which (see figure 17). Despite this, it is always possible to craft degenerate input that will be ambiguous depending
on the viewing direction if the meshes do not represent closed volumes. If performance and ease of use are more
critical than low level control, it is possible to forgo object priorities in favor of adopting a“first object wins”policy
that will still render many common cases accurately [Haines andAkenine-Möller, 2019, Chapter 11]. In the im-
plementation of our renderer [Kulla et al., 2018],we have augmented the priority based ruleswith a few extra cases
not discussed in the original paper [Schmidt and Budge, 2002]:
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Figure 16: Medium tracking allows a geometric model mode up of slightly overlapping meshes to turn into a proper volu-
metric partition of the scene with well defined interfaces between them.

(a) Left > Right (b) Left < Right (c) Left = Right (d) Left & Right = Off

Figure 17: Priorities give artists flexibility over which volume “wins” in overlapping regions, while the default “Off” mode
improves performance when overlap handling is not critical.

• When two objects have non-zero equal priorities,we discard all internal surfaces. This produces a volumet-
ric ”union”of objects modelled as separate pieces (figure 17(c))

• Priority level 0 (ourdefault case) corresponds to always accepting the surfacehit,which is cheaper to execute
than consulting the stack and therefore enables early exits in the code as it overrides the priority of all other
values (figure 17(d)).

Tomake the user interfacemore intuitive for artists,we present the integer priority as a simple drop downwith
aliased names like Off = 0,High = 100,Normal = 200, or Low = 300. We specifically chose those values to
give ourselves room to fine tune priorities in the event of a complex scenario involving many nested objects. To
date, it has never been necessary to use this workaround, and the set of preset values has been sufficient to render
all cases we have encountered. The remapping from integers to strings has the other benefit of hiding from the
artist the inverted order of priority integers (smaller numbers are higher priority) which are convenient from an
implementation standpoint but can quickly lead to confusion in conversation.

One drawback of the stack-based exclusive volume overlap resolution is that it assumes the presence of a valid
stack for every ray. This leave open the question of how to initialize such a stack for camera rays (or light rays in the
case of bidirectionalmethods). Again, a heuristicmust be employed here, as theremay not be a single answer valid
for all rays.We solve for the starting medium by firing a single ray from the camera origin upwards and searching
for all enclosing hits. This is motivated by the main use case which is to automatically detect a camera having
crossed a water surface (usually modelled without ”sides”). In corner cases where the camera is close to the water
surface and must see both above and below the water at the same time, the concept of a near clipping plane can be
extended to enclose the camera origin in a small cubewith highest priority. This emulateswhat the camera housing
would do in the real world and permits both air and water medium to be seen at the same time (see figure 18).

5.2 Light Transport in Volumes

Once a ray has been determined to pass through one (ormore) volumes, the renderermust decide how to integrate
the lighting along that ray. Our description of volume integration will assume basic familiarity with surface path
tracing.When implementing a path tracer, the simplest approach is to only rely on ���� sampling and let rays find
light sources by chance.While this is sub-optimal, it is easy to implement and forms a good basis for comparing to
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Figure 18: Automatically resolving the initial medium simplifies the handling of animations where the camera must see
both above and below the water at the same time. The water surface is a single displaced plane (it has no “sides”) so render
correctness depends on the initial state of the medium stack.

more advanced techniques. We recommend following a similar approach when implementing a volumetric path
tracer. The step of sampling the ���� is replaced by sampling of the phase function, and we add a new step of
randomly choosing a point along the ray for volume scattering (or skipping the volume and scattering off the next
surface).

We begin with a discussion of sampling transmittance in both homogeneous (Section 5.2.1) and heteroge-
neous (Section 5.2.2)media, thenmove on to strategies for next event estimation (single scattering) (Section 5.2.3)
and special techniques to accelerate multiple scattering (Section 5.2.4).

We assume the reader is familiar with the physical processes underlying the ��� detailed in Section 1.1. To
quickly summarize the most important quantities are the extinction coefficient:

μt = μa + μe + μs

whichgives theprobability of the raybeingblockedbyavirtual particle perunit distance travelled (units are inverse
distance). There are three sources of radiance loss: absorption (μa), emission (μe) and scattering (μs). These coef-
ficients will sometimes be referred to as density because higher values lead to a more opaque appearance (through
a greater chance of “bumping into”a particle).

The ratio between scattering and extinction coefficients is the albedo:

α =
μs
μt

which is a unit-less quantity representing the amount of radiance transferred in a single scattering event. As long
as all densities μx ≥ 0, the albedo will be a value between 0 and 1 which ensures energy conservation.

The last important quantity is the phase function, the most popular of which is the Henyey-Greenstein lobe
which is easy to importance sample exactly and natively parameterized by its mean cosine g (see Section 1.1).

5.2.1 Sampling homogeneous transmittance

In a homogeneous medium, the change in radiance along the ray is proportional to the extinction coefficient μt .
This simple fact allows us to derive the transmittance along the ray:

T (t) = exp (−μtt)

which is known as Beer’s Law. This is a smooth function with a rapid falloff. This is what makes distant objects in a
volume appear darker (while scattering is what leads to the hazy appearance). The natural choice when sampling
a distance for further interaction is to choose a point proportionally to this transmittance function. Normalizing
the transmittanceT(t) into a pdf we obtain:

p (t) =
T (s)

∫∞
0 T (s) ds

= μt exp (−μtt)
= μtT (t)
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This gives us the following cdf c (t) and sample generation function t (ξ):

c (t) = ∫
t

0
p (s) ds

= 1 − exp (−μtt)

t (ξ) = −
log (1 − ξ)

μt

Using the last equation to turn a random value ξ in [0, 1) into a distance tells us where we have interactedwith the
volume.We still need to consider the possible presence of a surface however. Supposing the nearest surface along
our ray lies at distance tsurf, the probability of generating a distance t beyond tsurf is:

P (t ≥ tsurf) = ∫
∞

tsurf
p (s) ds

= exp (−μttsurf)
= T (tsurf)

In other words, the probability of generating a volume sample behind the surface is exactly equal to the transmit-
tance up to the surface. Therefore the weighting by transmittance cancels with the probability and we the overall
path weight is unchanged if t (ξ) ≥ tsurf.

In the event that t (ξ) < tsurf, we can proceed assuming that we have hit the volume and choose a scattering
direction by sampling the phase function (which is analogous to ���� sampling). The path contribution for vol-
ume scattering is μsT (t) divided by the pdf which is μtT (t). After cancellation, all that remains is the albedo α.
The phase function does not appear in the weight at all as long as perfect importance sampling is possible. Notice
how this very simple sampling strategy only ever creates weights between 0 and 1, and therefore all variance in the
rendering will be as a result of the low probability of randomly reaching the light sources.

Already in this simple setting, it is possible to experiment with a number of simple variations such as always
adding in the emissive contribution of the surface (instead of risking to randomly reject it) or increase efficiency
by first sampling the volume and tracing short rays only up to t (ξ).

We have glossed over the fact that all this elegant cancellation of terms only happens if μt is a scalar quantity
as opposed to a color.We will discuss chromatic media in more detail in Section 5.2.2.

Before moving onto the more complicated case of heterogeneous sampling,we present a few more equations
for cases where a homogeneous volume only has finite extents.We previously assumed the pdf is defined over the
entire ray domain: [0, ∞), but such infinite extents are actually physically implausible.

If the ray overlaps a volume only within the finite interval [a, b] where 0 < a < b < tsurf. We have the
following expressions for transmittance, pdf, and sample generation (valid for a ≤ t ≤ b and 0 ≤ ξ < 1:

T (t) = exp (−μt (t − a)) (179)

p (t) =
μt exp (−μt (t − a))
1 − exp (−μt (b − a))

(180)

t (ξ) = a −
log(1 − ξ (1 − exp (−μt (b − a))))

μt
(181)

We recommend using the C library functions expm1 and log1p to improve the numerical stability of these ex-
pression when dealing with participating media with very small μt (low density).

As in the case where the medium covers the entire ray, a fair amount of cancellation between the path con-
tribution and its pdf will occur when the density is a simple scalar. Still, we recommend keeping in mind which
terms are canceling each other out as it becomes important when generalizing the algorithms to handle colored
extinction or additional homogeneous segments. We also point out that unlike the previous pdf defined over the
entire ray, the probability of choosing the surface shouldnowbe explicitlymodelled.While thismay seem less con-
venient at first, it also generalizes better when considering a path segment that hits multiple transparent surfaces
or passes through several volumes.
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Figure 19:The step size is quadrupled from left to right. Eventually, a small bias appears and the volume appears too bright
due to insufficient transmittance. On the other hand, no extra variance is added and the render is 16 times faster.

5.2.2 Sampling heterogeneous transmittance

When we remove the limitation that μt is constant across the volume, the expression for transmittance is itself an
integral:

T (t) = exp(− ∫
t

0
μt(o + sd)ds) (182)

Here the density μt is a function of position and is evaluated at the parameterized position s using the ray origin
o and direction d. Most of the complexity and expense of volumetric rendering comes from having to handle this
nested integral.

It isworth pointing out that this integral canbe evaluated in closed form in some cases. In particular for a voxel
grid with constant or linear interpolation, or bounded volumes with exponentially varying density along a fixed
direction. This approach can be useful, particularly if the voxel resolution is well matched to the amount of detail
and final image resolution (see Section 5.3.1). On the other hand, this approach leaves no room for controlling
performance and precludes a shader from procedurally adding detail to the density field.

Biased RayMarching Onesimpleway toapproach theproblem(at the costof a small bias in the solution) is
to turn theheterogenousvolume intoacollectionof shorthomogeneous segmentsby raymarching. This technique
was dubbed decoupled raymarching Kulla and Fajardo [2012] because the execution of the shaders along the ray is
decoupled from the generation of samples for light integration.

The bias manifests as an under-estimation of the transmittance. In many cases, this can be an acceptable limi-
tation in exchange for a very simple way to boost performance. In scenes dominated by the cost of ray marching,
increasing the step size by a factor of n can make the overall rendering time decrease by that factor. Moreover,
despite the extra bias that is incurred when the step size is too large, the transmittance estimate is guaranteed to lie
in [0, 1] and therefore no extra variance is incurred from the approximation (see figure 19).

Efficiency can be further increased by forcing uniform regions of the volume to only take a single step.When
using voxel data, it is helpful to identify blocks of constant regions and automatically maximize the step size for
rays passing through these regions.

To sample a ray interval [a, b] with a step sizeΔ, only two (stratified) random numbers are required:

n = ⌊
b − a
Δ

+ ξ1⌋

t (i) = a +
i + ξ2
n

(b − a)

The first equation computes how many steps to take, with random rounding to avoid visible transitions in the
number of steps. The second equation simply uniformly distributes jittered points along the ray interval. Being
able to use stratified points is another key advantage of this biased approach.
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Once all steps through a volume have been taken, we are left with a long array of short homogeneous seg-
ments. We can importance sample the transmittance by first choosing a segment and then a point within it using
Equations 179, 180 and 181. In fact one can do better than simply sampling the transmittance and sample μsT (t)
instead which improves distribution of samples near the entrance of a volume. The discrete pdf can even be ex-
tended to include surface hits as well. This gives a unified way of treating both volumes and surface transparency
(which presents many of the same challenges).

Unbiased Ray Marching Despite some of the advantages highlighted in the previous section, removing
the bias from themethoddescribed above can still be desirable to avoid the potential formisconfigurationof a step
size. To evaluate (or sample) from equation 182 in an unbiased way we must rely on the null-scattering formalism
introduced to computer graphics by Kutz et al. [Kutz et al., 2017]. The idea is to fill up the heterogeneous volumes
with extra particles so as not to change the light transport, but permit the use of the equations for homogeneous
volumes. Theonly requirement is to have some guess on the largest possible valueμt (x)might take on throughout
the scene (or for any given region of a scene).

The central idea of null-scattering is to add a new kind of particle (so called null particles) with density μn
to the existing scattering, emissive and absorptive particles (which have density μs, μe and μe). Unlike the others,
hitting such a particle has no effect on radiance (it simply flows forward, unchanged) which guarantees there will
be no change to the radiance distribution. Starting from an overall bound μ on density,we have:

μn (x) = μ − (μs (x) + μa (x) + μe (x))

In other words, the density of null particles is implied bywhat is left over after accounting for the actual extinction.
For any arbitrary point inside the volume we can define the probability of choosing any of the four event types as:

pscatter (x) =
μs (x)
μ

pabsorb (x) =
μa (x)
μ

pemit (x) =
μe (x)
μ

pnull (x) = 1 − pscatter (x) − pabsorb (x) − pemit (x)

The importance of defining μ as a true upper bound is visible in the last equation: it avoids having a negative prob-
ability for pnull. It is possible to avoid the negative probabilities by reformulating the equations slightly [Kutz et al.,
2017] which greatly improves the applicability of the method, though deviations from the bounding value can in-
crease variance substantially. In practice, it is recommended to compute and store tight upper bounds for density
together with the voxel data to avoid such issues. For procedural volumes it is recommended to estimate upper
bounds in a spatially localized fashion before rendering begins.

Defining a random walk through the volume is now as simple as generating candidate locations along the ray
according to density μ, followed by a stochastic decision onwhich type of event to follow depending on the results
of the shading lookup at the chosen position. Each step through the volumewill require two independent random
variables (which prevents straightforward stratification, unlike the biased scheme).

The random choice can also be replaced by a change in the path weight to encourage deeper exploration
instead of stochastic termination (which only produces binary estimates). The difference between the weighted
approach and the stochastic one was first explored in computer graphics in the context of transmittance evalua-
tion [Novák et al.,2014]beforebeinggeneralized to full randomwalks [Kutz et al.,2017]. Recent surveys [Novák et al.,
2018a,b] gives a more thorough accounting of the lineage of these methods.

A weakness common to these unbiased approaches is the impact of μ on overall efficiency. The more conser-
vative it is, the smaller the average step will be. As a result, it is critically important to breakup the volume into sub-
regions whose density can be bounded accurately. Of course, a similar requirement exists for biased approaches
where the importance of the step size is directly related to the total variation in density within a region of space.

SIGGRAPH 2019 Course Notes: Path tracing in Production — Part 1 Page 88 / 105



P��� ������� �� P���������

Decomposition Tracking The basic unbiased ray marching scheme above takes steps proportionally to
the mean free path μ and therefore can become quite expensive in very dense media as each step must probe the
spatially varying density.

Thedecomposition trackingapproach [Kutz et al.,2017]observes thatwecan importance sample fromtwo (or
more) overlappingmediums by sampling a distance from each proportionally to transmittance and simply taking
the smallest of the resulting distances (a detailed proof is provided in the supplemental material of that paper).
This has a few very interesting consequences from an engineering standpoint.

Firstly,whenmultiple volumesoverlap it is possible to sample adistance fromeachoneproportionally to trans-
mittance independently. The distance from the first sampler can provide an early exit distance for the following.
This type of early exit is very beneficial and also mimics how nearest hits are processed in a ray tracer14.

Secondly, if we have a lower bound (usually termed control bound) on the total volume density of a given
volume (in otherwords,density never falls below a certain valueμc) we can take samples from this cheaper control
component and use the found distance to take fewer steps in the residual component of the volume (the density
left over, which must be in the range [μc, μ]. In practice, this means that many steps through dense regions of
the volume only need to sample the (homogeneous) control volumewhich can significantly reduce the number of
lookups (or shader executions) required. As with the computation of μ, the control component μc can be stored
within the acceleration structure and should be as tight as possible to maximize performance.

Spectral Ray Marching Wehave so far concentratedondescribing techniques as if the volumedensitywas
equal for all wavelengths. But supporting colored densities is critical to describing common participating media
such as atmosphere,water, or skin.

Even in homogeneousmedia, the nice simplifications between path contribution and pdf are no longer possi-
blewhen the densities are colors because the pdf itself must always be a scalar. The solution to this problem is to in-
corporatemultiple importance sampling to combine the probability of sampling from eachwavelength separately.
Repeating the equations from Section 5.2.1, we indicate which quantities are spectrally varying by incorporating
the wavelength λ:

T (t, λ) = exp (−μt (λ) t)
p (t, λ) = μt (λ)T (t, λ)

t (t, λ) = −
log (1 − ξ)
μt (λ)

We therefore have a pdf for each of the n wavelengths being carried together along the path. In traditional ���
rendering the wavelength λ is just a placeholder for the three color components (R = λ1, G = λ2, B = λ3).
To choose which of the n pdfs we will actually use to draw a distance t, we must first select among the three wave-
lengths according to somediscrete probability: P (λi) and combine everything together using the one-sample���
technique,which is equivalent to use a combined pdf of:

p (t) =
n

∑
i=1

P (λi) p (t, λi)

The discrete probabilities should incorporate how important each wavelength is to the overall path. In a uni-
directional path tracer, it is worth using both the path weight as well as the albedo [Chiang et al., 2016, Kutz et al.,
2017] to minimize variance.

Whenmoving to theheterogeneous setting,thebiasedapproachof treating themediumas a collectionof small
homogeneous segments can be extended to choose both thewavelength and the segment which leads to very high
quality samples as the transmittance is very accurately sampled among all channels.

When using unbiased trackers, more care is required as the choice of probabilities is incorporated into the
ray marching process itself. Kutz et al. [2017] adapt their weighted tracking schemes to work on multiple wave-
lengths at once by conservatively extending the interval bounds μ to cover the maximum across all wavelengths.

14In fact, early work on brute force volumetric path tracing [Morley et al., 2006] took advantage of this trick to incorporate volumes
directly into the ray tracer by letting the stochastic distance sampling act like a surface ray intersection routine.
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Figure 20: Quantities involved in computing scattering from a point light source

This restriction can be lifted [Miller et al., 2019] if one considers the null particles as part of the path integral for-
mulation itself, which permits reasoning about the path probabilities even for unbiased trackers (as opposed to
just the weight).

5.2.3 Next Event Estimation in Volumes

The techniques discussed so far allow the generation of samples along the ray for further scattering in a“blind”way.
No information outside of what is known along the ray is used. This enables only the simplest variant of path trac-
ing where the lights are intersected by chance. A natural first improvement on this is to run next-event estimation
from the chosen t value along the ray and combine sampling of the light source solid angle with sampling of the
phase function (as is done with the ���� in surface rendering).

Unfortunately, this scheme will not bring as large of a variance reduction as it does on surface because the
radiance does not vary smoothly along the ray. Therefore the choice of the distance t that we sample the lights
from would ideally take the light source position into account as well.

Equiangular sampling for point lights A simple point light source embedded in a volume is a good
case study for this problem. The 1/r2 decay of the point light causes a hotspot of high contributionnear the source,
with a rapid falloff away from it. Positioning samples purely by looking at the transmittance (as we have discussed
up until now) is counterproductive as only points close to the light will have a high contribution.

Equiangular sampling [Kulla and Fajardo, 2012] is a way to choose distances along the ray proportionally to
the radiance distributionof a point source (the1/r2 term). This allows the geometric termof the path contribution
to cancel with the pdf, giving much better variance reduction for such paths.

The basic geometric configuration is shown in figure 20. To keep the equations relatively simple, we shift the
origin of the ray by Δ to be underneath the projection of the point onto the ray. From there we assume that inte-
gration takes place in the range [a, b]. The distance t along the ray can be decomposed into: t2 + D2 = r2 where
D is the shortest distance between the point light and the ray.

Solving for a pdf proportional to 1/r2 leads to the following equations for the pdf and sample generation
functions:

pdf(t) =
D

(θb − θa)(D2 + t2)
(183)

t(ξ) = D tan((1 − ξ)θa + ξθb) (184)

θx = tan−1 x/D (185)

From the final form of the sample generation function t (ξ) we observe that a linear interpolation of the angles
towards the integration bounds [a, b] appears. Thus, equal steps along the ray take equal steps in angle and the
strategy is therefore termed equiangular sampling Kulla and Fajardo [2012].

This sampling technique greatly improves convergence when lights are directly embedded in a volume com-
pared to only relying on next-event estimation fromdistances sampled according to transmittance (see figure 21).
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(a) Transmittance Sampling (b) Equiangular Sampling

Figure 21: Point light source in homogeneous media (16 paths/pixel)

Figure 22: Heterogeneousmedium rendered using decoupled raymarching which allows the evaluation of pdfs and therefore
combines well with equiangular sampling (16 paths/pixel)

As with spectral distance sampling (Section 5.2.2), multiple importance sampling is still important to guard
against more complex cases, particularly in dense heterogeneous media. The only requirement is to be able to
evaluate the pdf for each technique individually. Decoupled ray marching Kulla and Fajardo [2012] was in part
designed specifically to combine easily with equiangular sampling: see figure 22, 23. Very recent work has shown
that a similar combination is possible for unbiased ray marching techniques as well [Miller et al., 2019].

The basic principle of equiangular ray marching carries over to area lights as long as importance sampling
from the chosen point can be done proportionally to the solid angleΩ, since it also varies as 1/r2. In cases where
solid angle sampling is difficult to perform, one can choose a point on the surface of the light first and then apply
equiangular sampling from the chosen point.

Equiangular sampling for many lights Production renderers must contend with large numbers of
light sources. The volumes from figure 13 are illuminated from within by multiple mesh lights, each composed a
fewmillion triangles. Naively loopingover all lights in turn is not practical,nor is simply selecting a lights randomly
according to their power (again due to the rapid distance falloff). Most production rendering instead relies on
a lighting hierarchy (see Section 4.2 for a discussion of the implementation in Manuka [Fascione et al., 2018a]).
Herewe briefly discuss the light hierarchy choicesmade in S��� I���������’Arnold renderer [Conty and Kulla,
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Equiangular Transmittance ���

Figure 23: Closeups of figure 22. ��� combines the strengths of each line-sampling technique.

2018].
On surfaces, the light hierarchy tries to select light sources proportionally to their distance and intensity to

the current shading point. In volumes on the other hand, we must select a light source before knowing where
along the ray we will place our sample. Therefore, the query is driven by the ray beam instead of a single point.
The hierarchical estimate must instead try to minimize variance while knowing the 1/r2 term in the final integral
will be canceled out by equiangular sampling. After division by the pdf (see section 5.2.3), the dominant term on
variance will be the normalization constantDwhich is different for every light. The light picking therefore tries to
select lighting proportionally to 1/Dwith the aim of canceling out with this normalization factor after the light is
chosen. An example of the light hierarchy for a mesh light is shown in figure 24.

5.2.4 Beyond single scattering

Doing a full simulationof all bounces of lightwithin a volume remains an expensiveproposition,evenwhen taking
into account all recent developments in importance sampling techniques. And yet the appearance of many com-
mon types of participating media depend on these extra bounces. Clouds and snow are two prominent examples
as they are both made up of water and ice droplets that scatter nearly all incoming light (see figure 25).

Stochastic Path Sampling Whenconstructingdeeppaths throughhighly scatteringmedia (often several
thousand bounces are required),one can observe thatmany verticesmake similar contributions to the final image.
The idea of decoupled raymarching [Kulla and Fajardo,2012] can be extended frombuilding a ��� along a single
ray to building a cdf along an entire path. This allows skipping costly light loops and focusing more samples on
those path segments that need it themost. This optimization does introduce some additional variance so it should
be carefully balanced and only kick in if paths grow sufficiently long.

Similarity Theory A surprising aspect of volume rendering is that the appearance space for participating
media contains some amount of redundancy. In other words, it is possible to obtain very similar output from dif-
ferent values of the core simulationparameters. The investigationof so called similarity relations predates computer
graphics [van de Hulst, 1974]. One simple relationship that is very easy to implement is:

(1 − g) μs = (1 − g⋆) μ⋆
s
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Figure 24: Ameshlight composed of many triangles illuminates a homogneous volume. Each path only connects to a single
point on the mesh.
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Figure 25: Snow and cloud rendering in the movie Smallfoot ©Warner Bros., 2018

Figure 26: Similarity theory can greatly accelerate the rendering of dense, forward scattering media such as clouds. The
image on the left is rendered by brute force and still contains visible noise and reaches path lengths over 50,000. The image
on the right is muchmore converged and reached amaximum path length of around 5000 thanks to the increased mean-free
path in deeper bounces. Cloud dataset courtesy of W��� D����� A�������� S������.

where g stands for the mean cosine of the phase function. The reduced parameter g⋆ is usually chosen to be 0 to
replace strong forward scattering with isotropic scattering. In this case the scattering density μ⋆

s becomes smaller,
increasing the mean free path which allows direct light sampling to be more effective as well as promoting the
chance of escaping the medium.

Naturally these similarity relationships remain approximations. It is therefore important to deploy themgrad-
ually, usually only after a number of bounces. TheHyperion paper [Burley et al., 2018] describes a set of heuristics
for applying this relationship in cloud rendering that is surprisingly effective (see figure 26).

Zhao et al. [2014] investigated higher order similarity relations that can further improve upon the basic linear
relation shown here, though to our knowledge this work is not widely used in production rendering contexts as a
custom phase function must be numerically derived through a pre-process.

5.2.5 Emissive Volumes

Explosions are an essential ingredient of modern blockbuster films (see figure 27). The spatially varying emission
term in the ��� is usually accounted for by simply adding in the emission Le during ray marching (both biased
and unbiased schemes presented earlier allow this). One must remember however that the emission term typi-
cally dominates the path contribution and therefore sampling the emission term stochastically (by first sampling
transmittance alone) is likely to lead to high variance. Instead it is preferable to always add in the emissive con-
tribution [Simon et al., 2017] (usually given by the volume shader at the same time that the other densities are
queried).

To accurately sample the effect of emissive media on nearby surfaces (and volumes), a 3D cdf can be con-

SIGGRAPH 2019 Course Notes: Path tracing in Production — Part 1 Page 94 / 105



P��� ������� �� P���������

Figure 27: Rendered fire simulation in Suicide Squad, ©Warner Bros. 2016

structed to randomly select positions within the volume [Villemin and Hery, 2013]. For dense media, it is impor-
tant toaccount for transmittancewhenchoosing theemissivevertexas it couldbeobscuredbydense smoke [Simon et al.,
2017].

5.3 Production Features

5.3.1 Large Datasets

As mentioned in the introduction, the volumetric datasets invoked in production frequently grow to very large
sizes, sometimes far beyond what is required for a particular camera distance. Some of the reasons for this dis-
crepancy include:

• a requirement to deliver very rich visual detail leads to elements crafted at as high of a resolution as possible
• a very fluid production process,where elements are designed before camera angles are locked off.
• multiple artistsworkingondifferent aspects of a complex shots, leading tomanydisparate elements needing

to be combined at render time
• incremental look development were elements are layered together to achieve a desired look

For all these reasons, a production renderermust avoid constraining the user with limitations if they can be solved
someotherway. Out of core approaches have to date found little use in practice due to the nature of data access in a
global illumination context. Even when just simulating direct lighting, a handful of area light sources illuminating
the volume from different direction can be sufficient to require touching nearly every voxel on every progressive
sampling pass.

Instead the focus is usually placed on improving the fundamental representation of the volumes in memory,
and restoring view-adaptivity where possible.

Two (and multi) level grids The simplest form of data compression is to simply to avoid storing homo-
geneous (particularly empty) regions. Sparse grids (sometimes called micro/macro voxels grids) are a simple, two
level data structure that already brings a big savings to most cases. Instead of a dense array of W × H × D voxels,
they are broken into two levels, with a top level of macro blocks of varying resolution and a micro level of usually
fixed resolution grids (usually between 83 and 323). This approach is implemented in the Field3d open source
library [Wrenninge, 2009].

The OpenVDB volume container format [Museth, 2013] takes this principle and extends it even further, let-
ting each micro block be itself a sparse grid of (compile-time) adjustable depth and resolution to gain even more
adaptivity which can be beneficial when rendering very thin volumes or thin level sets. For the vast majority of
cloud or smoke elements however, the easier to implement two level solution is frequently sufficient.
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In either case, the structure naturally encodes where the volume exists or not, which provide a natural way to
avoid ray marching empty regions. When using unbiased sampling techniques which require bounds on density,
the coarse level of the structure is a natural place to store these bounds.

Rasterized View Dependent Volumes Instead of supporting a multitude of formats and procedural
primitives in the inner loop of the ray marcher, some renderers choose to re-sample all volumes into a common
format,which also allows adapting the resolution to the camera’s frustum [Fascione et al., 2018a] tominimize stor-
age inmemory.When combining this strategywith instancing,great care should be taken to be conservative in the
view-dependent resolution that will be re-used across all instances. Similar trade-offs and approximations must
be made for view-adaptive tessellation of instanced meshes [Kulla et al., 2018].

The benefit of supporting only a single structure is greater efficiency from a single-use data structure, as well as
improved efficiency fromhaving a voxel density exactlymatched to the target resolution. The potential downsides
of such an approach are the higher upfront processing cost before any rays can be fired, and the need for higher
fidelity lookups when preparing the structure to avoid any visual artifacts from the resampling process.

Frustum Buffers Another way to maximize resolution for a particular camera viewpoint is to use frustum
buffers, which simply warp a 3d grid by the camera’s perspective transform. This gives an elegant way to maintain
constant detail in screen x and y coordinates, while reducing it along Z where it is less important. To avoid light
leaking effects from off-screen, the frustum is usually slightly larger than that of the camera.

Frustumbuffers are quite simple to implement as only an extra perspective division is requiredwhenmapping
between world space and grid space, however they do complicate ray marching as finding which range of voxels
a ray passes through is no longer a straightforward march through with ��� techniques. A straight ray becomes
curved after the perspective divide. This can be solved by observing that while arbirary lines becomes curves, axis
aligned planes are still planes after the perspective transform. It is therefore possible to build a kd-tree in the axis-
aligned grid space, and warp it to a world space kd-tree on the fly during traversal. Axis aligned plane equations
can be easily extracted from the perspective matrix, leading to a rather simple and efficient implementation in
practice [Wrenninge et al., 2013].

5.3.2 Motion Blur

Motion blur is essential to rendering animated content. Most production path tracers distinguish between two
types of motion: transformation anddeformation. Transformationblur is typically handled by sampling the trans-
form hierarchy at the ray’s current time. This accounts for cases where the entire volume is being moved around
(for example the exhaust of a jet engine). During the ray intersection phase (see Section 5.1), the matrix inverse is
applied to the ray so that bounding information can be precisely applied even for moving volumes. This is identi-
cal to how transform motion blur is handled for regular shapes. Deformation blur on the other hand captures the
blur caused by fast internal motion inside the volume itself. This is particularly important for explosions, which
are generally highly energetic, produce motion in all directions, and expose to bright, high dynamic range pixels
in the final frame.

It should be noted that great care needs to be taken when combining both forms of motion at once. The de-
formation blur should be computed in object space (ie: without the effect of the transform) to avoid a double ap-
plication of the two types of blur. Likewise, it is important to keep track of the units in which fields such as velocity
are expressed during the simulation (usually distance per second) and properly adjust them for what the renderer
expects (usually distance per frame).

Eulerian Blur The first, and simplest to implement way to obtain deformation blur is so called Eulerian mo-
tion blur. Here the volume should be paired with a velocity field describing the evolution of its contents. When
sampling the volume at a position x, one first reads v(x) to obtain the velocity before reading the actual desired
shading signal from x − δtv. In other words, we take a backward step along the velocity vector to backtrack to
where the density was at the provided instant in time δt .
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While this techniquemirrorsbacktracking techniques invokedduring simulation– in the contextof rendering
it does not always produce satisfactory results. First, in the case of very rapid motion - it is possible to backtrack
off the edge of the volume, leading to clipping artifacts. In simulation, this problem can be solved by sub-sampling
the simulation,which would be prohibitive to do during rendering.

Temporal Volumes A better, yet slightly more complicated to implement strategy is to store a full, time-
varying density field that allows sampling points in the volume using both the position x and the current time t.
Conceptually, every voxel of the grid must store a function f (t) instead of a single scalar value. In order for this
method tobe tractable, the functionmustbecompressed. Themethod implemented in theField3Dlibrary [Wrenninge,
2009] (version 2.0 and higher) is inspired by deep opacity compression [Lokovic andVeach, 2000], and is detailed
in the related paper [Wrenninge, 2016]. The density evolution in most volumes turns out to be very compressible
and therefore an overall small number of voxels need to store a long list of values.

Thismethod,while accurate,still requires adeep integrationwith the simulationprocess itself toproperly com-
press the time-evolution of the volume within the sub-frame. Most simulation processes take several step within
a single rendered frame and these distinct steps should all be captured into the compressed 4D output volume for
optimal results.

5.4 Future Work

Despite the fact that all production path tracers in use today have some kind of volume support, a number of
interesting challenges remain.

5.4.1 GPU implementation

All the methods described so far tend to map fairly well to a ��� as the bulk of the expense is typically in stepping
through dense 3d textures that can be accelerated in hardware. Still, the optimal tradeoffs in sampling algorithms
and representations may not be the same between ��� and ��� and algorithms will likely have to be revisited to
achievemaximal performance inboth cases.Weexpect open source libraries such asGVDB (���s) andOpenVKL
(���s) to play a key role in enabling high performance implementations in the years to come, similarly to the
role that Embree and Optix have played in enabling high performance surface intersections. As with the latter,
achieving good performance depends as much on system level design decisions as it does on the kernels used in
the inner loops.

5.4.2 Optimal Raymarching Approach

As we have touched on in these notes, there are a variety of possible estimators for sampling and evaluating trans-
mittance in heterogeneous media. As with light transport algorithms in general, it is unlikely that there is a single
approach that can be made to work optimally in all cases. The overall runtime is both a function of the number
of steps taken along the average ray, but also the overall variance of the estimator (and how quickly it can be com-
pensated by tracingmore paths overall). As such,any comparison of approaches is intrinsically tied to engineering
decisions made in the renderer as a whole.

Nonetheless,we believe there ismore room for a principled comparison of the different (biased and unbiased)
methods in a controlled fashion to determine which is preferable depending on the type of scene.

5.4.3 Correlated Media

While this course has not dived too deeply into the mathematics of the light transport, the sampling techniques
mentioned in Section 5.2 are all based on the simplest form of the volume rendering equation in which the in-
finitesimal particles thatmake up the volume are assumed to beuncorrelated. Thismeans the probability of bump-
ing into a particle is independent from point to point. This leads to the simple exponential shape of the transmit-
tance curve in homogeneousmedia, and keeps the heterogeneous case somewhat tractable as densities can simply
be summed together to handle overlap and we can use the null scattering formulation to simplify unbiased ray
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marching. While fields outside of graphics have studied generalizations of the ��� [d’Eon, 2014], adapting these
methods into a form suitable for image formation requires revisiting the foundations of the ���.

Several recent papers have tackled this very problem and studied the impact of correlated scattering particles
on theway light scatters in the volume [Bitterli et al.,2018,d’Eon,2018,Jarabo et al.,2018]. For artists, this proposes
a new level of control and flexibility when designing volumetric effects.

The main obstacles to widespread adoption in production include figuring out the proper way to deal with
overlapping volumes,finding new optimal sampling techniques and parameterising the effect in a way that is both
expressive and intuitive for artists. We anticipate production renderers to quickly adopt these methods if these
challenges can be met.

5.4.4 Granular Media

Beyond the integration of correlated media mentioned above, there is the possibility of looking at other collec-
tions of objects as volumes. One such case involves densely packed grains such as sand or snow. Research on this
topic [Meng et al., 2015,Moon et al., 2007,Müller et al., 2016] has found it is important to have a geometric com-
ponent to the representation for fidelity in the low order scattering response (glints, and surface detail) while the
higher order scattering can be accurately handled by switching to a volumetric representation.

The main obstacles to widespread adoption in production again center around integration and authoring is-
sues for artists. For example, linking the work on granular media to the work on correlated media in a principled
way and simplifying the authoring step (the papersmentioned above capture the bulk scattering behavior of small
grains through precomputation which complicates the integration into production workflows).

5.4.5 Improve Boundary Sampling

In this course we have focused mostly on volumes without a boundary. When sampling sub-surface scattering
effects, thepresenceof theboundary introduces anewwrinkle in thedesignof efficient sampling techniques. Many
renderers choose to side-step the issue by either assuming a diffuse boundary (same assumption made by many
������ models) or ignoring the boundary altogether when connecting shadow rays between the medium and
outside lights. A more sophisticated solution is to use specialized sampling techniques such as Manifold Next
Event Estimation [Hanika et al., 2015] to account for the refractive event. Because of the performance and look
differences between these approaches, artistsmay be facedwith difficult choices between performance andquality.
Further research towards fast and accurate treatment of general boundaries would definitely be welcome.
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6 The InsofProductionRenderingatAnimal Logic
D����� H���������,Animal Logic

As path tracing has become the standard paradigm for production rendering, representation of scene data has
changed. After the long dominance of the RenderMan Interface specification or Ri, newer scene descriptions
achieve different tradeoffs for computation efficiency, workflow, complexity management and expressivity. We’ll
discussA����� L����’s progression from RenderMan Interface, toGlimpse’s Scene Stream ��� and P����’sUni-
versal Scene Description��� [Pixar,2019]. Our emphasis has been on achieving interactive rendering throughout
the production pipeline.

6.1 The RenderMan Interface

TheRenderMan Interfacewas introducedbyP���� in 1988 and its legacy canbe seen in everymodernproduction
renderer and scene description. It allows scene geometry and imaging to be specified through a now familiar hi-
erarchical state machine model, similar to O���GL. It evolved continuously and became a common interface for
many production renderers. Innovations included shader-defined behaviour for many aspects of the rendering
process using the RenderMan Shading Language ���, the RenderMan Interface Bytestream ��� for serialization,
high-level structure through referencing and procedurals and deferred scene loading based on visibility.

6.1.1 MayaMan at Animal Logic

TheRi allows a rich description of a scene for a single image but does not represent a full animated sequence. Nor
does it provide means to read back and edit its data. This makes it essentially an output format to be produced
by translation from other sources. A����� L���� developed, and for some time sold commercially, a translator
called MayaMan to push data from A������� Maya to Ri. Many other products work in a similar way: taking
data represented in an editable and animated form usually in a Digital Content Creation ��� application and
generating the time-slice of data in a renderer’s input format to produce a single image.

A variety of approaches can be used with Ri to increase efficiency and pipeline compatibility of rendering at
production scale, including:

• proxy objects in ��� to avoid duplicate representations
• geometry caches and procedurals with directRi output
• streaming of scene data using deferred loading
• late scene manipulation usingRi Filter plugins

Typically our translation process looked like:

1. loadMaya scene containing proxies and geometry caches (likeAlembic)
2. import to nativeMaya only those scene elements required for editing
3. translate to multiple passes of ���,with deferred procedural references for proxies and geometry caches to

avoid translation

This produces completely standalone ��� descriptions of the scene which can be loaded on another machine, or
in a separate process without necessarily keeping the ��� in memory at the same time.

In a rasterising rendering schemeaswewereusing (P����’sRenderMan in �����mode) this has the following
characteristics:

• many passes may be required to be rendered in the correct order (e.g. shadow maps)
• duplicate storage of scene objects in multiple formats is minimal
• theworking set for the scene geometrymay bemuch smaller than the total amount of data due to streaming

load / discard
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6.2 Glimpse and GSS

Glimpse was born out of the lack of interactivity in our MayaMan processes. Interactivity was stymied by the
complex pipeline of translation and pass dependencies, iteration through this pipeline without effective short-
cuts for incremental edits and a systematic lack of priority on fast feedback (such as time to first bucket / sample
iteration) versus overall throughput. A more complete history of Glimpsemay be found in a previous iteration of
this course [Fascione et al., 2017].

Path tracing offers the crucial foundation of a single-pass rendering process but the rest of the rendering
pipeline also needed to be updated to achieve practical interactivity. Path tracing also imposes the constraint of
having thewhole (visible) scene inmemorywhich is convenientlywell-alignedwith interactive rendering.Glimpse
and its scene description, ��� forGlimpse Scene Stream,were developed originally as a complementary system for
interactive rendering set up but eventually replaced our other rendering approaches.

OurGlimpsemodel is:

• ��� ��� is designed for in-memory editing and updates
• ��� native objects may be bridged to ��� objects
• bridged objects are tracked to propagate fine-grained incremental edits
• proxy objects in ��� to avoid duplicate representations
• exploit ��� representation andGlimpse render for viewers and editors

6.2.1 Memory

Memoryoverhead is a challengeasdatamaypass through the following forms,andupdatesmaycome fromvarious
stages in different interactive workflows:

1. serialised representation (e.g.Alembic on disk)
2. geometry cache representation (e.g.Alembic in ���)
3. ��� representation (e.g.Maya’sMFnMesh in ���)
4. ��� representation
5. render representation (e.g. subdivided mesh)
6. acceleration structures (e.g.Glimpse ���)

Glimpse uses the following principles to balance memory overhead and interactivity through minimal up-
dates:

1. Use ��� representation wherever possible. This form must be rich enough for general scene description
with support for transform hierarchies, referencing etc.

2. one-to-one bridge objects when using native ��� editing tominimise complexity of state tracking and up-
dates

3. Discard intermediate data but preserve structure. e.g. the ��� representation of mesh vertex data can be
transient in many contexts

6.2.2 Latency

Low latency for start up and edits is also necessary for interactivity. The best and obvious approach is to minimise
and optimise the work required on scene objects prior to rendering. Once again this motivated us to make ��� as
rich as possible to be used directly as a scene source. When bridging to native ��� objects the same approaches
that are used to minimize memory and aid performance. Typically we create one-to-one peer objects for direct
change tracking and incremental dependent updates.

Multithreading is possible inmanyparts of the��� ��� and is facilitatedby avoiding the stack-basedparadigm
of Ri. This is analogous to bindlessOpenGL interfaces. Opportunities for parallelism are exposed through scene
structure (objects, references and procedurals) at a high level.
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6.2.3 Instancing

Path tracing renderers can exploit instancing to achieve visual complexitywithminimal scene load time andmem-
ory. For scene description, the challenge of instancing is to present the feature in a way that is easy to exploit but
not fragile. At one extreme, instancing is a late-stage optimisation like de-duplication that doesn’t prohibit any ear-
lier operations or edits on the scene. At the other extreme, instances must be directly expressed in the scene and
require explicit de-instancing for edits.

Instancing in the scene description domain may have different constraints compared to any particular ren-
derer:

• path tracers typically support per-instance specialisation of some subset of visibility, attributes, user data
and material bindings

• objects may be identical except for render-time operations such as subdivision and displacement
• some renderers may not support these render-time operations at all (e.g.OpenGL preview)
• describing per-instance specialisations is challenging in a hierarchical scene description (e.g. nested dia-

mond instancing) where all nodes are shared by multiple instances
• nested instances are powerful for compact (therefore small, fast) descriptions of repeated structures like

buildings and trees. It may be beneficial even if a renderer doesn’t support multilevel instancing

Glimpse uses hierarchical state and path-based instance overrides to allow instances to be addressed.

6.2.4 Expressiveness

A more subtle aspect of interactivity relates to the expressiveness of scene description mechanisms. The more di-
rectly and concisely an outcome can be expressed in a target scene description, the fewer other layers or operations
are required for the user and the system as a whole. This must of course be balanced with the complexity and fre-
quency of the operation: one that is rarely applied or is slow may be better performed in another system. In ���,
material assignment is a good example of this tension: assignments are hierarchical and layered but we don’t cur-
rently support wildcard assignments due to performance. If required, wildcard assignments may be represented
and mapped to explicit assignment by a higher level system.

We’ve found that the mechanisms in ��� described for instancing usually work well for concise, expressive
scene manipulation. Hierarchically inherited state allows for the scope of manipulation to be chosen, within the
limitsof the existing scene structure. Instanceoverrides allow for a large categoryof instancing-compatible changes
to be made to particular instances independent of scene structure.

However, what works well for interactive control for a particular scene may not be effective for reuse in other
scenes or robust to changes in scene content. These are the concerns of production lighting and rendering teams
and may be seen in the difference between direct manipulation of rendering state inMaya versus the procedural
approach of Katana.

6.3 USD and Glimpse

AtA����� L����, we have replaced most uses of ��� with P����’s ���. ��� matches or exceeds the capabilities
of ��� in almost all areas and has been enthusiastically embraced by production facilities and commercial vendors
in the industry.

Important aspects of ��� are:

• full time sequence description (not just a single frame)
• editable to allow interactivity without further duplication
• state tracking for dependent updates
• high performance for scene load and processing

Our transition approach has been to create a ��� front end forGlimpse. TheHydra rendering system of ���
is appealing but at the time of writing, this interface is not feature complete for our needs.

There are a number of areas where ��� does not yet match our previous functionality directly, but is flexible
enough to allow us to take hybrid approaches:
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• material binding: Glimpse supports layered materials described with a custom ��� schema
• procedural geometry: references to our renderer’s procedurals are embedded with a custom ��� schema

For editingandmanipulation,wehave replaced theuseof ourGlimpse toMayabridgewith thepluginAL_US-
DMaya [Animal Logic,2019].AL_USDMayabridges ��� intoMaya in similar butmore extensiveways than our
previous approach with ���. This offers direct manipulation of ��� inMaya with interactive rendering through
Glimpse.
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