
Path Tracing in Production - Volumes

Christopher Kulla
SIGGRAPH 2019

VANCOUVER, BC | CULVER CITY, CA 1

Hello, I’m Chris Kulla from Sony Imageworks and I will be now
talking about volumes.



(production image omitted)

Spider-Man: Homecoming ©2017, CTMG Inc.

Just to set the stage of what I’ll be discussing today, here are a
few images from some movies we worked on recently at
Imageworks …



(production image omitted)

Spider-Man: Far From Home. ©2019, Columbia Pictures

…and as you can see we’re filling most of the screen with
volumetric effects.

These are usually combined from hundreds of individual
elements because many artists might be collaborating to make
a single shot like this.



(production image omitted)

The Meg. ©2018, Warner Bros

Volume rendering isn’t just for smoke and explosions, even
rendering water uses the volume features of the renderer
because we need to keep track of its thickness and IOR.



(production image omitted)

Smallfoot 2018, ©Warner Animation Group

Here is a frame from the movie Smallfoot where volumes were
used for the clouds and snow.



(production image omitted)

Spider-Man: Into The Spider Verse, ©2018, Columbia Pictures

Even when the film is very stylized, volumetric lighting is still a
fundamental tool that artists rely on all the time.



Outline

• Sampling Techniques
• Volume Intersection
• Overlap Handling
• Open Problems

VANCOUVER, BC | CULVER CITY, CA 7

So here is a quick outline of what I’ll be talking about:

I’ll try to give an overview of the sampling techniques and
compare a few different types of ray marching.

Then I’ll talk about the problem of volume intersection for the
interesting cases that come up in production like frustum
aligned volumes and motion blur. I’ll also talk about the rules
for overlapping volumes which are usually ignored in research
oriented renderers.

And finally I’ll talk about some of the open problems that are
of interest to us in the film industry.



Path Tracing + Next Event Estimation

VANCOUVER, BC | CULVER CITY, CA 8

So by now in the course you have a pretty good understanding
of basic path tracing for surfaces. At a high level, we just
scatter rays randomly according to the BSDF and connect to
light sources.



Volume Path Tracing

+ Next Event Estimation

VANCOUVER, BC | CULVER CITY, CA 8

So how do we extend this to account for volumes?

The volume is continuous representation, so the ray tracing
call needs to be replaced with some kind of sampling decision.



Volume Path Tracing

+ Next Event Estimation

Sample t from pdf(t)

VANCOUVER, BC | CULVER CITY, CA 8

Lets assume for a moment we have a pdf defined along the ray.

Sampling that pdf would produce candidate distances for us to
continue our random walk from.



Volume Path Tracing

+ Next Event Estimation

Sample t from pdf(t)

t < thit → µs(t)T(t)
pdf(t)

VANCOUVER, BC | CULVER CITY, CA 8

If that random position is closer than the surface, we scatter in
the volume.

The formula just takes the scattering coefficient times
transmission and divides by the pdf. This is just normal
importance sampling.

Remember that scattering and transmittance are colors while
the pdf is a scalar. So its good to keep this form in mind even
though lots of things can cancel out in simple cases.



Volume Path Tracing

+ Next Event Estimation

Sample t from pdf(t)

t < thit → µs(t)T(t)
pdf(t)

t ≥ thit → T(thit)
P(t≥thit)

VANCOUVER, BC | CULVER CITY, CA 8

If the sampled distance is behind the surface, we divide the
transmittance by the probability of generating a distance
beyond that hit point.



Volume Path Tracing

+ Next Event Estimation

Sample t from pdf(t)

t < thit → µs(t)T(t)
pdf(t)

t ≥ thit → T(thit)∫∞
thit

pdf(s)ds

VANCOUVER, BC | CULVER CITY, CA 8

To get that probability we have to add up the probability of all
possible ways we might have gone beyond the surface which is
a small integral…



Volume Path Tracing

+ Next Event Estimation

Sample t from pdf(t)

t < thit → µs(t)T(t)
pdf(t)

t ≥ thit → T(thit)
1−cdf(thit)

VANCOUVER, BC | CULVER CITY, CA 8

…but we know that the integral of the pdf is the cdf, so we can
compute it easily.

And that’s it! Most of the difficulty of path tracing volumes
comes from estimating the transmittance and pdf terms in
these equations, so its good to keep this general form in mind.



Volume Path Tracing + Next Event Estimation

NEE can use different pdf!

VANCOUVER, BC | CULVER CITY, CA 8

Just like with surfaces, we can use next event estimation to
connect to the lights.

In fact, we probably want to use a different pdf in this case
because we have extra information.



Single Scattering Results (16 samples / pixels)

Transmittance sampling

Equiangular sampling

VANCOUVER, BC | CULVER CITY, CA 9

The light source is a strong source of variance when its
embedded in the volume. So if we sample only according the
transmittance function, the samples aren’t really taken where
the light is strongest.



Single Scattering Results (16 samples / pixels)

Transmittance sampling Equiangular sampling

VANCOUVER, BC | CULVER CITY, CA 9

You can do much better with a pdf proportional to the inverse
squared falloff from the light which is what equiangular
sampling does.



Area Light Results

[Conty et al., 2018]

Transmittance sampling Equiangular sampling

VANCOUVER, BC | CULVER CITY, CA 10

This works even for area lights because we always have an
inverse squared falloff in the geometry term when connecting
two points.

The results will be even better if you combine this with solid
angle sampling of the light because the solid angle has an
inverse squared falloff in it implicitly. So then the weight of
each ray is almost constant which reduces variance even more.



Many Lights Results [Conty et al., 2018]

Transmittance sampling Equiangular sampling

VANCOUVER, BC | CULVER CITY, CA 10

The same thing works if you have lots of lights.

We just heard about light hierarchies. In the case of volumes
you want to traverse the hierarchy using the entire ray as the
query so that the light you select can decide where to put the
samples along the ray.



Equiangular Sampling [Kulla et al., 2012]

, [Conty et al., 2018]

D rθa
θb

a t∆
b

pdf(t) =
D

(θb − θa)(D2 + t2)
t (ξ) = ∆ + D tan ((1− ξ) θa + ξθb)

If D = 0 :

pdf(t) =
ab

(b− a)t2

t(ξ) = ∆ +
ab

b+ (a− b)ξ

Choose among many lights ∝ 1/D

VANCOUVER, BC | CULVER CITY, CA 11

I’ll quickly just show the equations here. I think this technique
is fairly well known by now so I won’t go through the derivation.



Equiangular Sampling [Kulla et al., 2012]

, [Conty et al., 2018]

D rθa
θb

a t∆
b

pdf(t) =
D

(θb − θa)(D2 + t2)
t (ξ) = ∆ + D tan ((1− ξ) θa + ξθb)

If D = 0 :

pdf(t) =
ab

(b− a)t2

t(ξ) = ∆ +
ab

b+ (a− b)ξ

Choose among many lights ∝ 1/D

VANCOUVER, BC | CULVER CITY, CA 11

I’ll just point out there is a limit case when the light is exactly
on the ray.

It might sound like a corner case but it can happen if an artist
attaches a point light to the camera for example, which is how
we noticed we were missing it.



Equiangular Sampling [Kulla et al., 2012], [Conty et al., 2018]

D rθa
θb

a t∆
b

pdf(t) =
D

(θb − θa)(D2 + t2)
t (ξ) = ∆ + D tan ((1− ξ) θa + ξθb)

If D = 0 :

pdf(t) =
ab

(b− a)t2

t(ξ) = ∆ +
ab

b+ (a− b)ξ

Choose among many lights ∝ 1/D

VANCOUVER, BC | CULVER CITY, CA 11

And finally I’ll mention that for many lights you want to select
a light according to 1/D: the inverse of the distance between
the light and the ray. Equiangular sampling is already going to
cancel out the inverse squared falloff so all that is left is the
distance D from the numerator of the pdf that will move to the
denominator when you divide by it.

We have more details about this in our HPG paper from last
year.



Heterogeneous Volumes

Homogeneous Transmittance:

T(t) = exp (−µt t)
pdf(t) = µt exp (−µt t)
cdf(t) = 1− exp (−µt t)

t(ξ) =
− log (1− ξ)

µt

Three strategies:

• Analytic (Exact)
• Ray Marching (Biased)
• Null Scattering (Stochastic)

t
VANCOUVER, BC | CULVER CITY, CA 12

So those are the basics of single scattering, but I haven’t said
anything about transmittance. If the volume has constant
density, the formula is simple, and finding a pdf is easy…



Heterogeneous Volumes

Heterogeneous Transmittance:

T(t) = exp

(
−
∫ t

0
µt (xs)ds

)
pdf(t) = ???

cdf(t) = ???

t(ξ) = ???

Three strategies:

• Analytic (Exact)
• Ray Marching (Biased)
• Null Scattering (Stochastic)

t VANCOUVER, BC | CULVER CITY, CA 12

…but as soon as we allow the density to change as a function
of position, the equation looks pretty intractable. Remember
that in a production renderer, the inside of that integral is
computed by a procedural shader or by accessing some voxel
data.



Heterogeneous Volumes

Heterogeneous Transmittance:

T(t) = exp

(
−
∫ t

0
µt (xs)ds

)
pdf(t) = ???

cdf(t) = ???

t(ξ) = ???

Three strategies:

• Analytic (Exact)
• Ray Marching (Biased)
• Null Scattering (Stochastic)

t VANCOUVER, BC | CULVER CITY, CA 12

There are three basic strategies we can take to tackle this
equation:

The Analytic scheme, where we can somehow exactly solve the
equation (this actually includes regular voxel grids).

Ray marching, which is a biased but consistent technique (and
is also the one we use).

And finally the null scattering method which is an unbiased
but stochastic solution.

So let me describe each case.



Analytic / Biased Ray Marching

VANCOUVER, BC | CULVER CITY, CA 13

The analytic and biased techniques are actually fairly similar
so we’ll start with those.

I’ll assume that we’ve already figured out where the ray
intersects the volumes (I’ll be talking more about this in a
minute).



Analytic / Biased Ray Marching

Split ray into segments

VANCOUVER, BC | CULVER CITY, CA 13

Then we split the ray into little segments. Either by exactly
intersecting the voxels, or by just taking uniform steps.



Analytic / Biased Ray Marching

Run shader once per segment (front to back)

VANCOUVER, BC | CULVER CITY, CA 13

Then we can run the shader in each step (or for the analytic
case you use the voxel corners to exactly add up the density).

Of course we do this from front to back so we can stop early if
we accumulate enough opacity.



Analytic / Biased Ray Marching

Store µsi ,µti ,Ti = Ti−1e
−µti−1∆i−1 and phase function

Ti enables piecewise exponential reconstruction of transmittance

VANCOUVER, BC | CULVER CITY, CA 13

If we store the density information about each step, we can
build a piecewise representation of the volume that lets us
compute the transmittance for any point along the ray.

In the biased case we assume we have small homogeneous
segments. In the analytic case we have small gradients of
density depending on which interpolation kernel we want.



Analytic / Biased Ray Marching

Given any t, locate segment by binary search

t

VANCOUVER, BC | CULVER CITY, CA 13

Once we have this table, we can quickly evaluate the
transmittance anywhere we want.



Analytic / Biased Ray Marching

Can calculate lighting at any point (using any pdf)

t

VANCOUVER, BC | CULVER CITY, CA 13

That means we are free to use whatever pdf we want as well.



Analytic / Biased Ray Marching

pdf(t) ∝ µs(t) T(t) works well (+ MIS with equiangular for NEE)

t

VANCOUVER, BC | CULVER CITY, CA 13

In fact, since we already built a table for the transmittance, we
might as well tabulate a pdf at the same time. Making it
proportional to scattering times transmittance works well.

And for next event estimation you can combine this with
equiangular sampling through MIS.

Or if you want to be even more accurate, you can tabulate
information about the lights directly into the table and get
joint importance sampling. Of course this is slower, so in our
renderer we just use the MIS approach.



Biased Ray Marching - Step Size

Step Size = 1×

Speed⇔ Bias
Faster renders without extra variance, but slight loss in density

VANCOUVER, BC | CULVER CITY, CA 14

But let me just concentrate on the ray marching itself.

If you did your ray marching very carefully through the voxels,
you can make this method exact. If you don’t have voxels and
just assumed each little segment was homogeneous you have
a bit of bias.

Let’s see what happens when we increase the step size on
these 4 procedural scenes…



Biased Ray Marching - Step Size

Step Size = 2×

Speed⇔ Bias
Faster renders without extra variance, but slight loss in density

VANCOUVER, BC | CULVER CITY, CA 14

…doubling the step-size…



Biased Ray Marching - Step Size

Step Size = 4×

Speed⇔ Bias
Faster renders without extra variance, but slight loss in density

VANCOUVER, BC | CULVER CITY, CA 14

…4 times…The second volume is starting to show some artifacts



Biased Ray Marching - Step Size

Step Size = 8×

Speed⇔ Bias
Faster renders without extra variance, but slight loss in density

VANCOUVER, BC | CULVER CITY, CA 14

…8 times…



Biased Ray Marching - Step Size

Step Size = 16×

Speed⇔ Bias
Faster renders without extra variance, but slight loss in density

VANCOUVER, BC | CULVER CITY, CA 14

At 16 times the original step size we definitely see some issues
on the volume with thin features, but the others still look
reasonable even if they aren’t correct.

Keep in mind that these renders were 16 times faster. So we
are just trading speed for bias, but not extra variance which is
a nice property.



Null Scattering [Miller et al., 2019]

VANCOUVER, BC | CULVER CITY, CA 15

Now let’s look at null scattering methods. Hopefully you had a
chance to catch the paper presented yesterday in the volume
session, but I’ll try to cover the main idea again quickly.



Null Scattering [Miller et al., 2019]

Increase the density to µ̄ = maxµt(x)

VANCOUVER, BC | CULVER CITY, CA 15

First we increase the density of each volume to be equal to its
maximum. This turns every heterogeneous volume into a
homogeneous one.



Null Scattering [Miller et al., 2019]

Sample with µ̄e−µ̄t, average step length is 1
µ̄

VANCOUVER, BC | CULVER CITY, CA 15

This makes the transmittance easy to sample again! We can
sample from this transmittance and get candidate points
inside the volume.

The steps are going to be random, but on average they’ll be 1 /
density. In other words, the more dense the volume is, the
smaller steps we’ll need to take.



Null Scattering [Miller et al., 2019]

Restore energy with µn = µ̄− µt forward scattering

VANCOUVER, BC | CULVER CITY, CA 15

Of course we want a picture of clouds, not giant boxes. To get
back to the picture of the volume we actually want, we turn the
particles that filled up our volume into null scattering
particles. We call it null scattering because it just scatters all
the light forward as if it wasn’t there at all.

So basically we gave up on the complicated expression for
transmittance and just replaced it with a multiple scattering
problem instead. But since the null scattering event is really
simple, we just end up with a form of stochastic ray marching.



Null Scattering [Miller et al., 2019]

Random walk stops if µt = µ̄ because µn = 0

VANCOUVER, BC | CULVER CITY, CA 15

This random walk down the ray will terminate if we ever sample
a density exactly equal to the maximum because we wouldn’t
have any null particles there to scatter us forward. This makes
the ray marching fast, but can be a problem in thin volumes.



Null Scattering [Miller et al., 2019]

Increasing µ̄ increases chance of visiting the whole ray

VANCOUVER, BC | CULVER CITY, CA 15

What you can do is force the ray marching to take extra steps
by increasing the density bound.

This helps a lot with thin volumes or if there is bright emission
either inside or behind the volume.



Null Scattering [Miller et al., 2019]

Continue path from any sample (choose ∝ µsiTi)

ti

VANCOUVER, BC | CULVER CITY, CA 15

And once we’re done with the random walk, we have a list of
interaction points with the volume that we can choose from to
continue the path.

Just like before, we can make this choice proportionally to
scattering times transmittance.

You could also decide to stop marching earlier by randomly
choosing real scattering over null scattering, but that also
leads to higher variance for the same reason that using a tight
density bound adds variance - you’d be stopping early and
ignoring anything beyond that point.



Null Scattering [Miller et al., 2019]

Mix with arbitrary pdfs as well!

t

VANCOUVER, BC | CULVER CITY, CA 15

And like you heard the presentation yesterday - its ok to mix
other techniques like equiangular sampling because we now
have a way of thinking about the pdf for the entire path.

When you pick an arbitrary distance t along the ray, you just
need to remember to account for the null scattering events
that lead up to that point.



Null Scattering - Step Size (16 rays/pixel)

Exact µ̄ is noisy for thin media

VANCOUVER, BC | CULVER CITY, CA 16

The great thing about this approach is that we can be
confident that we’ll eventually get the right answer, as long as
our density bound is correct.

The downside is that we’ve introduced a lot more stochastic
decisions which has added lots of noise.

Here are the same 4 procedural scenes as before. When we
use the exact bounding density, the picture is fairly noisy
because of that random early termination.

But on the plus side, these renders were much faster to
compute.



Null Scattering - Step Size (16 rays/pixel)

Relaxing to max(µ̄, 1
stepsize) improves quality

VANCOUVER, BC | CULVER CITY, CA 16

We can converge a bit faster by artificially increasing the
bounding density to a value related to the step size we used
before. The number of ray marching steps is now roughly
equal to the biased method, which reduces the variance in
those thin regions.

Of course the volumes that were fairly dense don’t show as
much improvement because the step size was already small.



Null Scattering - Step Size (16 rays/pixel)

Ray Marching produces less noise for an equal step count

VANCOUVER, BC | CULVER CITY, CA 16

But even though we can improve quality by forcing more steps,
ray marching generally gives a lot less noise because its
making fewer random decisions.

I’m showing results with a tiny number of rays here so that you
can hopefully see the difference in the slides, but the
difference is still visible even after taking hundreds of samples.



Decomposition Tracking [Kutz et al., 2017]

Sampling overlapping densities µA and µB can be done independently:

• Sample tA ∝ T(t, µA)
• Sample tB ∝ T(t, µB)
• min(tA, tB) ⇐⇒ tA+B ∝ T(t, µA+B)

VANCOUVER, BC | CULVER CITY, CA 17

Another important technique to know about for sampling
transmittance is decomposition tracking.

Transmittance has the nice property that sampling a random
distance from two mediums independently and then taking
the minimum gives the same distribution as sampling
transmittance from the combined medium.

So if we somehow had a cheap medium A that overlapped with
a more expensive medium B, we can limit the amount of work
we spend on B by sampling A first. I’ll refer you to the paper by
Kutz et al from 2017 for all the details, but this can be used to
speed up null scattering methods even more by doing fewer
lookups in dense regions.



Decomposition Tracking [Kutz et al., 2017]

Fewer lookups =⇒ Deeper paths

VANCOUVER, BC | CULVER CITY, CA 18

Just to illustrate the idea, we can take the Disney cloud
dataset, and decompose it…



Decomposition Tracking [Kutz et al., 2017]

Sparse Control Volume

+

Thin Residual Volume

Fewer lookups =⇒ Deeper paths

VANCOUVER, BC | CULVER CITY, CA 18

Into one sparse volume that is dense but has only coarse
voxels…

…and a residual volume that has all the outer details. Of
course in practice you don’t really make two volumes, you just
store the minimum density for every block of voxels together
with the maximum density.



Decomposition Tracking [Kutz et al., 2017]

Fewer lookups =⇒ Deeper paths

VANCOUVER, BC | CULVER CITY, CA 18

This is one of the techniques to allow the null scattering
methods to scale to deeper paths.

But actually you can do something very similar with ray
marching methods which is how this picture was rendered. If
the inside of the volume is flagged as a dense block, we can
take a single large step there and save a similar amount of
work.

But decomposition tracking is slightly more general since it
also works in regions that aren’t completely uniform.



Ray Marching Comparison

Analytic Ray Marching Null Scattering

3 Exact 7 Biased 3 Unbiased
3 Parameter Free 7 Step Size 7 µ̄

3 1 voxel/step 3 ∼ 1 voxel/step 7 < 1 voxel/step
3 No rand. calls 3 2 rand. calls 7 O(n) rand. calls

7 Speed fixed 3 Speed↔ Bias 3 Speed↔ Variance
7 Voxels only 3 Procedural 3 Procedural

Optimal method still active area of research

VANCOUVER, BC | CULVER CITY, CA 19

So I showed three different methods, which one should you
use?



Ray Marching Comparison

Analytic Ray Marching Null Scattering
3 Exact 7 Biased 3 Unbiased

3 Parameter Free 7 Step Size 7 µ̄

3 1 voxel/step 3 ∼ 1 voxel/step 7 < 1 voxel/step
3 No rand. calls 3 2 rand. calls 7 O(n) rand. calls

7 Speed fixed 3 Speed↔ Bias 3 Speed↔ Variance
7 Voxels only 3 Procedural 3 Procedural

Optimal method still active area of research

VANCOUVER, BC | CULVER CITY, CA 19

Ray marching’s main weakness is that it is biased. Most of the
time this bias isn’t visually objectionable, but changing the
appearance might not be acceptable if you are just trying to
speedup a render.



Ray Marching Comparison

Analytic Ray Marching Null Scattering
3 Exact 7 Biased 3 Unbiased

3 Parameter Free 7 Step Size 7 µ̄

3 1 voxel/step 3 ∼ 1 voxel/step 7 < 1 voxel/step
3 No rand. calls 3 2 rand. calls 7 O(n) rand. calls

7 Speed fixed 3 Speed↔ Bias 3 Speed↔ Variance
7 Voxels only 3 Procedural 3 Procedural

Optimal method still active area of research

VANCOUVER, BC | CULVER CITY, CA 19

Ray marching and null scattering both need an extra
parameter in practice. Of course both step size and density
bounds can be automated, but it is something extra that you
have to worry about.

If your volume is fully procedural, usually figuring out the
maximum density is easier than figuring out the scale of the
smallest detail, which is also worth keeping in mind.



Ray Marching Comparison

Analytic Ray Marching Null Scattering
3 Exact 7 Biased 3 Unbiased

3 Parameter Free 7 Step Size 7 µ̄

3 1 voxel/step 3 ∼ 1 voxel/step 7 < 1 voxel/step
3 No rand. calls 3 2 rand. calls 7 O(n) rand. calls

7 Speed fixed 3 Speed↔ Bias 3 Speed↔ Variance
7 Voxels only 3 Procedural 3 Procedural

Optimal method still active area of research

VANCOUVER, BC | CULVER CITY, CA 19

Analytic methods visit each voxel exactly once without needing
any random numbers.

Ray marching just needs two random numbers to get a
stratified offset and jitter the number of steps. Then it can take
roughly one step per voxel.

But with null scattering, the steps are completely random
which means we might visit the same voxel many times or skip
over several voxels at once. This makes the data access less
coherent. If the medium is very dense, we might be forced to
take very tiny steps along the ray.

We also need to take a new random number in every step
which adds some overhead.



Ray Marching Comparison

Analytic Ray Marching Null Scattering
3 Exact 7 Biased 3 Unbiased

3 Parameter Free 7 Step Size 7 µ̄

3 1 voxel/step 3 ∼ 1 voxel/step 7 < 1 voxel/step
3 No rand. calls 3 2 rand. calls 7 O(n) rand. calls

7 Speed fixed 3 Speed↔ Bias 3 Speed↔ Variance

7 Voxels only 3 Procedural 3 Procedural

Optimal method still active area of research

VANCOUVER, BC | CULVER CITY, CA 19

With analytic methods execution speed is pre-determined by
the resolution of the data. This means if you want your render
to go faster, you will have to somehow reduce the number of
voxels. The TOG paper on the Manuka renderer describes a
data structure that changes resolution with distance to camera
for instance.

We already talked about the speed/bias tradeoff for ray
marching. The speed/variance tradeoff for null scattering is
harder to analyse since the extra variance will usually have to
be compensated some other way. So its a bit harder to
quantify the benefit in isolation.



Ray Marching Comparison

Analytic Ray Marching Null Scattering
3 Exact 7 Biased 3 Unbiased

3 Parameter Free 7 Step Size 7 µ̄

3 1 voxel/step 3 ∼ 1 voxel/step 7 < 1 voxel/step
3 No rand. calls 3 2 rand. calls 7 O(n) rand. calls

7 Speed fixed 3 Speed↔ Bias 3 Speed↔ Variance
7 Voxels only 3 Procedural 3 Procedural

Optimal method still active area of research

VANCOUVER, BC | CULVER CITY, CA 19

Analytic methods also have the drawback of only working for
regular voxel data.

On the other hand ray marching and null scattering work even
for procedural densities.



Ray Marching Comparison

Analytic Ray Marching Null Scattering
3 Exact 7 Biased 3 Unbiased

3 Parameter Free 7 Step Size 7 µ̄

3 1 voxel/step 3 ∼ 1 voxel/step 7 < 1 voxel/step
3 No rand. calls 3 2 rand. calls 7 O(n) rand. calls

7 Speed fixed 3 Speed↔ Bias 3 Speed↔ Variance
7 Voxels only 3 Procedural 3 Procedural

Optimal method still active area of research

VANCOUVER, BC | CULVER CITY, CA 19

This isn’t meant to be an exhaustive list, but these are some of
the pros and cons of the various methods.

The paper presented yesterday on the path integral
formulation of null scattering has definitely opened up a new
way of thinking about the null scattering techniques that
suggests lots of new ways to tackle the problem.



• Intersecting Volumes
• Meshes
• Sparse Regular Grids
• Sparse Frustum Grids
• Motion Blur

• Overlap Handling
• Volume Primitives
• Surface Defined Volumes

VANCOUVER, BC | CULVER CITY, CA 20

Now that we’ve covered the basics of sampling, let me switch
gears a bit and talk about some other implementation aspects
of volumes.

We talked about marching along the ray, but not about how we
come up with the intervals that we do this marching between.

Related to this I’ll cover overlap handling in its various forms.



Intersecting Volumes - Shapes

Surface tracing only needs nearest hit

struct srfhit {
float t;
int geomID;
};

VANCOUVER, BC | CULVER CITY, CA 21

When ray tracing surfaces, Intersections are easy to represent:
just a distance along the ray and a primitive identifier.



Intersecting Volumes - Shapes

Volume tracing needs hit interval

struct volhit {
float t[2];
int geomID;
};

VANCOUVER, BC | CULVER CITY, CA 21

When rendering volumes, we want to know a range of
distances that corresponds to the overlap between the shape
and the ray segment.

This is still simple to represent, we just have a pair of
distances now instead of just one.

This is easy for convex shapes like a sphere…



Intersecting Volumes - Shapes

Easy for convex shapes

struct volhit {
float t[2];
int geomID;
};

VANCOUVER, BC | CULVER CITY, CA 21

…or a box, because the intersection test always produces a
front and back hit.



Intersecting Volumes - Meshes

Concave shapes may need several hit intervals

struct volhit {
float t[2];
int geomID;
volhit* next;
};

VANCOUVER, BC | CULVER CITY, CA 21

For meshes, things get more interesting. One approach is to
use the surface intersection routine to build a list of all
possible hits along the ray and pair them up to get the
intervals.

And because we might have more than one interval, we’ll need
to keep a list of intervals.



Intersecting Volumes - Meshes

Count hits to determine overlap

struct volhit {
float t[2];
int geomID;
volhit* next;
};

VANCOUVER, BC | CULVER CITY, CA 21

If the ray starts inside the shape, the number of hits will be
odd and you have to pair the first hit with the origin.



Intersecting Volumes - Meshes

Count hits on infinite ray even for short rays

struct volhit {
float t[2];
int geomID;
volhit* next;
};

VANCOUVER, BC | CULVER CITY, CA 21

If the ray starts and ends inside the mesh - you need to make
sure you still count hits using the infinite ray to resolve the
intervals correctly.

The good thing about the intersection counting approach is
that it figures out the inside/outside status of each ray from
scratch, so there’s no need to maintain a stack.



Intersecting Volumes - Sparse Grids

Intersect bounds for voxel data

struct volhit {
float t[2];
int geomID;
volhit* next;
};

VANCOUVER, BC | CULVER CITY, CA 21

Of course the most common type of volume primitive is the
voxel grid.

You could just intersect the bounding box of the the grid, but
this is not efficient because large portions might not contain
any data at all.



Intersecting Volumes - Sparse Grids

Exploit sparse structure to skip empty space

struct volhit {
float t[2];
int geomID;
volhit* next;
};

VANCOUVER, BC | CULVER CITY, CA 21

Voxel grids are typically stored as sparse, two level grids to
save memory.

We can take advantage of this to also get shorter volume hit
intervals by traversing the coarse portion of the grid and
keeping track of when we cross into a region with data defined.

The OpenVDB format is an even fancier version of this with
more than two levels, but the open source library implement
this traversal function for you.



Intersecting Volumes - Sparse Frustum Grids

Perspective improves detail along x, y

struct volhit {
float t[2];
int geomID;
volhit* next;
};

VANCOUVER, BC | CULVER CITY, CA 21

Finally, we have frustum aligned sparse grids. This is when we
warp our voxel data to match the camera frustum to increase
resolution where it matters more.

Here finding the intersection is a bit more involved, so I’ll
discuss it in a bit more detail.



Intersecting Volumes - Sparse Frustum Grids

Regular Grid - 954× 398× 960 - 540Mb

VANCOUVER, BC | CULVER CITY, CA 22

First just to show an example, this volume is about 500Mb
stored as a regular grid



Intersecting Volumes - Sparse Frustum Grids

Frustum Grid - 874× 409× 85 - 52Mb

VANCOUVER, BC | CULVER CITY, CA 22

And only 52Mb as a frustum grid.



Intersecting Volumes - Sparse Frustum Grids

Regular Grid - 954× 398× 960 - 540Mb

VANCOUVER, BC | CULVER CITY, CA 22

Only if we looked at the volume from the side would we see
that the volume…



Intersecting Volumes - Sparse Frustum Grids

Frustum Grid - 874× 409× 85 - 52Mb

VANCOUVER, BC | CULVER CITY, CA 22

…is actually much lower resolution, but this isn’t visible at all
from the camera.



Ray intervals for Sparse Frustum Grids

How to extend the traversal algorithm to warped grids?

VANCOUVER, BC | CULVER CITY, CA 23

So frustum grids are a great way to save memory, especially for
animated volumes.

But now its not so easy to walk through the grid anymore,
because the planes of the grid aren’t parallel.

Undoing the mapping isn’t simple either because the
perspective division is going to affect the distribution of
distances along the ray.



Ray intervals for Sparse Frustum Grids [Wrenninge et al., 2013]

Approach:

• Build kd-tree in grid space [Yue et al., 2010]
• Transform planes to world space during traversal
• Supports motion blurred transforms

VANCOUVER, BC | CULVER CITY, CA 24

So rather than try to figure out exactly how to account for the
distortion of the mapping, we instead decided to build a
kd-tree in grid space, and then map it to world space during
traversal.

In other words, rather than trying to move the ray into the
space of the acceleration structure, we move the acceleration
structure into the space of the ray.

This works even the mapping is animated because we do the
transformation on the fly during traversal.



Ray intervals for Sparse Frustum Grids [Wrenninge et al., 2013]

Axis-aligned plane equations have a simple form:

x = px ⇒
(
x y z 1

)
·


1
0
0

−px

 = 0

(similar equations for Y and Z)

VANCOUVER, BC | CULVER CITY, CA 25

Just to explain how this works, you can represent any plane as
a column vector like this. If its axis aligned it will have this very
simple form.



Ray intervals for Sparse Frustum Grids [Wrenninge et al., 2013]

Transformed plane can be directly extracted from the frustum matrix:
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 ·


1
0
0

−px

 =


m11 − px ·m14

m21 − px ·m24

m31 − px ·m34

m41 − px ·m44



VANCOUVER, BC | CULVER CITY, CA 26

We can transform that column vector by the matrix, and since
it has a simple form this boils down to a simplified expression
that just picks up certain matrix entries.

And that’s it! During traversal we use that transformed plane
and traverse the kd-tree in the normal way.



Ray intervals for Sparse Frustum Grids [Museth, 2014]

Alternative approach: Overlay a regular grid

VANCOUVER, BC | CULVER CITY, CA 27

So that was our approach, but I’ll quickly mention another
technique that used a similar trick only using a regular grid
instead of a kd-tree.

This is not quite as accurate though, because here you need to
resample onto a regular structure. So you might need extra
resolution to capture the edges and you might have to be extra
conservative if the mapping is animated.



Motion Blur

• Transformation Blur

• Deformation Blur

• Velocity Blur
• Temporal Volumes (4D)

µ(x, t) ≈ µ(x− t v(x))

VANCOUVER, BC | CULVER CITY, CA 28

Now let me say a few words about motion blur. This is
obviously an important ingredient of production rendering.



Motion Blur

• Transformation Blur

• Deformation Blur

• Velocity Blur
• Temporal Volumes (4D)

µ(x, t) ≈ µ(x− t v(x))

VANCOUVER, BC | CULVER CITY, CA 28

Transformation motion blur when only the object transform is
changing is easy to deal with and mostly comes for free if your
volume primitives are part of the same acceleration structure
as surfaces.



Motion Blur

• Transformation Blur
• Deformation Blur

• Velocity Blur

• Temporal Volumes (4D)

µ(x, t) ≈ µ(x− t v(x))

VANCOUVER, BC | CULVER CITY, CA 28

Deformation blur on voxel data is a bit harder.



Motion Blur

• Transformation Blur
• Deformation Blur

• Velocity Blur

• Temporal Volumes (4D)

µ(x, t) ≈ µ(x− t v(x))

VANCOUVER, BC | CULVER CITY, CA 28

One approach is to use a velocity field to blur the density like
I’m showing here. This is similar to what fluid simulators do
internally. But this is just a first order approximation.

For example the source of the fluid on the right there is
blurred even though it should be stationary.

On top of this this we have to do extra ray marching with this
approach because empty regions might have density pulled
into them by the velocity. So we have to dilate the grid of
active blocks and that makes things slower.



Motion Blur

• Transformation Blur
• Deformation Blur

• Velocity Blur
• Temporal Volumes (4D)

µ(x, t) ≈ µ(x− t v(x))

VANCOUVER, BC | CULVER CITY, CA 28

A better solution is to actually use a 4 dimensional grid. This
sounds like it would be a lot more data, but actually most
voxels are either empty or slowly changing. So it compresses
quite well.



Motion Blur - Temporal Volumes [Wrenninge, 2016]

Velocity Blur Temporal Volumes

VANCOUVER, BC | CULVER CITY, CA 28

Here are some images I borrowed from the paper showing how
a moving flame is properly blurred with this method.

Another benefit is that we don’t need to pad the grids more
than necessary for finding intervals.

And even though each voxel stores a bit more data, its all kept
close together in memory, which is faster than doing a lookup
for velocity followed by an offset lookup for density.

This approach is implemented in Field3D 2.0 and higher. The
only real downside is that to create high quality temporal data,
the compression needs to be interleaved into the fluid
simulator.



Overlap Handling

• Volume Primitives (IOR = 1, no boundary)
• Overlap is additive, all mediums are summed
• Need list of overlapping intervals along the ray

• Surface Defined Volumes (IOR ≥ 1, with boundary)
• Overlap is exclusive, one medium “wins”
• Priority defined by the artist

VANCOUVER, BC | CULVER CITY, CA 29

Now that we know how to find where the volume along the ray,
we need some rules to decide what to do when the intervals of
different volume primitives overlap.

Our renderer distinguishes between two cases.

First we have the volume primitives I just mentioned. These
don’t have any boundary and the densities are additive.

Second, we have surface defined volumes. These are actually
defined through surface shading, in other words we hit the
boundary and the surface shader will tell us if there is a
medium inside the shape or not. For these the overlap rules is
exclusive and driven by a priority system.

Let me briefly describe each case.



Overlap Handling - Volume Primitives

Sort and split all segments into non-overlapping intervals.

Each segment can refer to multiple primitives.

A
B
C

VANCOUVER, BC | CULVER CITY, CA 30

Like I mentioned before, the ray intersection returns a list of
segments, and these might overlap.

When they do we need to split them into disjoint sets and sort
them…



Overlap Handling - Volume Primitives

Sort and split all segments into non-overlapping intervals.
Each segment can refer to multiple primitives.

B
A+B
A
C

VANCOUVER, BC | CULVER CITY, CA 30

…like this. The segment that overlapped both A and B keeps a
reference to both since we’ll need to run both shaders if we ray
march through that region.



Overlap Handling - Volume Primitives

Transmittance for shadow rays can be computed without splitting!
TA+B+C = TATBTC

A
B
C

VANCOUVER, BC | CULVER CITY, CA 30

Also remember that you only need to do this rays along the
primary path.

For shadow rays, you can ray march each segment
independently and just multiply the results together so the
sorting and splitting isn’t required.



Overlap Handling - Alternative Designs

• Aggregate Volumes [Fong et al., 2017]
• Spatially partition volume primitives
• 3 Lower cost per ray
• 3 Acceleration structure can store µ̄ for null scattering
• 7 Higher upfront cost
• 7 Less accurate around edges

• Decomposition Tracking [Kutz et al., 2017]
• Samples transmittance stochastically

VANCOUVER, BC | CULVER CITY, CA 31

But there are other ways of dealing with overlap:

For example, instead of sorting and splitting each ray, you can partition the volume
primitives spatially ahead of time. Then each region of space knows which volumes it
contains and each ray can just walk through the structure and you don’t even need
those volume intersection tests at all.

You can store density bounds in the structure directly if you are using null scattering
so ray marching and traversal happen together.

On the other hand, you do have a new kind of structure to build before rendering
starts. And because the structure is axis aligned, volumes that aren’t might lead to too
much ray marching.

This was all described in the volume rendering course from 2 years ago, so be sure to

check those course notes for all the details. Both approaches can be made to work in

a production context, so its really down to implementation details as to which one is

faster, especially if structure is also driving the ray marching scheme.



Overlap Handling - Alternative Designs

• Aggregate Volumes [Fong et al., 2017]
• Spatially partition volume primitives
• 3 Lower cost per ray
• 3 Acceleration structure can store µ̄ for null scattering
• 7 Higher upfront cost
• 7 Less accurate around edges

• Decomposition Tracking [Kutz et al., 2017]
• Samples transmittance stochastically

VANCOUVER, BC | CULVER CITY, CA 31

And like I mentioned earlier, decomposition tracking is also a
way to handle overlapping volumes, but it does limit you to
transmittance sampling only.



Medium Tracking - Surface Defined Volumes

• Surfaces can define an interior medium

• Critical for correct rendering of liquids
• Liquid is modeled slightly overlapping glass
• IOR computed from medium on each side

VANCOUVER, BC | CULVER CITY, CA 32

That was volume primitives with additive overlap, now lets talk
about surface defined volumes.

This is the case where the surface shader is the one
responsible for deciding what the medium properties are.

From the point of view of the artist, everything is contained in
the surface shader. In this picture I just have a glass shader
and a liquid shader.



Medium Tracking - Surface Defined Volumes

• Surfaces can define an interior medium
• Critical for correct rendering of liquids

• Liquid is modeled slightly overlapping glass
• IOR computed from medium on each side

VANCOUVER, BC | CULVER CITY, CA 32

This is really critical for rendering liquids correctly.

Here I’ve shown how things look if you just model the liquid as
slightly smaller than the glass. The air gap gets magnified and
it looks like the liquid is floating inside the glass (which it
actually is).



Medium Tracking - Surface Defined Volumes

• Surfaces can define an interior medium
• Critical for correct rendering of liquids
• Liquid is modeled slightly overlapping glass
• IOR computed from medium on each side

VANCOUVER, BC | CULVER CITY, CA 32

By modeling the liquid slightly overlapping the glass, we get
the right picture because we get a clean transition from one
medium directly to the next and also because we can get the
right ratio of refractive indices.



Overlap Handling - Surface Defined Volumes

Schmidt et al., “Simple Nested Dielectrics in Ray Traced Images”, 2002

• Each ray maintains a stack of mediums it has entered
• At each interface, decide which medium “wins”
• Some hits will be discarded (but still update the stack)

VANCOUVER, BC | CULVER CITY, CA 33

Most renderers that support this, follow the 2002 paper from
Schmidt and Budge. The basic idea is that each ray maintains
the stack of all mediums its entered so far.

Each time we hit a surface, there are rules to decide which
medium “wins” (based on their priority). This decides if the
surface is actually visible or not.

Either way, the stack is updated so we remember that we’ve
entered or left the given medium.



Overlap Handling - Surface Defined Volumes

Schmidt et al., “Simple Nested Dielectrics in Ray Traced Images”, 2002

• Each ray maintains a stack of mediums it has entered
• At each interface, decide which medium “wins”
• Some hits will be discarded (but still update the stack)

← Model
Glass
Liquid

VANCOUVER, BC | CULVER CITY, CA 33

The example from before would looks like this…



Overlap Handling - Surface Defined Volumes

Schmidt et al., “Simple Nested Dielectrics in Ray Traced Images”, 2002

• Each ray maintains a stack of mediums it has entered
• At each interface, decide which medium “wins”
• Some hits will be discarded (but still update the stack)

← Model

Render →

Glass
Liquid

Air/Glass
Air/Liquid
Glass/Liquid
Glass
Liquid

VANCOUVER, BC | CULVER CITY, CA 33

…and at render time it turns into this through these rules.

So the glass wins over the liquid where they overlap, but
because we enter the liquid before leaving the glass we can
get a clean transition from glass to liquid without having had
to model it exactly which is super important for cases where
the liquid might be animated.



Overlap Handling - Medium Priority

Left > Right Left < Right

Left = Right Left = Right = Off

VANCOUVER, BC | CULVER CITY, CA 34

Just like in the paper, we give the artists control over which
medium wins though a priority level.



Overlap Handling - Medium Priority

Left > Right Left < Right Left = Right

Left = Right = Off

VANCOUVER, BC | CULVER CITY, CA 34

We also extended the rules a bit to cover the case where the
priorities are equal to allow for merging interiors of surfaces.
This can be handy when an object was modelled as multiple
meshes but the artist wants them treated as a single
volumetric interior.



Overlap Handling - Medium Priority

Left > Right Left < Right Left = Right Left = Right = Off

VANCOUVER, BC | CULVER CITY, CA 34

We also added rules for a special off priority that acts as a fast
default with a few shortcuts. In this case surface hits are
always accepted which keeps things fast for the common case.



Medium Stack Initialization

Ray starting in vacuum behave correctly.

VANCOUVER, BC | CULVER CITY, CA 35

The last implementation detail to discuss is how we actually
decide the starting state of the ray stack.

When the camera starts in empty space, everything is fine. An
empty stack is the correct start state.



Medium Stack Initialization

Rays starting underwater need an initial stack

VANCOUVER, BC | CULVER CITY, CA 35

But if the camera start inside a medium (like underwater in this
case) we need to have some way to specify the starting stack.

Notice how this first ray here doesn’t even intersect the surface
of the water all because it was modelled as just a single
displaced plane.



Medium Stack Initialization

Trace a vertical probe ray to figure out initial stack

VANCOUVER, BC | CULVER CITY, CA 35

Our solution is to fire a single probe ray at the start of the
render, going all the way through all surfaces to figure out the
initial stack by counting hits.



Medium Stack Initialization

Water surface does not need to be closed

VANCOUVER, BC | CULVER CITY, CA 35

The direction you choose is arbitrary in principle, but we
picked up because of this water case where the geometry
might not actually be a closed volume.



Medium Stack Initialization

High priority empty medium can act as clipping plane

VANCOUVER, BC | CULVER CITY, CA 35

Another case we ran into was what to do when the camera is
hovering near the surface and wants to see above and below
the water at the same time.

We use a high priority box that acts like a clipping plane. This
makes sure we can cross the water to find its medium without
actually registering a hit right away.



Medium Stack Initialization

Camera rays can see above and below water in the same image

VANCOUVER, BC | CULVER CITY, CA 35

This means we can see both above and below the water in the
same frame. And the artist never has to worry about manually
tagging anything which is really handy because the camera
and water can be animated.



Open Problems

VANCOUVER, BC | CULVER CITY, CA 36

Now I just want to say a few words about open problems going
forward.



Open Problems - Ray Marching

• Unify biased/unbiased methods?
• Stratification for unbiased methods?
• Analyze speed/variance tradeoffs for null scattering

VANCOUVER, BC | CULVER CITY, CA 37

I showed 3 different approaches to ray marching which are all
used in different production renderers. And they are all
comparable now that we understand how to construct the pdf
even in the null scattering case.

Deciding which to use is not completely clear cut just yet. The
biased approach in particular has some advantages that
haven’t been deeply explored, like the ability to take stratified
steps. I think it should be possible to analyse the
bias/variance trade-off here and maybe even find intermediate
schemes that bridge the gap between the two methods.

And null scattering methods can tradeoff speed and variance
which is handy but since higher variance usually implies taking
extra samples, there is more analysis to be done over when its
appropriate to do this in the context of different path sampling
techniques.



Open Problems - Correlated Media

Extending the RTE to correlated particles:

• [Bitterli et al., 2018], [Jarabo et al., 2018], [d’Eon, 2018], [Guo et al., 2019]
• Efficient sampling?
• Artist friendly parameters?
• Spatially varying correlation?

Efficient methods for explicit granular media (sand, snow, …):

• [Meng et al., 2015], [Müller et al., 2016]
• Unify special purpose methods with RTE?

VANCOUVER, BC | CULVER CITY, CA 38

Everything I’ve been talking about today is actually based on
the assumption that the volume is made up a statistically
independent particles. Changing this assumption actually
requires a fairly big change to the theory.

Several papers have been digging into this recently, but there is
still a lot of work to be done in this area. The most interesting
aspect to us in production is figuring out how to expose these
extra degrees of freedom to the artist in a meaningful way, and
figuring out what it means for the correlation parameters to
vary spatially which is part of answering what happens when
different media types overlap each other.

Beyond this, there has been some very nice work on modelling
case where particles are visible like sand and snow. Integrating
these special purpose solutions in a unified way would be nice.



Open Problems - Subsurface Scattering

• Account for dielectric boundary?
• Improve Dwivedi sampling?

• [Křivánek et al., 2014], [Meng et al., 2016]
• Boundary awareness
• Anisotropic scattering
• Corners, thin regions

VANCOUVER, BC | CULVER CITY, CA 39

And finally, although I didn’t have time to talk specifically
about subsurface scattering today, most production renderers
these days are modelling this volumetrically.

Except that in most cases we are still relying on
approximations to deal with how light escapes the boundary.
Properly treating the boundary has a big impact on the
appearance but not many efficient solutions are known.

And while some basic techniques are know for isotropic
scattering, the theory hasn’t been fully investigated for
anisotropic media and several heuristics are still needed for
corners and thin regions.



Thank You For Listening!
SPI @ SIGGRAPH:
Mon, Jul 29, 2-5PM, Women In Animation Chapters
Mon, Jul 29, 6:30-8:35PM, Electronic Theatre
Tue, Jul 30, 3-4PM, Open Color IO BOF
Tue, Jul 30, 4-5PM, Open Shading Language BOF
Wed, Jul 31, 9-12AM, Path Tracing in Production, Part 1
Wed, Jul 31, 1-2PM, AWS Impact of the Cloud on Production
Wed, Jul 31, 2:50-3:10PM, NVIDIA Presents: Ray Tracing Gems 1.1
Thu, Aug 1, 3:45-5:15PM, Making of “Spider-Man: Into the Spider-Verse”

WE ARE HIRING!
Software Engineer - Shader Writer

Software Engineer - Katana
Software Engineer - C++

Software Engineer - Infrastructure
recruiting@imageworks.com

www.imageworks.com/job-postings

VANCOUVER, BC | CULVER CITY, CA 40

And that’s all I have - thanks for listening.

Be sure to come see the Spider-Verse production session
tomorrow and, yes we are hiring!

mailto:recruiting@imageworks.com
http://www.imageworks.com/job-postings


References i

Benedikt Bitterli et al. “A radiative transfer framework for
non-exponential media”. In: ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia) 37.6 (Nov. 2018), 225:1–225:17. doi:
10.1145/3272127.3275103.
Alejandro Conty and Christopher Kulla. “Importance Sampling of
Many Lights with Adaptive Tree Splitting”. In: Proc. ACM Comput.
Graph. Interact. Tech. 1.2 (Aug. 2018), 25:1–25:17. issn: 2577-6193. doi:
10.1145/3233305. url:
http://doi.acm.org/10.1145/3233305.

VANCOUVER, BC | CULVER CITY, CA 41

https://doi.org/10.1145/3272127.3275103
https://doi.org/10.1145/3233305
http://doi.acm.org/10.1145/3233305


References ii

Eugene d’Eon. “A Reciprocal Formulation of Nonexponential
Radiative Transfer. 1: Sketch and Motivation”. In: Journal of
Computational and Theoretical Transport 47.1-3 (2018), pp. 84–115.
doi: 10.1080/23324309.2018.1481433. eprint:
https://doi.org/10.1080/23324309.2018.1481433. url:
https://doi.org/10.1080/23324309.2018.1481433.

VANCOUVER, BC | CULVER CITY, CA 42

https://doi.org/10.1080/23324309.2018.1481433
https://doi.org/10.1080/23324309.2018.1481433
https://doi.org/10.1080/23324309.2018.1481433


References iii

Julian Fong et al. “Production Volume Rendering: SIGGRAPH 2017
Course”. In: ACM SIGGRAPH 2017 Courses. SIGGRAPH ’17. Los Angeles,
California: ACM, 2017, 2:1–2:79. isbn: 978-1-4503-5014-3. doi:
10.1145/3084873.3084907. url:
http://doi.acm.org/10.1145/3084873.3084907.
Jie Guo et al. “Fractional Gaussian Fields for Modeling and Rendering
of Spatially-Correlated Media”. In: ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2019) 38.4 (2019).

VANCOUVER, BC | CULVER CITY, CA 43

https://doi.org/10.1145/3084873.3084907
http://doi.acm.org/10.1145/3084873.3084907


References iv

Adrian Jarabo, Carlos Aliaga, and Diego Gutierrez. “A Radiative
Transfer Framework for Spatially-Correlated Materials”. In: ACM
Transactions on Graphics 37.4 (2018).

Jaroslav Křivánek and Eugene d’Eon. “A Zero-variance-based
Sampling Scheme for Monte Carlo Subsurface Scattering”. In: ACM
SIGGRAPH 2014 Talks. SIGGRAPH ’14. Vancouver, Canada: ACM, 2014,
66:1–66:1. isbn: 978-1-4503-2960-6. doi:
10.1145/2614106.2614138. url:
http://doi.acm.org/10.1145/2614106.2614138.

VANCOUVER, BC | CULVER CITY, CA 44

https://doi.org/10.1145/2614106.2614138
http://doi.acm.org/10.1145/2614106.2614138


References v

Christopher Kulla and Marcos Fajardo. “Importance Sampling
Techniques for Path Tracing in Participating Media”. In: ”Computer
Graphics Forum (Proceedings of the Eurographics Symposium on
Rendering)” 31.4 (June 2012), pp. 1519–1528. doi: 10/f35f4k.
Peter Kutz et al. “Spectral and Decomposition Tracking for Rendering
Heterogeneous Volumes”. In: ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2017) 36.4 (2017), 111:1–111:16. doi:
10.1145/3072959.3073665.

VANCOUVER, BC | CULVER CITY, CA 45

https://doi.org/10/f35f4k
https://doi.org/10.1145/3072959.3073665


References vi

Johannes Meng, Johannes Hanika, and Carsten Dachsbacher.
“Improving the Dwivedi Sampling Scheme”. In: Computer Graphics
Forum (Proceedings of Eurographics Symposium on Rendering) 35.4
(June 2016), pp. 37–44.

Johannes Meng et al. “Multi-Scale Modeling and Rendering of
Granular Materials”. In: ACM Transactions on Graphics (Proceedings
of SIGGRAPH) 34.4 (July 2015). doi: 10.1145/2766949.

VANCOUVER, BC | CULVER CITY, CA 46

https://doi.org/10.1145/2766949


References vii

Bailey Miller, Iliyan Georgiev, and Wojciech Jarosz. “A null-scattering
path integral formulation of light transport”. In: ACM Transactions on
Graphics (Proceedings of SIGGRAPH) 38.4 (July 2019). doi:
10.1145/3306346.3323025.
Thomas Müller et al. “Efficient Rendering of Heterogeneous
Polydisperse Granular Media”. In: ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia) 35.6 (Dec. 2016), 168:1–168:14. doi:
10.1145/2980179.2982429.

VANCOUVER, BC | CULVER CITY, CA 47

https://doi.org/10.1145/3306346.3323025
https://doi.org/10.1145/2980179.2982429


References viii

Ken Museth. “Hierarchical Digital Differential Analyzer for Efficient
Ray-marching in OpenVDB”. In: ACM SIGGRAPH 2014 Talks. SIGGRAPH
’14. Vancouver, Canada: ACM, 2014, 40:1–40:1. isbn: 978-1-4503-2960-6.
doi: 10.1145/2614106.2614136. url:
http://doi.acm.org/10.1145/2614106.2614136.
Charles M. Schmidt and Brian Budge. “Simple Nested Dielectrics in
Ray Traced Images”. In: J. Graphics, GPU, & Game Tools 7 (2002),
pp. 1–8.

VANCOUVER, BC | CULVER CITY, CA 48

https://doi.org/10.1145/2614106.2614136
http://doi.acm.org/10.1145/2614106.2614136


References ix

Magnus Wrenninge. “Efficient Rendering of Volumetric Motion Blur
Using Temporally Unstructured Volumes”. In: Journal of Computer
Graphics Techniques (JCGT) 5.1 (Jan. 2016), pp. 1–34. issn: 2331-7418.
url: http://jcgt.org/published/0005/01/01/.
Magnus Wrenninge, Christopher D. Kulla, and Viktor Lundqvist. “Oz:
the great and volumetric”. In: International Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 2013, Anaheim, CA,
USA, July 21-25, 2013, Talks Proceedings. 2013, 46:1. doi:
10.1145/2504459.2504518. url:
https://doi.org/10.1145/2504459.2504518.

VANCOUVER, BC | CULVER CITY, CA 49

http://jcgt.org/published/0005/01/01/
https://doi.org/10.1145/2504459.2504518
https://doi.org/10.1145/2504459.2504518


References x

Yonghao Yue et al. “Unbiased, Adaptive Stochastic Sampling for
Rendering Inhomogeneous Participating Media”. In: ACM SIGGRAPH
Asia 2010 Papers. SIGGRAPH ASIA ’10. Seoul, South Korea: ACM, 2010,
177:1–177:8. isbn: 978-1-4503-0439-9. doi:
10.1145/1866158.1866199. url:
http://doi.acm.org/10.1145/1866158.1866199.

VANCOUVER, BC | CULVER CITY, CA 50

https://doi.org/10.1145/1866158.1866199
http://doi.acm.org/10.1145/1866158.1866199

