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Thank you for the introduction.

My name is Chris Kulla and I will be talking about our use of
the Arnold renderer at Sony Imageworks.

The talk was titled “Monster House to Smurfs: The Lost Village”
in the course notes, but actually …
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…we’ve released one more animated film since then. The Emoji
Movie came out last weekend.

I’d like to first clarify why there is a second Arnold talk in this
course.

Like Marcos mentioned this morning, Imageworks was one of
the early adopters of Arnold and we also participated in its
development because of a source code licensing agreement.

But since about 2009 the renderer was forked and the two
copies have actually been evolving independently. So I’ll be
talking about why that is and what we’ve been doing in our
version.



Monster House (2004-2006)

Arnold introduced as an experiment:
• Global Illumination
• Ray Traced Shadows
• Noise as the only artifact

Compromises:
• Motion blur disabled
• No hair primitive
• Less displacement
• Noise (mimics film grain?)
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But let’s start from the begining. Arnold was brought into our
facility back in 2004, specifically for the film Monster House. It
really was a bit of an experiment. We were attracted by the
types of images the renderer could produce and they lined up
really well with the creative goals for the movie.

Global illumination and ray traced soft shadows really helped
ground the characters in the environment and gave them a
clay-like tangible feel.

Another benefit was that the renderer had very few controls
and just one kind of artifact. That simplicity of path tracing is
obviously something we’ve heard a lot about in this course.
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But adopting this technology so early wasn’t without
compromises. Luckily all these things happened to fit the look
of the movie. Motion blur was slow because of the
acceleration structures we used, so we just turned it off. There
was no hair primitive, so the characters had what we call
“helmet hair”. But luckily the film was going for a stop-motion
look, so the film-makers just embraced those limitations.

We also didn’t do as much displacement as we wanted, which
was mostly because of memory limits.

And we also found out noise isn’t so easy to get rid of! But we
kind of pretended that it looked a bit like film grain.



Monster House Clip
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Just to illustrate what I said, let me play a quick clip from the
start of the film to remind you how it looked.

Monster House was released in 2006 and to our knowledge it
was the first animated feature film to be rendered using path
tracing. Even though this film was released more than 10 years
ago, you can still see some of the hallmarks of global
illumination. There is basically a single light acting as the sun
in this shot, and yet we have very rich bounce lighting. With
shadow maps, this kind of long traveling shot would have
taken lots of manual effort to get right.

Of course some of the limitations we had to deal with are
visible too.



Monster House (2004-2006)

Despite those compromises, we proved the renderer had potential!

• Eliminated pass management
• More consistent results from shot to shot
• Memory use was steadily going down
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But despite these compromises we made, this production
really showed us the potential for path tracing. Again, lots of
this has been covered by the other speakers, but:

We got rid of all kinds of extra passes like shadow maps,
reflection maps, occlusion maps, and so on.

Bounced lighting did a lot for us, so we could place fewer
lights and fewer shot specific lights which helped with
consistency between artists.

And even though memory usage was an issue, the general
trend was pointed downwards, which was encouraging.



Cloudy With A Chance Of Meatballs (2007-2009)

Production team had just finished Surf’s Up:

• Shadow map management was not scaling
• Hard to ensure consistency between artists
• Point clouds for GI would introduce one more set of dependencies
• Arnold was comparing very favorably to ray tracing in PRman
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So the next movie to evaluate Arnold was Cloudy with a
Chance of Meatballs, which started production around 2007.

The production team for this film had just wrapped up the
movie Surf’s Up - which was a great looking film, but had faced
all of the issues I just mentioned. They had done some testing
the new pointcloud GI approaches that were starting to appear
but felt like it would be moving us in the wrong direction.

But actually the biggest reason Arnold was appealing was by
how much it was outperforming the version of Prman we were
using at the time. And because we had source code access to
Arnold, we knew we could push it even further.

So we decided to try Arnold again…



Cloudy With A Chance Of Meatballs (2007-2009)

Address the compromises!
• Motion Blur
• Hair
• Memory Usage
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…but there was still a bit of hesitation. For this movie, we
didn’t feel like we could get away with the same compromises
as Monster House.

The biggest things to address were: motion blur, hair and of
course memory usage.

This isn’t even a complete list. We actually revisited lots of
other features like subsurface scattering, the output driver
system, the texture system and lots of other small things …

But for today I’ll touch on these three topics.



Cloudy With A Chance Of Meatballs (2007-2009)

Acceleration Structure Rewrite:

• Bounding Volume Hierarchies
• Predictable memory usage
• Easy to extend to motion blur (with predictable performance)

Our implementation:

• Shared for all primitives (C++ templates)
• No spatial splits (primitives expected to be small)
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Up until this point, Arnold had been using uniform grids. The
implementation actually had some cool low level tricks, but
didn’t perform well when primitives were motion blurred. And
in some cases even non-motion blurred geometry could be
slow or use a lot of memory.

So we implemented what is now basically the industry
standard: the bounding volume hierarchy. The big advantage
of this structure is that the memory usage is very predictable
and its really easy to extend to motion blur with predictable
performance.
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These days you can get a very high quality implementation of
this in the Embree library from Intel.

Our implementation was done earlier, but has similar
characteristics. For instance we used C++ templates to get
code that’s optimized per primitive without having to duplicate
any code. We just have one BVH builder and two traversal
kernels (for motion blur on or off).

Another thing worth noting is that we didn’t bother
implementing spatial splits. It can help if you have very large
triangles but most of our scenes have tiny triangles.



Memory Usage

Details matter!
• Before: 4.5Gb
• After: 900Mb

Not just geometry:
• Meshes: 70Mb
• Accels: 100Mb
• Strings: 350Mb
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Moving to BVHs definitely helped memory usage, but lots of
other details matter. This city scene at one point was over 4Gb,
whereas now it renders in less than 1Gb.

What I want to stress here, is that none of this comes from
geometric complexity. The scene uses instancing so the
amount of mesh data is tiny. On the other hand, the scene
references lots of textures. And our lighting tool likes to give
objects really long names.

So we actually have 5 times more string data than mesh data.
And that’s after implementing string de-duplication. So we got
lots of huge memory improvements by doing these kinds of
optimizations and really focusing on the details throughout
the system.



Cloudy With A Chance Of Meatballs (2007-2009)

Hair Rendering
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Next I’d like to talk about how we implemented support for
hair.

We had this furry character in the movie, but also used hair
strands for all the other characters.



Curve Primitive

Use cubic segments to reduce memory usage

3 segments
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We chose to represent hairs as cubic curves to reduce memory
usage and avoid the need for tessellation. During Monster
House we had some prototypes that use linear curves for grass
and when we tried this on hair we saw it wasn’t going to scale
well.



Curve Primitive

Bezier curves: 3n+ 1 points for n segments (redundant representation!)

3 segments→ 10 points

VANCOUVER, BC | CULVER CITY, CA 11

But the type of cubic curve also matters. Here I’ve drawn the
bezier control points for this curve. You can see that for n
segments I would need roughly 3 times as many points.

And those control points between segments need to be
aligned just right for the whole curve to be smooth, so these
extra points are really just encoding redundant information.



Curve Primitive

B-Spline curves: n+ 3 points for n segments

3 segments→ 6 points
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On the other hand, a b-spline representation just needs O(n)
points to define the exact same curve. There’s also no
redundancy at all when describing continuous curves. In fact,
because points get re-used from segment to segment, they’re
more likely to stay in the CPU cache.

Our hair generation system at Imageworks already made
b-splines by default. So this was a natural choice for us. But
later on we actually got rid of all support other basis types and
optimized the code assuming b-splines since thats all we ever
use.



Curve Primitive

Improving performance:

• Compute tight AABB (Bezier cage is not minimal)

• Add oriented bounds in BVH leaves to help with “diagonal” curves
• Build shallow BVH and use SIMD to intersect several segments
• Wider curves with transparency for better anti-aliasing
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That covers efficient storage, but we did lots of other small
things to speed up ray intersections.

First we make sure to compute the tightest possible bounding
box for each segment. Using bezier control points is better
than using the b-spline points like you probably saw in the
previous slides but you can do even better by solving for the
exact fit.
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Even with a good bounding box though, hair segments can
often end up oriented diagonally. In this case the performance
of the BVH starts to suffer because lots of nodes overlap and
hitting the bounding box is a bad predictor of actually hitting
the segment itself.

So we calculate oriented bounds per segment as well.

But to keep the code simple, we just put them in the leaves of
the tree. This is way easier to implement than oriented BVHs
and also keeps our BVH code shape agnostic (both the
traversal and the construction).
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We still have to deal with the bounding box overlap problem,
but we mitigate this by just building shallower trees. Because
our leaf level bounds are really cheap to intersect, we can pack
several of them together and use SIMD instructions to test
several at once against a ray.

This also has the side benefit of reducing memory usage even
further.
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The last important optimization we did is not really related to
the intersection test, but we nudge the width of the curve to
be at least half a pixel wide. That makes the hairs easier to
anti-alias - especially the tips.

These days the target width is closer to 10% of a pixel because
we fire a lot more rays and limiting the amount of transparency
is helpful. In fact, this particular trick might be obsolete soon.



Alice In Wonderland (2008-2010)
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Hair rendering really got optimized during Alice in Wonderland
because it had even more furry characters. For example the
move to using SSE instructions happened for this movie.

I’ll also point out that this was the first really big VFX project
we used Arnold on. We had done a few smaller shows before,
but this one had over a 1000 shots and had lots of all CG
environments and characters.

Once we made it past this production - the renderer was
pretty solid and our studio hasn’t looked back since.



Where to go from here?

What challenges were left to address?

• Shading Architecture
• Reducing Variance
• Geometry Complexity
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But of course we weren’t done yet either. The core of the
renderer was fairly mature at this point, and it could handle
lots of data, but we wanted to push it further.

I’ve broken down the rest of the talk into three basic topics:

The Shading Architecture

Techniques for reducing Variance

And Geometric Complexity



Shading Architecture
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I’ll start with the shading architecture, since this is probably
the biggest change we did



Shading Architecture

Shaders written in C++:

• Texturing / Pattern Generation
• BxDFs
• Light Transport

Roadblock to improvements:

• Difficult to change integration strategies
• No ability to batch or re-order rays
• Painful to correctly track derivatives

We wanted a smoother experience for shader writers and a more
decoupled architecture for future improvements.

VANCOUVER, BC | CULVER CITY, CA 16

Up until this point we were writing all of our shaders in C++.
This included not just texturing and pattern generation but
also the specific details of how materials react to light.

This means the shaders were responsible for looping over
lights, firing secondary rays and so on.

Basically, the path tracing algorithm wasn’t really a part of the
renderer at all. It just so happened we had written our shaders
that way.

Maybe this sounds a bit strange to some of you. Even the
textbook on physically based rendering PBRT has the concept
of an integrator outside the materials. But the Arnold API had
evolved sort of by analogy to the Renderman shading language
and inherited this limitation.
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So of course this structure made is really hard to improve the
renderer.

It was really hard to change integration strategies, because we
had redundant logic across lots of different shaders.
Something as simple as russian roulette couldn’t be easily
added because individual rays weren’t even aware of their
overall weight.

We couldn’t think about any kind of batching or re-ordering of
rays because they were being traced from inside the materials
and had to return values right away.

Even just correctly tracking derivatives for proper texture
filtering was something we had to do manually and that was
hard to get right in all cases.
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So we knew we wanted to do something. We wanted shader
writers to worry less about technical details and we also
wanted a decoupled architecture to able to make bigger
changes.



Open Shading Language

Design a domain specific language!
• Decouple shading from integration

• Remove lighting calculations
• Shaders return “closures”

• Track derivatives automatically
• Composable through shading networks
• Open Source!
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That’s where Open Shading Language comes in. Its our domain
specific language to write shaders. But unlike previous shading
languages, we made sure not to put anything into the language
related to integration. Shaders just return “closures” which are
usually BSDFs but also cover things like BSSRDFs, emission, or
even holdouts.

We designed the runtime so it could track derivatives
automatically. It can also compose individual shaders into
larger networks and manages the execution to avoid
redundant evaluations.

We also decided from the start the project would open source!
A few other studios we talked to mentioned they were
interested, so we decided to develop the project in the open.



Open Shading Language

• First runtime was an interpreter
• Packet tracing to assemble batches
• Half of the renderer had to be rewritten
• All our shaders rewritten in OSL
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The first OSL runtime was actually an interpreter. The plan was
to simultaneously switch to tracing rays in packets and
assemble batches of points to feed the interpreter.

We had an implementation of packet tracing ready to use, but
to really integrate OSL we had to rewrite at least half of the
renderer. And of course rewrite all our shaders in OSL.

So this was a big project, but it was also really exciting
because we were finally changing things we had been stuck on
for a long time.



Forking the renderer (around 2009)

Solid Angle was being established to commercialize the renderer.

• Rewrite was a risky architecture change
• We forked the code base!
• Retained IP sharing agreements
• Our push to OSL made codebases diverge quickly

Smart decision for Solid Angle because …
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Now around the same time we were starting this big
integration of OSL into the renderer, Marcos who you heard
from this morning, was establishing Solid Angle to
commercialize the renderer more broadly. This was part of his
agreement with Imageworks all along. We had a license of the
code but he was still able to sell it to other clients.

But right as he was looking to stabilize things and staff up his
team to work on third party applications…And we were talking
about this huge rewrite.

So this is when we actually decided to fork the code base. We
kept in place all our IP sharing agreements, but the renderers
started to diverge almost immediately.

And in retrospect, this was probably a smart decision for Solid
Angle because…



Open Shading Language

Renderer got much slower! (2x at best)
• Interpreter overhead for small batches
• Packetized integrator was very complex
• Undid all benefits of tracing ray bundles

Rewrote the renderer again!
• Reverted to single ray
• LLVM based runtime
• Renderer finally faster! (+30%)
• Shaders stayed the same!
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…this big rewrite wound up making the renderer way slower.
We worked on this for a long time, but the fastest it ever got
was roughly half the speed of what we started from.

This was due to a number of factors. First the interpreter was
pretty good at executing large batches, but had lots of
overhead when the batches were small. Then the integrator
code to maintain packets through light loops and indirect rays
was really complicated and spent a lot of time just shuffling
data around. So both of these things ended up undoing the
benefits of packet tracing.

Now we heard today from other projects that have been much
more successful at vectorization, so I don’t want to say it was a
bad architecture - it was really more about our specific
implementation choices.
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So we rewrote everything again! We went back to a simpler
single ray system with an integrator that closer to how the
shaders had been written.

We also replaced the interpreter with LLVM to generate native
code. And all this finally pushed us to the point where the
renderer was finally faster! Only by about 30%, but that’s
before we started to tackle all the changes we wanted to make
to the rest of the code.

And the great thing was, the shaders didn’t have to change at
all. This was already a big validation of our design. We were
making major changes to the renderer without changing
anything in the shaders.



Reducing Variance
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So after this big rewrite of how shaders were executed, we
could finally get back to improving the integrator.

Now in reality some of these things happened simultaneously,
but conceptually OSL was the enabling factor.



Advancing the Integrator

OSL allowed us to tackle many improvements to the integrator:

• Multiple Importance Sampling applied everywhere
• Russian roulette for deeper bounces
• Integrated volume shading*

• Ray-traced SSS
• Many variance reduction tricks (clamping, blurring, …)

Shaders did not need to change at all!
Improvements could be done mid-production with little risk.
*See “Production Volume Rendering” course
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First we were able to implement multiple importance sampling
a lot more consistently. Our C++ shaders did MIS too but the
implementation was a bit clunky because it had to use
callbacks between the shader and the renderer. With
everything unified the code was cleaner and we could do
things like MIS between BSDF lobes (our shaders tend to have
lots of lobes).

We also could finally add Russian roulette to be able to trace
to deeper bounces.

We did bigger projects also like integrating volume shading.
Hopefully you were able to catch the course on Sunday where I
discussed the details of that system.
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We also switched from a pointcloud based implementation of
subsurface to a ray traced approach. We presented that work
at Siggraph 2013. And since then we’ve gone further and just
unified subsurface with volume rendering. I talked about some
of this in the Physically Based Shading course from Sunday.

And of course there are lots of other little details that help
reduce variance like clamping some values or blurring
roughness values based on the ones seen so far. We used
these tricks before, but by putting them in the integrator the
implementation was a lot more consistent.

And again, through all these improvements - none of the
shaders ever had to change. This meant we could do some of
these changes in the middle of production.



Research on Advanced Integrators

• VCM/UPS (and subsets like BDPT)
• MCMC methods
• Combination of both is very robust!
• Very useful for reference solutions
• Used occasionally for caustic passes

Path tracing (+tricks) still hard to beat
for production cases …
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We also started doing some research on fancier algorithms.
We implemented papers like the VCM or UPS algorithm and the
various subsets it covers. We also played with markov chain
methods that help explore difficult cases.

Actually that combination of metropolis and VCM is really
robust. Of our fancy integrators - it can probably handle the
most cases. And it means we can compare the path tracer
tricks to the right ground truth solution.

On the other hand, path tracing with tricks is still hard to beat.
As we heard from other presenters today - bidirectional
methods have a lot of overhead and it doesn’t always pay off
for the types of scenes we have.



Image Space Techniques

A typical frame contains many locally difficult problems
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Just to illustrate what I mean, here is a frame from The Emoji
Movie. It has lots of things going on of varying difficulty.

For example nearly every character has volumetric subsurface,
we have some that are motion blurred, there’s some blurry
refractions in the table…

…but lots of the image is relatively easy to render too.

Because we are using some tricks to simplify the really hard
problems like caustics, we don’t have any major fireflies. And
yet some areas still take longer to converge than others.



Image Space Techniques

Uniform 64 paths/pixel
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So let me zoom into some small areas here to show the type of
noise we are getting with plain path tracing. A uniform budget
of rays actually does reasonably well, but the amount of noise
isn’t quite constant. Some area like the floor look pretty good,
but the subsurface on the characters or some of the shadowed
regions are noisier.

Sorry these slides are probably only going to make sense if
you are sitting in the front…



Image Space Techniques - Adaptive Sampling

Adaptive 36 to 256 paths/pixel
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A very simple and yet very effective solution is to target
samples adaptively in image space. That lets us spend extra
time only where its needed and get a more uniform level of
noise across the image.



Image Space Techniques - Denoising

Adaptive + Denoise
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And in fact - because adaptive helps equalize the noise level
across the frame, it also makes it easier to denoise.

Disney really pioneered the use of these techniques in
production, and we’ve really come to embrace these methods
too because they’re very effective in removing that last bit of
noise.

And because modern denoising methods are guided by
feature images from the render, they can retain detail much
better. Now unless you are sitting in the front, this probably is
going to be hard to see, but be sure to look at the slides online
later on.



Image Space Techniques - Details

Adaptive Sampling:

• Minimum sampling level to set baseline variance
• Variance of samples ̸= Variance of the mean
• Measure error in tone-mapped space for better perceptual behavior
• Dilate error in 3× 3 pixels to explore small details

Image space denoise:

• Blur→ 0 as Variance→ 0 to ensure consistency
• Minimize number of feature inputs (just color and normals)
• Implement as Nuke plugin for more flexibility
• Multi-threading + SIMD:
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Just a few details about these techniques. Adaptive sampling
starts by taking a fixed number of samples to get a baseline of
variance.

When I say variance of course I mean the variance of the mean
of the samples, not the variance of the samples themselves.
This is really important. The variance of the samples doesn’t
mean much because the samples come from some unknown
distribution. On the other hand, the mean will have a normal
distribution by the central limit theorem.

Then that variance gets turned into an error measure by going
through tone mapping so that we don’t over-sample highlights
or under sample darker regions.

We also dilate the error in 3 by 3 blocks to avoid missing any
small details.
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For image space denoising - the most important property is
that the amount of blur should go to 0 as the variance goes to
0. This makes it a consistent technique because converged
pixels won’t be modified at all.

We’ve also tried to minimize the number of feature inputs we
use. Our denoiser just uses color and normals. If we had to
split diffuse and specular it would mean splitting per light
outputs as well.

We tend to output lots of images from each render, so we
didn’t want denoising to grow this number too much. In fact
we let artists denoise in Nuke so that we don’t process any
images they end up not using.

The denoising is reasonably fast. Our current algorithm is
roughly 16 seconds for 2k frame…
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…and if we do the temporal version that blurs across 5 frames
it goes up to just over a minute. So just slightly over 5x slower.
That’s because the algorithm is very cache friendly and you get
some non-linear behavior when you fall out of cache.

We can probably get this down even further, maybe with a GPU
version. This is still a hot topic for research and lots of
interesting new papers are still coming out on this.



Geometric Complexity
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Finally I just want to talk about geometric complexity a bit.



An average scene: 56M subdiv patches, 86M polygons, 8M instances
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Here’s an environment I took from our performance regression
suite. Its fairly average in terms of complexity.

The first thing to point out is that we have lots of subdivision
surfaces. In fact this scene is a bit of an outlier because it also
plain polygons. You can’t see the entire environment here,
there’s also a large portion thats outside the frame.



Before tessellation: 260M unique triangles, 35.8B instanced triangles, 11Gb
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Here is a wireframe before we do any tessellation. We already
have over 200M triangles, a lot more if you count the
instancing.

The memory footprint, including all the acceleration structures
is about 11Gb.



After tessellation: 566M unique triangles, 39.5B instanced triangles, 21Gb
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Now turning on tessellation for those subdiv patches raises
that total to about half a billion unique triangles and memory
went up by slightly less than half - even though we’ve
tessellated everything down to sub-pixel size.



Subdivision Surfaces

• Base meshes typically very dense
• Target ½pixel edge length or distance to limit surface
• Optimize level 0 limit-surface projection for off-screen / distant cases
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The most important observation we made is that our base
meshes are always very dense. So in reality, subdividing even
to a half pixel target doesn’t require too much work.

That’s one reason we’ve focused on upfront tessellation as
opposed to a dynamic solution. If we wanted to subdivide on
the fly we’d have to maintain more information than the final
tessellated copy takes.

In fact, because our base meshes are so dense, the case we’ve
optimized the most is the level 0 case where we just do limit
surface projection without adding any new vertices (even in
the irregular regions).



Subdivision Surfaces - Storage

• Decompose meshes into patches, evaluate and store as patches
• Store shared edges/vertices once (helps at low tessellation levels)
• Topology requires very little memory
• Explicit connectivity only for stitching triangles
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When we do need to subdivide, we take a patch based
approach. We set edge rates based on the camera and then
turn each patch into a small grid. But in many cases the
tessellation needed is not that high (like 2x2 or 4x4). If we just
stored patches as independent grids we’d be wasting memory
on the edges.

So our data structures actually share edges and corners of
patches and only stores them once. For the inside of the grids
the topology is implicit, so we just have explicit topology for
the stitching triangles between patches.



Subdivision Surfaces - Instancing

Most large environments are heavily instanced:

• Adaptive tessellation still important
• Dice for worst case (measured in screen space)
• Estimate required edge rates per patch, per instance
• Use early-outs to speed up common cases

• Skip fully off-screen
• Skip fully on-screen (distance to bbox)
• Loop only when bbox crosses frustum
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I said we set edge rates based on the camera, but we also use
a lot of instancing. So we’ve had to make adaptive tessellation
work in that case as well. The basic idea is just measure the
edge rate on each patch under the transform of each instance.

But this isn’t going to work because we have millions of
patches getting instanced millions of times. It turns out we
can make this practical with a few simple heuristics…
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We can just skip any instances that fully off-screen since they
don’t need any subdivision
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For any instance that is fully on-screen we can do a
conservative estimate using the distance to the bounding box
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So we just need to do the brute force approach for those
objects that cross the frustum. And this is usually a small
fraction of the scene - so it hasn’t been a bottleneck.

Since we’ve put these heuristics in place, the artists really
haven’t had to think about tessellation at all, and our artists
are finally able to use displacement mapping as much as they
want.



Subdivision Surfaces - Multi-Threading

• Tessellate and build acceleration structures before rendering
• Exact bounds for displaced surfaces without user intervention
• All instances known during tessellation
• Allows perfect threading (object parallel→ patch parallel)
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The last aspect I want to mention is multi-threading.

We do all the tessellation and acceleration structure building
before tracing any rays. That means we always get correct
bounds for displaced surfaces and we know about all the
instances which lets us do adaptive tessellation like I just
described.

It also means threading can be “perfect” in the sense that we
can transition from object parallelism to patch parallelism
when we run out of objects.



Subdivision Surfaces - Multi-Threading

• Tessellate and build acceleration structures before rendering
• Exact bounds for displaced surfaces without user intervention
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ObjectsTime→

Thread 0
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Thread 2

Thread 3

Thread 4

Thread 5
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Let me just illustrate this with a timeline.

Each thread starts by working on different objects in parallel.



Subdivision Surfaces - Multi-Threading
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But of course different objects take different amounts of time.
So one unlucky thread, like thread 5 here, could wind up
working on an object that’s much bigger than the rest.

So just object level parallelism isn’t enough, it can leave a lot
of threads idle. This isn’t rare at all, there’s usually at least
one hero asset in the frame that needs more tessellation or
displacement that the rest.



Subdivision Surfaces - Multi-Threading

• Tessellate and build acceleration structures before rendering
• Exact bounds for displaced surfaces without user intervention
• All instances known during tessellation
• Allows perfect threading (object parallel→ patch parallel)
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So we actually allow threads that don’t have any new object to
grab to join the threads that haven’t finished yet. This way all
the cores stay busy and we can finish much faster.

This isn’t just for subdiv either, we handle BVH building and a
few other cases like this too.

The good thing about starting with object parallelism is that it
doesn’t have any locking at all. So it scales almost linearly. The
patch parallel part also scales really well but only for objects
that have enough patches. So its good to keep it for the end.



Conclusion
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That covers most of what I wanted to talk about today. Let me
quickly conclude by saying…



The Last 13 Years … 10 Animated Films
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…we’ve been using this renderer for over 13 years now. That
includes 10 animated films…



The Last 13 Years … 20+ VFX Films
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…and more than 20 visual effects films - this isn’t the complete
list.



Conclusion

We have come a long way since Monster House:

• Some features presumed impractical → Feature Complete
• Subdivision tessellation manually managed → Automatic
• Variance reduction tricks manually enabled → Automatic
• Noise hunting → Adaptive + Denoise
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So we’ve come a really long way since our original
“experiment” on Monster House.

At the time we just assumed some features were totally
impractical. Now the renderer is feature complete.

Subdivision tessellation used to be something artists manually
managed. Now the renderer handles it automatically.

Variance reduction was something we had to do somewhat
manually, by tagging objects with special flags or tuning
modes in the shader. Now all those tricks handled
automatically by the integrator.

And finally, the combination of adaptive sampling and
denoising is really starting to change how we approach the
debugging of noisy frames.



Remaining Challenges

We have come a long way and yet …

• High albedo media (snow, clouds, white fur) still challenging
• Some variance reduction tricks break physicality
• Keeping up with hardware (high core counts, wide SIMD, GPUs)
• Keeping up with the competition!
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But I don’t want to give the impression that we are done yet.
There’s still a lot of interesting challenges.

A big one is dealing with cases that need really deep bounces.
Things like snow, clouds or white fur. We are actually working
on a project right now that has all three of those at the same
time.

Also, some of the variance reduction tricks we use break the
physics of the light simulation a bit. Tricks like clamping or
approximate caustics work great but they don’t look as good as
doing the real thing. So we’re always looking for better
solutions to those problems.
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And the hardware we run on keeps changing too. CPUs are
getting more and more cores and wider SIMD and making sure
we take full advantage of that power means re-evaluating all
our code constantly. I suspect we’ll be revisiting vectorization
again in the near future.

And finally - like we’ve seen in this course, the whole industry
has really embraced path tracing and is doing really amazing
work. So we have to keep pushing to keep up with everyone.
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Thank You! Questions?

Thank you for your attention, and I’ll be happy to take any
questions.


