
Hello, my name is Brian Green.  I am the technical lead for Rendering at 
DreamWorks Animation.  I am very happy to introduce you to MoonRay today.  



My topics for this session include a brief introduction to moonray followed by 
focused descriptions of several unique features of the renderer.  These include 
distributed rendering, a discussion of a new aov syntax, development of 
shaders using ISPC., and finally,  I’ll finish up with a detailed look at our 
approach to vectorization, which is Moonray’s most defining feature to date. 



So what is Moonray?  As a real quick approach to answering this question, here is a 
calculated word frequency Image, from our documentation. 
 



Moonray is our new high-end production rendering system.  It replaces “Moonlight”, 
our deep-framebuffer, micro-polygon rasterization system. 
 
It is a monte-carlo raytracer.   100% ray-traced, no pre-passes.  It is easy to use and 
provides artists with very fast iterations.  It is integrated into wide variety of tools 
such as Maya, Katana, in-house lighting tools, and MotionBuilder. 
 
Moonray is provided as a service to clients via our in-house cloud framework “Arras”.  
Not only does this simplify application integration, but it also allows moonray to take 
advantage of massive machine scale distributed rendering. 



We completely wrote Moonray from scratch, leveraging state of the art open source 
components where appropriate.  No studio legacy code was used.  The architecture is 
cleanly divided across three different APIS: The rendering API for clients to initiate 
rendering, the shading API for the development of pluggable shaders, and the 
procedural API for the development of geometry generators.  Embree is our ray-
intersection engine.  We use OpenImageIO to generically handle different image file 
formats. We follow a design that is very similar to that as described in PBRT, where 
we have a renderer that implements integration algorithms on top of closures that 
are produced by material shaders. 



All renderers have personalities.  “Keeping all the lanes ….” is our mantra and our 
personality. 
 
These are a few of our guiding principles for development.   Our goal is to achieve 
scalability up to real-time rendering leveraging all of the available hardware.  Trace 
and shade billions of rays which implies thin interfaces and no data structure 
redundancy.  We embraced and applied “Data Oriented Design” rather than Object 
Oriented Design in many places.  This is a methodology that first grew in the games 
industry, but we applied it with great success in Moonray. 
 



Broadly speaking, we divide the moonray process into render prep and mcrt 
rendering.  While most of our performance focus as been the mcrt rendering time, 
we have not forgotten about “render prep”, which can be quite expensive in many 
production contexts.  This includes parallel loading and updating of scene objects, 
along with optimized bvh construction.  We have written optimized texture sampling 
code on top of OIIO and make use of bunlded/wavefront path tracing using either 
embree’s ray-packet or ray-streaming APIs.  Most components are vectorized with 
ISPC. 
 



I’d now like to briefly discuss the “embarrasingly parallel” aspects of parallelization 
and how we uniquely approach this problem. 



Compared to vectorization (which will be discussed later), multi-threading is quite 
straight forward. 
 
First we divide the frame into 8x8 tiles and create a user configurable order for those 
tiles. 
The order can be top-down, bottom-up, morton, spiral, etc… 
 
No Locks.  The frame buffer is updated with atomics.  We use filter importance 
sampling as opposed to traditional post pixel filters to minimize pixel write contention 
between threads, and all memory allocation is handled via pre-allocated memory 
pools. 



Extension to distributed rendering is also straight-forward 



Arras is our cloud based framework that we use for distributing rendering tasks to a 
cluster or cloud.  The client programs make use of an extremely thin and portable 
Arras SDK to connect to an arras rendering session.  In the cluster there is a single 
moonray merge node which is responsible for sending final rendering results back to 
the client. 
 
In addition to enabling distributed rendering, this architecture makes it extremely 
simple to integrate MoonRay in a wide variety of client applications.  Much easier 
than if the entire core rendering libraries needed integration with the client 
application. 



Multiple moonray nodes communicate via messages and the arras computation api. 
 



This architecture, while seemingly simple has produced linear speed-ups on clusters 
of 30 machines. 
 
<PgDn pause PgDn to start both videos> 
 
This is an example of what a 9.5x performance improvement feels like to an artist.  In 
both windows, the artist is using a simple arras client program called “arras_gui”.  
This program allows the artist to manipulate his camera view and request progressive 
rendering results with a fixed frame rate (24 fps in this case).  Note that both 
programs produce exactly the same frame rate.  The frame buffer is snapshotted 
every 24th of a second in both cases.  But the quality of the result is what should be 
paid attention to.  On the left, the artist is connected to a 2 machine arras session, on 
the right a 19 machine arras session.  Both sessions contain identical 32 core 
machines. 
  
Note that progressive rendering makes the 2x32 case look pretty good.  This is one of 
the powerful aspects of mcrt progressive rendering. 
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Every production renderer worth its salt needs to support a deep and sophisticated 
aov system.  Moonray is not an exception in this respect. 



The emerging standard for AOVs in an MCRT renderer is Light path expressions.  
While LPEs do a great job of telling you which paths to include in a particular AOV, 
they say nothing about what values should actually be included in that AOV.  For 
Moonray, all light path expression based AOVs are associated with radiance values. 



We of course support very basic outputs, which describe the differential geometry at 
the primary ray intersection point.  We call these “State AOVS” 



We also support custom outputs such as HeatMap (time per pixel) and wireframe 
which is used for tessellation diagnostic purposes. 



What we have termed “Material AOVs” are probably the most unique AOV feature in 
Moonray.  Material AOVs provide detailed diagnostics about the materials and are 
extremely helpful to surfacing and lighting artists when verifying material correctness 
and standards conformance.  Examples of various color aovs are shown in the slide. 



Material AOVs are used for diagnostic purposes.  Our material shaders produce 
parameterized multi-lobe bsdf objects.  We have developed a material aov syntax 
(intentionally similar to LPE syntax) that allows an artist to extract important bits of 
information about this parameterization.  This syntax complements light path 
expressions, which concern themselves with how a ray travels through the scene.  
Material AOV syntax focuses on extracting properties of a bsdf at an intersection. 
 
Material Aovs provide … 



Once we define the “property” we are interested, we must “select” the components 
of the multi-lobe bsdf that we are interested in…. 
 
A selection plus a property equals a Material AOV 
 
To review, a Bsdf closure consists of 



Lets look at a few examples of the syntax in action, before defining it precisely…. 



To extract the diffuse and subsurface color, use the syntax DSS.color.  Here the 
property is “color” and the selection is DSS. 



Similarly to extract the color of all glossy lobes, use G.color 



In this case, the property is “normal” and the selector is RTSS – read as all reflection, 
transmission, and subsurface lobes. 



Finally, we are examining the “factor” parameter for the fresnel objects associated 
with all glossy and subsurface lobes. 



Formally…. 



One final bit of syntax, the integrates nicely with light path expressions are labels.  
 
Material shaders can assign…. 
 
Lets look at a couple more examples. 
 



The shader writer has assigned the label “specular” to some of his lobes.  To extract 
the albedo property of these lobes use `specular`.albedo 
 



In this case, the shader writer has assigned “diffuse” and “translucency” to some of 
his lobes.  Notice how we can scope the label match to just the diffuse and 
subsurface lobes by using the “.DSS” selector.  Any non D or non SS lobe, even if it has 
the appropriate label, will not match this aov. 
 



So the final syntax, with labels, is a simple and powerful way to extract information 
from a material. 



For my next topic, I will show a simple example of how we use ISPC to develop 
vectorized shaders 



A simple material with a diffuse color and input normal.  The normal is bound to a 
bump map shader, which routes through a remap shader to a  noise map. 



Scene configuration can be specified using lua (the rdl - ascii format, clap, clap).  At 
the bottom of the code is an instance of a simpleMtl.  It has two attributes.  A diffuse 
color and an input normal.  The color is red, the normal is bound to a bump map 
shader, which means it can vary over the surface.  The Bump map shader has a single 
attribute “height”.  Which I want to be between 0 and 1, so I Bound this to a remap 
shader, which is itself bound to a noise map. 



The bind function is how attributes of one shader are wired to the output of another.  
Binding information is known only at run-time and is a property of the scene setup. 



Shader attributes are specified using json files.  Code generation from these json files 
is an integral part of our system.  Not only does it remove the need for substantial 
amounts of boiler-plate coding, but more importantly it allows for code generation 
that will provide syntactic help to enable just-in-time (JIT) compilation of network 
connections. 
 
In the slide, I have provide the attribute json descriptions for the SimpleMaterial and 
BumpMap shader. 



Now lets take a step back.  Actual shading functions are written in ISPC. 
 
ISPC = Intel… 
 
In our shading system, each vector lane represents an intersection point to be 
shaded.  For example, on AVX2 hardware, 8 different intersection points are passed 
into the shade function by the renderer.  ISPC greatly simplifies the process of writing 
vectorized code.  It Eliminates the extremely unproductive need for intrinisics 
programming and explicit masking.  I think this would be inappropriate for most 
production shader developers, which would make adoption of our vectorized 
renderer extremely problematic. 
 



Here is the ISPC code for our SimpleMaterial.  This is a root material node and is 
responsible for filling in the output closure parameter. 
 
Passed as input to the function is a varying state parameter.  Each lane of State 
rerpresents a unique intersection point to shade.  The Shadable and ShadingTLState 
parameters are uniform objects that provide handles to the scene data object and 
utility functions such as thread-local memory pools that are used to allocate and 
build up closures. 
 



These hilit functions are auto-generated by our code generator and are the locations 
where connections between shaders take place.  The first function is responsible for 
evaluating the input normal attribute, which in our case is bound to a bump map 
shader.  The second function is responsible for evaluating the diffuse color attribute.  
In our case, this is just a simple constant color. 
 
Only at run-time do we know if a shader is bound or not, 
  
It is also worth noting that neither of these results require bound shaders to produce 
derivatives. 



This is my bump map shader.  I’m not the best shader writer in the world, but it 
works.  Remember all of the types without the keyword “uniform” are wide types. 



The hilit function is where the bump map shader evaluates its height map attribute.  
In our case this is bound to a remap shader. 
 
Note that this evaluation requires the child shader to produce derivatives.  We make 
use of Dual algebra and autodiff for this purpose.  Again note that the remap shader 
does not now if it must produce derivatives or not until runtime, when it is bound to 
a shader that needs them. 



LLVM plays an important role in our shader run-time…. 
LLVM defines a bitcode format and a run-time API to manipulate and JIT compile to 
machine code. 
When a shader is built, we use the ispc compiler to produce llvm bitcode files from 
the individual shader code. 
At run-time we load needed bitcode files into an LLVM module. 
Because our code generator generated the functions that define the connections 
between shaders, replacing them is a simple matter of search and replace using the 
LLVM API.  Evaluation functions for attributes not bound to shaders (such as the 
diffuce color in our example) are just replaced with simple constants.  Evaluation 
functions that are bound to shaders are replaced with inline code. 
Once the replacements are in place, we run the O3 level optimizer.  Good things then 
happen such as constants being folded, and dead code (such as unused derivative 
computations) are allided. 



For my final topic, I’d like to talk about what is undoubtedly the single most defining 
and unique feature of Moonray – Vectorization.  This work was presented earlier in 
the week at HPG by my good friend and colleague Mark Lee. 



Now I am going to describe how we’ve mapped a scalar, depth first, path tracing 
algorithm into a corresponding vectorized version. 
A very big distinction is that in the process, we’ve had to transform the algorithm to 
traverse each ray tree in a breadth first fashion as opposed to depth first. 
 
 



We start off as before by generating primary rays. 
Instead of directly intersecting these rays with the scene geometry, we add them to a 
primary ray queue. 
 
 
 



When the number of queued primary rays hits its pre-configured queue size limit we 
pass them onto the queue’s associated handler. 
The handler sends the rays into embree for ray / geometry intersection. 
These queued primary rays will be very coherent and so we gain some performance 
benefit by passing them into embree in batches. 



Intersecting each ray with a scene geometry returns hit point information as well as 
surface shader information. 
We pre-allocate a separate queue per material instance. 
This enables us to minimize code flow divergence since all entries in a shade queue 
are guaranteed to execute the same shader code which will be invoked with the same 
shader parameters. 
Like other queues in the system, a shader queue is only flushed after it fills up. 



Another possibility is that a primary ray doesn’t actually intersect any scene geometry 
at all. 
In that case we test if it hit any lights and add the light contribution to the radiance 
queue. 



There is a potential scaling problem when dealing with tens or hundreds of threads all 
potentially trying to write radiance samples into a shared frame buffer. 
This is true despite not locking and only using atomic operations to update radiances. 
To alleviate this we first sort radiance queue entries by the pixel they belong to, and 
accumulate each belonging to the same pixel locally before attempting the atomic 
update. 
The reason why radiance queues exist in our architecture are purely for scalability 
reasons. 
 



So let’s see what happens when a shade queue fills and needs to be flushed. 
Remember that all queues contain references to AOS data structures. 
The central idea behind the one big gray block here, which does all the shading, 
texturing, and integration work, is that AOS to SOA is not free, and so we want to only 
perform that transformation once. At this point in the pipeline is where we essentially 
switch over to fully vectorized execution. 
Let’s zoom in to see some more details of what’s happening in here. 



This is the zoomed in view of the shade queue handler. 



Now that it’s expanded there are 2 other blocks we can add to fill in some extra 
details.  
You can see that all the explicitly vectorized blocks, namely shading, texturing, and 
integration, are sandwiched between a pair of green blocks. 
These green blocks are responsible for transforming the data back and forth between 
AOS and SOA, which we only want to do once per ray segment. 



The inputs to the handler are a set of points which need to be shaded by a single 
material instance. 
Before shading we first sort the entries to make texture lookups more coherent. 
The box on the right shows a simplified set of the criteria we sort by. 
Basically we want to get as much reuse out of each texture tile once loaded in, which 
is why we sort by udim tile first, and uv coordinates last. 
 



Once our entries are sorted, we’re ready to transform them into SOA format for 
consumption by the ISPC kernels. 



Shader graph evaluation proceeds as described previously 



Shaders may call texture evaluation.  This makes use of our customized OIIO 
vectorized sampler and cache. 



Integration proceeds on the returned closure, fully vectorized, adding to queues as 
needed. 



The entries which are returned from the integrator are still in SOA format, so we must 
convert them back to AOS format for subsequent queuing. 
 
You may ask why the need to convert these back to AOS?  We do this so that the 
entries can be freely resorted during the next wavefront. 



So let’s zoom back out to the macro scale again. 
 



The first type of output which the integrator can generate are radiance values, one 
example of this is light from emissive surfaces. 



The integrator can arbitrarily spawn rays, which are typically more incoherent than 
primary rays, so we put them into a separate incoherent ray queue. 
Using a separate incoherent ray queue gives us the option of sorting these rays. 
The paper contains more details on our experiments with ray sorting. 



When the incoherent ray queue fills, we invoke the incoherent ray queue handler 
which sends these rays through embree. 
 



And just like the primary ray queue handler, it generates results which either are sent 
through to the appropriate shade queue or to the radiance queue. 
This path is how we mimic depth first recursion in a breadth first context. 
 



The final type of output generated from the integrator are occlusion rays to lights. 
There are no dependencies on the rays, they are strictly fire-and-forget. 
The ray and the amount of radiance to add to the frame buffer in the case where the 
ray can see the light is stored in the queue. 



This queue, like all other queues, will get flushed at some future point in time, and all 
the light contributions will be accounted for. 



Rays which pass the occlusion tests are added to the radiance queue. 



And that is it, that’s the way data flows in and out of queue and handlers for the 
vectorized code path. 



Let’s look at some scenes we’ve profiled. 
We targeted the AVX2 instruction set for all of these tests, which is 8 lanes in width, 
allowing us to process batches of 8 rays or 8 shading samples simultaneously. 
 



This is a render of Bergen Town from the movie Trolls. 
 
 



The charts for this scene show that integration time dominates here. 
Such scenes are a good case for the vectorized code path, since any scenes where we 
spend a good portion of time doing integration, shading, and/or texturing stand to 
see the most benefit. 
Even though the vectorization overhead, the pink block in the top middle, stands out, 
we still observe a 77% overall speedup for this scene. 



The shading speedup in particular stands out here. 
Although the shaders themselves are relatively simple, it’s nice to see over a 6x 
speedup for this scene. 



Next is the character Astrid from the film How to Train your Dragon II. 
 



There is a lot of fur and hair in this scene and the biggest block of time, at the bottom 
in blue, is spent inside of embree. 
Since embree is already well vectorized in both our Scalar and Vectorized code paths, 
we don’t expect an improvement in this area. 
However, we observe significant gains in shading, texturing, and integration, resulting 
in a 60% gain overall. 



And here is the summary for Astrid. 



Unfortunately we didn’t get permission to show any of the more complex scenes at 
the studio since these are being generated for unreleased movies. 
I did want to show this particular asset however since it’s an example of where 
texturing and shading dominates. 



This is a best case scenario for us.  In this case Texturing and Integration speed up by 
nearly 3x, and shading by over 4x.  Given us over a 2.3x overall performance 
improvement. 



And here are the results. 



I’d now like to share some final thoughts.  In development for four years, MoonRay 
has just embarked, within the last 6 months, on its life as the primary production 
renderer at DreamWorks.  Our primary focus to date has been performance, but 
production features are catching up.  The challenge is to maintain a high level of 
performance, while growing this feature set.  There are still challenges on the 
vectorization front, including extensions for volume rendering and bi-directional path 
tracing.  Would love to chat with any of you about ideas on this. 
 
Finally, I’d like to thank the Moonray and Moonshine teams at DreamWorks for being 
such awesome folks to work with.  Good Luck.  And of course a BIG Thank-you to all 
of you for your time and attention today.  It has been an honor. 



Thank-you for your time and attention. 


