
Hello, my name is Brian Green. I am the technical lead for Rendering at
DreamWorks Animation. I am very happy to introduce you to MoonRay today.

My topics for this session include a brief introduction to moonray followed by
focused descriptions of several unique features of the renderer. These include
distributed rendering, a discussion of a new aov syntax, development of
shaders using ISPC., and finally, I’ll finish up with a detailed look at our
approach to vectorization, which is Moonray’s most defining feature to date.

So what is Moonray? As a real quick approach to answering this question, here is a
calculated word frequency Image, from our documentation.

Moonray is our new high-end production rendering system. It replaces “Moonlight”,
our deep-framebuffer, micro-polygon rasterization system.

It is a monte-carlo raytracer. 100% ray-traced, no pre-passes. It is easy to use and
provides artists with very fast iterations. It is integrated into wide variety of tools
such as Maya, Katana, in-house lighting tools, and MotionBuilder.

Moonray is provided as a service to clients via our in-house cloud framework “Arras”.
Not only does this simplify application integration, but it also allows moonray to take
advantage of massive machine scale distributed rendering.

We completely wrote Moonray from scratch, leveraging state of the art open source
components where appropriate. No studio legacy code was used. The architecture is
cleanly divided across three different APIS: The rendering API for clients to initiate
rendering, the shading API for the development of pluggable shaders, and the
procedural API for the development of geometry generators. Embree is our ray-
intersection engine. We use OpenImageIO to generically handle different image file
formats. We follow a design that is very similar to that as described in PBRT, where
we have a renderer that implements integration algorithms on top of closures that
are produced by material shaders.

All renderers have personalities. “Keeping all the lanes ….” is our mantra and our
personality.

These are a few of our guiding principles for development. Our goal is to achieve
scalability up to real-time rendering leveraging all of the available hardware. Trace
and shade billions of rays which implies thin interfaces and no data structure
redundancy. We embraced and applied “Data Oriented Design” rather than Object
Oriented Design in many places. This is a methodology that first grew in the games
industry, but we applied it with great success in Moonray.

Broadly speaking, we divide the moonray process into render prep and mcrt
rendering. While most of our performance focus as been the mcrt rendering time,
we have not forgotten about “render prep”, which can be quite expensive in many
production contexts. This includes parallel loading and updating of scene objects,
along with optimized bvh construction. We have written optimized texture sampling
code on top of OIIO and make use of bunlded/wavefront path tracing using either
embree’s ray-packet or ray-streaming APIs. Most components are vectorized with
ISPC.

I’d now like to briefly discuss the “embarrasingly parallel” aspects of parallelization
and how we uniquely approach this problem.

Compared to vectorization (which will be discussed later), multi-threading is quite
straight forward.

First we divide the frame into 8x8 tiles and create a user configurable order for those
tiles.
The order can be top-down, bottom-up, morton, spiral, etc…

No Locks. The frame buffer is updated with atomics. We use filter importance
sampling as opposed to traditional post pixel filters to minimize pixel write contention
between threads, and all memory allocation is handled via pre-allocated memory
pools.

Extension to distributed rendering is also straight-forward

Arras is our cloud based framework that we use for distributing rendering tasks to a
cluster or cloud. The client programs make use of an extremely thin and portable
Arras SDK to connect to an arras rendering session. In the cluster there is a single
moonray merge node which is responsible for sending final rendering results back to
the client.

In addition to enabling distributed rendering, this architecture makes it extremely
simple to integrate MoonRay in a wide variety of client applications. Much easier
than if the entire core rendering libraries needed integration with the client
application.

Multiple moonray nodes communicate via messages and the arras computation api.

This architecture, while seemingly simple has produced linear speed-ups on clusters
of 30 machines.

<PgDn pause PgDn to start both videos>

This is an example of what a 9.5x performance improvement feels like to an artist. In
both windows, the artist is using a simple arras client program called “arras_gui”.
This program allows the artist to manipulate his camera view and request progressive
rendering results with a fixed frame rate (24 fps in this case). Note that both
programs produce exactly the same frame rate. The frame buffer is snapshotted
every 24th of a second in both cases. But the quality of the result is what should be
paid attention to. On the left, the artist is connected to a 2 machine arras session, on
the right a 19 machine arras session. Both sessions contain identical 32 core
machines.

Note that progressive rendering makes the 2x32 case look pretty good. This is one of
the powerful aspects of mcrt progressive rendering.

This is an example of what a 9.5x performance improvement feels like to an artist. In
both windows, the artist is using a simple arras client program called “arras_gui”.
This program allows the artist to manipulate his camera view and request progressive
rendering results with a fixed frame rate (24 fps in this case). Note that both
programs produce exactly the same frame rate. The frame buffer is snapshotted
every 24th of a second in both cases. But the quality of the result is what should be
paid attention to. On the left, the artist is connected to a 2 machine arras session, on
the right a 19 machine arras session. Both sessions contain identical 32 core
machines.

Note that progressive rendering makes the 2x32 case look pretty good. This is one of
the powerful aspects of mcrt progressive rendering.

Every production renderer worth its salt needs to support a deep and sophisticated
aov system. Moonray is not an exception in this respect.

The emerging standard for AOVs in an MCRT renderer is Light path expressions.
While LPEs do a great job of telling you which paths to include in a particular AOV,
they say nothing about what values should actually be included in that AOV. For
Moonray, all light path expression based AOVs are associated with radiance values.

We of course support very basic outputs, which describe the differential geometry at
the primary ray intersection point. We call these “State AOVS”

We also support custom outputs such as HeatMap (time per pixel) and wireframe
which is used for tessellation diagnostic purposes.

What we have termed “Material AOVs” are probably the most unique AOV feature in
Moonray. Material AOVs provide detailed diagnostics about the materials and are
extremely helpful to surfacing and lighting artists when verifying material correctness
and standards conformance. Examples of various color aovs are shown in the slide.

Material AOVs are used for diagnostic purposes. Our material shaders produce
parameterized multi-lobe bsdf objects. We have developed a material aov syntax
(intentionally similar to LPE syntax) that allows an artist to extract important bits of
information about this parameterization. This syntax complements light path
expressions, which concern themselves with how a ray travels through the scene.
Material AOV syntax focuses on extracting properties of a bsdf at an intersection.

Material Aovs provide …

Once we define the “property” we are interested, we must “select” the components
of the multi-lobe bsdf that we are interested in….

A selection plus a property equals a Material AOV

To review, a Bsdf closure consists of

Lets look at a few examples of the syntax in action, before defining it precisely….

To extract the diffuse and subsurface color, use the syntax DSS.color. Here the
property is “color” and the selection is DSS.

Similarly to extract the color of all glossy lobes, use G.color

In this case, the property is “normal” and the selector is RTSS – read as all reflection,
transmission, and subsurface lobes.

Finally, we are examining the “factor” parameter for the fresnel objects associated
with all glossy and subsurface lobes.

Formally….

One final bit of syntax, the integrates nicely with light path expressions are labels.

Material shaders can assign….

Lets look at a couple more examples.

The shader writer has assigned the label “specular” to some of his lobes. To extract
the albedo property of these lobes use `specular`.albedo

In this case, the shader writer has assigned “diffuse” and “translucency” to some of
his lobes. Notice how we can scope the label match to just the diffuse and
subsurface lobes by using the “.DSS” selector. Any non D or non SS lobe, even if it has
the appropriate label, will not match this aov.

So the final syntax, with labels, is a simple and powerful way to extract information
from a material.

For my next topic, I will show a simple example of how we use ISPC to develop
vectorized shaders

A simple material with a diffuse color and input normal. The normal is bound to a
bump map shader, which routes through a remap shader to a noise map.

Scene configuration can be specified using lua (the rdl - ascii format, clap, clap). At
the bottom of the code is an instance of a simpleMtl. It has two attributes. A diffuse
color and an input normal. The color is red, the normal is bound to a bump map
shader, which means it can vary over the surface. The Bump map shader has a single
attribute “height”. Which I want to be between 0 and 1, so I Bound this to a remap
shader, which is itself bound to a noise map.

The bind function is how attributes of one shader are wired to the output of another.
Binding information is known only at run-time and is a property of the scene setup.

Shader attributes are specified using json files. Code generation from these json files
is an integral part of our system. Not only does it remove the need for substantial
amounts of boiler-plate coding, but more importantly it allows for code generation
that will provide syntactic help to enable just-in-time (JIT) compilation of network
connections.

In the slide, I have provide the attribute json descriptions for the SimpleMaterial and
BumpMap shader.

Now lets take a step back. Actual shading functions are written in ISPC.

ISPC = Intel…

In our shading system, each vector lane represents an intersection point to be
shaded. For example, on AVX2 hardware, 8 different intersection points are passed
into the shade function by the renderer. ISPC greatly simplifies the process of writing
vectorized code. It Eliminates the extremely unproductive need for intrinisics
programming and explicit masking. I think this would be inappropriate for most
production shader developers, which would make adoption of our vectorized
renderer extremely problematic.

Here is the ISPC code for our SimpleMaterial. This is a root material node and is
responsible for filling in the output closure parameter.

Passed as input to the function is a varying state parameter. Each lane of State
rerpresents a unique intersection point to shade. The Shadable and ShadingTLState
parameters are uniform objects that provide handles to the scene data object and
utility functions such as thread-local memory pools that are used to allocate and
build up closures.

These hilit functions are auto-generated by our code generator and are the locations
where connections between shaders take place. The first function is responsible for
evaluating the input normal attribute, which in our case is bound to a bump map
shader. The second function is responsible for evaluating the diffuse color attribute.
In our case, this is just a simple constant color.

Only at run-time do we know if a shader is bound or not,

It is also worth noting that neither of these results require bound shaders to produce
derivatives.

This is my bump map shader. I’m not the best shader writer in the world, but it
works. Remember all of the types without the keyword “uniform” are wide types.

The hilit function is where the bump map shader evaluates its height map attribute.
In our case this is bound to a remap shader.

Note that this evaluation requires the child shader to produce derivatives. We make
use of Dual algebra and autodiff for this purpose. Again note that the remap shader
does not now if it must produce derivatives or not until runtime, when it is bound to
a shader that needs them.

LLVM plays an important role in our shader run-time….
LLVM defines a bitcode format and a run-time API to manipulate and JIT compile to
machine code.
When a shader is built, we use the ispc compiler to produce llvm bitcode files from
the individual shader code.
At run-time we load needed bitcode files into an LLVM module.
Because our code generator generated the functions that define the connections
between shaders, replacing them is a simple matter of search and replace using the
LLVM API. Evaluation functions for attributes not bound to shaders (such as the
diffuce color in our example) are just replaced with simple constants. Evaluation
functions that are bound to shaders are replaced with inline code.
Once the replacements are in place, we run the O3 level optimizer. Good things then
happen such as constants being folded, and dead code (such as unused derivative
computations) are allided.

For my final topic, I’d like to talk about what is undoubtedly the single most defining
and unique feature of Moonray – Vectorization. This work was presented earlier in
the week at HPG by my good friend and colleague Mark Lee.

Now I am going to describe how we’ve mapped a scalar, depth first, path tracing
algorithm into a corresponding vectorized version.
A very big distinction is that in the process, we’ve had to transform the algorithm to
traverse each ray tree in a breadth first fashion as opposed to depth first.

We start off as before by generating primary rays.
Instead of directly intersecting these rays with the scene geometry, we add them to a
primary ray queue.

When the number of queued primary rays hits its pre-configured queue size limit we
pass them onto the queue’s associated handler.
The handler sends the rays into embree for ray / geometry intersection.
These queued primary rays will be very coherent and so we gain some performance
benefit by passing them into embree in batches.

Intersecting each ray with a scene geometry returns hit point information as well as
surface shader information.
We pre-allocate a separate queue per material instance.
This enables us to minimize code flow divergence since all entries in a shade queue
are guaranteed to execute the same shader code which will be invoked with the same
shader parameters.
Like other queues in the system, a shader queue is only flushed after it fills up.

Another possibility is that a primary ray doesn’t actually intersect any scene geometry
at all.
In that case we test if it hit any lights and add the light contribution to the radiance
queue.

There is a potential scaling problem when dealing with tens or hundreds of threads all
potentially trying to write radiance samples into a shared frame buffer.
This is true despite not locking and only using atomic operations to update radiances.
To alleviate this we first sort radiance queue entries by the pixel they belong to, and
accumulate each belonging to the same pixel locally before attempting the atomic
update.
The reason why radiance queues exist in our architecture are purely for scalability
reasons.

So let’s see what happens when a shade queue fills and needs to be flushed.
Remember that all queues contain references to AOS data structures.
The central idea behind the one big gray block here, which does all the shading,
texturing, and integration work, is that AOS to SOA is not free, and so we want to only
perform that transformation once. At this point in the pipeline is where we essentially
switch over to fully vectorized execution.
Let’s zoom in to see some more details of what’s happening in here.

This is the zoomed in view of the shade queue handler.

Now that it’s expanded there are 2 other blocks we can add to fill in some extra
details.
You can see that all the explicitly vectorized blocks, namely shading, texturing, and
integration, are sandwiched between a pair of green blocks.
These green blocks are responsible for transforming the data back and forth between
AOS and SOA, which we only want to do once per ray segment.

The inputs to the handler are a set of points which need to be shaded by a single
material instance.
Before shading we first sort the entries to make texture lookups more coherent.
The box on the right shows a simplified set of the criteria we sort by.
Basically we want to get as much reuse out of each texture tile once loaded in, which
is why we sort by udim tile first, and uv coordinates last.

Once our entries are sorted, we’re ready to transform them into SOA format for
consumption by the ISPC kernels.

Shader graph evaluation proceeds as described previously

Shaders may call texture evaluation. This makes use of our customized OIIO
vectorized sampler and cache.

Integration proceeds on the returned closure, fully vectorized, adding to queues as
needed.

The entries which are returned from the integrator are still in SOA format, so we must
convert them back to AOS format for subsequent queuing.

You may ask why the need to convert these back to AOS? We do this so that the
entries can be freely resorted during the next wavefront.

So let’s zoom back out to the macro scale again.

The first type of output which the integrator can generate are radiance values, one
example of this is light from emissive surfaces.

The integrator can arbitrarily spawn rays, which are typically more incoherent than
primary rays, so we put them into a separate incoherent ray queue.
Using a separate incoherent ray queue gives us the option of sorting these rays.
The paper contains more details on our experiments with ray sorting.

When the incoherent ray queue fills, we invoke the incoherent ray queue handler
which sends these rays through embree.

And just like the primary ray queue handler, it generates results which either are sent
through to the appropriate shade queue or to the radiance queue.
This path is how we mimic depth first recursion in a breadth first context.

The final type of output generated from the integrator are occlusion rays to lights.
There are no dependencies on the rays, they are strictly fire-and-forget.
The ray and the amount of radiance to add to the frame buffer in the case where the
ray can see the light is stored in the queue.

This queue, like all other queues, will get flushed at some future point in time, and all
the light contributions will be accounted for.

Rays which pass the occlusion tests are added to the radiance queue.

And that is it, that’s the way data flows in and out of queue and handlers for the
vectorized code path.

Let’s look at some scenes we’ve profiled.
We targeted the AVX2 instruction set for all of these tests, which is 8 lanes in width,
allowing us to process batches of 8 rays or 8 shading samples simultaneously.

This is a render of Bergen Town from the movie Trolls.

The charts for this scene show that integration time dominates here.
Such scenes are a good case for the vectorized code path, since any scenes where we
spend a good portion of time doing integration, shading, and/or texturing stand to
see the most benefit.
Even though the vectorization overhead, the pink block in the top middle, stands out,
we still observe a 77% overall speedup for this scene.

The shading speedup in particular stands out here.
Although the shaders themselves are relatively simple, it’s nice to see over a 6x
speedup for this scene.

Next is the character Astrid from the film How to Train your Dragon II.

There is a lot of fur and hair in this scene and the biggest block of time, at the bottom
in blue, is spent inside of embree.
Since embree is already well vectorized in both our Scalar and Vectorized code paths,
we don’t expect an improvement in this area.
However, we observe significant gains in shading, texturing, and integration, resulting
in a 60% gain overall.

And here is the summary for Astrid.

Unfortunately we didn’t get permission to show any of the more complex scenes at
the studio since these are being generated for unreleased movies.
I did want to show this particular asset however since it’s an example of where
texturing and shading dominates.

This is a best case scenario for us. In this case Texturing and Integration speed up by
nearly 3x, and shading by over 4x. Given us over a 2.3x overall performance
improvement.

And here are the results.

I’d now like to share some final thoughts. In development for four years, MoonRay
has just embarked, within the last 6 months, on its life as the primary production
renderer at DreamWorks. Our primary focus to date has been performance, but
production features are catching up. The challenge is to maintain a high level of
performance, while growing this feature set. There are still challenges on the
vectorization front, including extensions for volume rendering and bi-directional path
tracing. Would love to chat with any of you about ideas on this.

Finally, I’d like to thank the Moonray and Moonshine teams at DreamWorks for being
such awesome folks to work with. Good Luck. And of course a BIG Thank-you to all
of you for your time and attention today. It has been an honor.

Thank-you for your time and attention.

