
ar
X

iv
:2

50
5.

24
65

3v
1 

 [
cs

.G
R

] 
 3

0 
M

ay
 2

02
5

Minimizing Ray Tracing Memory Traffic through Quantized
Structures and Ray Stream Tracing

Moritz Grauer , Johannes Hanika , Carsten Dachsbacher

Karlsruhe Institute of Technology, Germany

Abstract
Memory bandwidth constraints continue to be a significant limiting factor in ray tracing performance, particularly as scene
complexity grows and computational capabilities outpace memory access speeds. This paper presents a memory-efficient ray
tracing methodology that integrates compressed data structures with ray stream techniques to reduce memory traffic. The ap-
proach implements compressed BVH and triangle representations to minimize acceleration structure size in combination with
ray stream tracing to reduce traversal stack memory traffic. The technique employs fixed-point arithmetic for intersection tests
for prospective hardware with tailored integer operations. Despite using reduced precision, geometric holes are avoided by
leveraging fixed-point arithmetic instead of encountering the floating-point rounding errors common in traditional approaches.
Quantitative analysis demonstrates significant memory traffic reduction across various scene complexities and BVH configura-
tions. The presented 8-wide BVH ray stream implementation reduces memory traffic to only 18% of traditional approaches by
using 8-bit quantization for box and triangle coordinates and directly ray tracing these quantized structures. These reductions
are especially beneficial for bandwidth-constrained hardware environments such as mobile devices. This integrated approach
addresses both memory bandwidth limitations and numerical precision challenges inherent to modern ray tracing applications.

CCS Concepts
• Computing methodologies → Ray tracing; • Theory of computation → Data compression;

1. Introduction

Ray tracing is a fundamental technique in computer graphics, en-
abling the creation of photorealistic images by simulating the phys-
ical behavior of light. While computational power has increased
dramatically over the past decades, memory bandwidth constraints
remain a significant bottleneck for ray tracing performance. This
is particularly evident as scene complexity grows with modern ap-
plications frequently requiring millions of primitives. The disparity
between computational capabilities and memory access speeds has
become increasingly pronounced, with compute capability advanc-
ing faster than memory bandwidth.

In ray tracing, the primary operations—traversing acceleration
structures and intersecting geometric primitives—generate sub-
stantial memory traffic. Acceleration structures like Bounding Vol-
ume Hierarchies (BVHs) are essential for efficient ray traversal, but
their memory footprint and the resulting bandwidth requirements
can severely limit performance, especially for incoherent rays typ-
ical in global illumination algorithms.

We present a memory-efficient ray tracing methodology that ad-
dresses these bandwidth limitations through two complementary
approaches: data compression and traversal optimization. Our key
insight is that by jointly compressing the acceleration structure and

geometry data, while simultaneously reducing traversal stack mem-
ory traffic, we can achieve significant bandwidth reductions with
minimal precision loss.

Our approach makes the following contributions:

• A unified quantization scheme for both BVH nodes and triangle
geometry that uses 8-bit fixed-point representations within local
coordinate systems.

• Direct ray tracing on compressed structures using fixed-point
arithmetic, eliminating decompression overhead and enabling
custom tailored hardware units.

• Integration of ray stream tracing techniques with wide BVHs (2,
4, and 8-wide) to reduce traversal stack traffic and enable SIMD
processing.

• A careful analysis of precision and performance trade-offs,
demonstrating that our fixed-point representation avoids geomet-
ric holes common in floating-point approaches.

Our results show that this integrated approach reduces memory
traffic to only 18% of traditional methods for an 8-wide BVH with
8-bit quantization, while maintaining visual fidelity. By addressing
the memory bandwidth bottleneck, our work aims to make ray trac-
ing more practical for a wider range of applications and hardware
platforms.

https://orcid.org/0009-0004-6905-7301
https://orcid.org/0000-0002-7648-1782
https://orcid.org/0000-0003-4690-3574
https://arxiv.org/abs/2505.24653v1


2 of 13 M. Grauer & J. Hanika & C. Dachsbacher / Minimizing Ray Tracing Memory Traffic

2. Related Work

Ray tracing research has evolved significantly over the decades,
with numerous approaches targeting performance, memory effi-
ciency, and quality. Our work builds upon several key research
areas: ray coherence exploitation, memory-efficient acceleration
structures, wide BVHs, fixed-point arithmetic, and compression
techniques.

Ray Coherence and Stream Processing. Early work by Wald
et al. [WSBW01] demonstrated substantial performance gains
through coherent ray tracing by processing packets of rays to-
gether. This paradigm was extended by Reshetov et al. [RSH05]
with multi-level ray tracing, which amortizes traversal costs across
multiple rays.

For incoherent rays, Wald et al. [WGBK07] introduced SIMD
ray stream tracing, where rays are reorganized on-the-fly to maxi-
mize SIMD efficiency. Boulos et al. [BWB08] further refined this
approach with adaptive ray packet reordering based on runtime co-
herence. Stream filtering techniques [GR08, RGD09] provided ad-
ditional performance by processing large numbers of rays against
the same nodes, though at the cost of requiring uniform traver-
sal orders for all rays. Tsakok [Tsa09] explored multi-BVH ray
stream tracing to reduce memory bandwidth while eliminating fil-
tering costs. Later, Barringer and Akenine-Möller [BAM14] pre-
sented dynamic ray stream traversal which allows rays to follow
individual traversal paths while still benefiting from stream pro-
cessing. Their approach demonstrated significant performance im-
provements by extracting implicit coherence from seemingly inco-
herent workloads, a key insight that our work leverages. Fuetterling
et al. [FLPE15] presented efficient ray tracing kernels for modern
CPU architectures that combine aspects of packet and single-ray
approaches, showing that hybrid methods can outperform special-
ized solutions.

Wide BVHs and SIMD Optimization. Wide BVHs, which use
nodes with more than two children, have been explored as a
means to improve SIMD utilization and reduce tree depth. Wald et
al. [WBB08] demonstrated that multi-branching BVHs enable ef-
ficient SIMD single-ray traversal. Áfra [Áfr13] later extended this
work with optimizations specifically for 8-wide AVX instructions.

Ernst and Greiner [EG08] introduced multi bounding volume hi-
erarchies, demonstrating how alternative BVH organizations can
improve traversal efficiency through different node arrangements.
Dammertz et al. [DHK08] presented shallow bounding volume hi-
erarchies specifically optimized for fast SIMD ray tracing of in-
coherent rays, showing that reducing tree depth while maintaining
effective pruning can significantly improve performance for diver-
gent ray workloads.

Vaidyanathan et al. [VWB19] proposed a wide BVH traversal
technique with a shortened stack to reduce memory traffic. Our ap-
proach builds upon these findings, with particular inspiration from
Ylitie et al. [YKL17], who demonstrated significant memory traf-
fic reduction through compressed wide BVHs. Their work showed
that internal nodes with multiple children can be efficiently packed
and processed in SIMD, while simultaneously reducing memory
consumption compared to binary BVHs.

Reduced Precision and Compression Techniques. Memory-
efficient acceleration structures have been explored through vari-
ous compression techniques. Mahovsky and Wyvill [MW06] pre-
sented a method for hierarchically encoding BVHs using reduced
precision, demonstrating that ray tracing does not always require
full floating-point precision. Mahovsky et al. [Mah05] further ex-
plored reduced-precision BVHs, showing that quantization can ef-
fectively reduce memory requirements with minimal visual impact.
Their approach maintained full precision for ray parameters while
using quantized data structures.

Building on mesh quantization approaches, Segovia and
Ernst [SE10] introduced memory efficient ray tracing with hier-
archical mesh quantization, demonstrating how geometry can be
efficiently compressed while maintaining traversal performance.
More recently, geometry compression techniques have advanced
with specialized formats like DGF [BBM24], which provides a
dense, hardware-friendly format for lossily compressing meshlets
with arbitrary topologies, enabling efficient storage and processing
of complex geometry.

For subdivision surfaces and high-detail geometry, specialized
compression schemes have been developed. Lier et al. [LMSS18]
presented a high-resolution compression scheme for ray tracing
subdivision surfaces with displacement, showing that even complex
procedural geometry can be efficiently compressed. Complement-
ing this, Benthin and Peters [BP23] addressed real-time ray tracing
of micro-polygon geometry with hierarchical level of detail, which
adapts geometric complexity based on viewing conditions to opti-
mize memory usage.

Fixed-point representations for ray tracing have been investi-
gated by several researchers. Hanika and Keller [HK07] demon-
strated hardware ray tracing using fixed-point arithmetic, while
Heinly et al. [HRB∗09] explored integer-based ray tracing. More
recently, Hwang et al. [HLS∗15] proposed a hybrid number repre-
sentation approach for mobile ray tracing that combines aspects of
fixed-point and floating-point arithmetic.

Our work integrates and extends these previous approaches in
several ways: Like Ylitie et al. [YKL17], we use wide BVHs to
reduce memory traffic, but we extend their compression scheme to
include triangle data as well. We adopt the ray stream approach of
Barringer and Akenine-Möller [BAM14] to further reduce memory
traffic from traversal stacks. Unlike previous reduced-precision ap-
proaches that typically decompress data before intersection tests,
we perform fixed-point ray tracing directly on the compressed
structures, similar to Hanika and Keller [HK07]. Our approach
carefully manages precision limitations through local coordinate
systems with power-of-two scaling, avoiding the geometric holes
sometimes encountered with floating-point methods. By combining
these techniques—quantized wide BVHs, direct fixed-point traver-
sal, and ray stream processing—our method achieves greater mem-
ory traffic reduction than previous works while maintaining high
computational throughput and numerical robustness.

The following sections detail our approach: Section 3 discusses
quantization of the bounds, the geometry, and the rays, and Sec-
tion 4 the fixed-point ray stream traversal.



M. Grauer & J. Hanika & C. Dachsbacher / Minimizing Ray Tracing Memory Traffic 3 of 13

2550

255

1 ...

... ...
1

Figure 1: Each node spans a local grid with coordinates in 8 bit.
The resolution of the grid is defined by the scale factors of each
axis. In this example, this results in slightly rectangular grid cells,
matching the shape of the underlying bounding box. The origin
(bottom left corner) of the local grid is in integer world space. Child
bounds and triangles are snapped to this local grid and thus repre-
sented with 8 bits per coordinate.

3. Quantized BVH and Triangle Representation

Traditional BVH nodes typically store bounding box coordinates of
their children as 32-bit floating-point values, consuming 24 bytes
per box (2 points × 3 coordinates × 4 bytes). Similarly, triangle
vertices require 36 bytes (3 vertices × 3 coordinates × 4 bytes).
Our quantization scheme reduces this significantly by using 8-bit
fixed-point representations within locally defined coordinate sys-
tems.

Local Coordinate Systems. For each BVH node, we define a local
coordinate system with the following components:

• Scale factors: Power-of-two scale for each axis (3×1 byte)
• Origin: A full-precision integer world-space point (3×4 bytes)
• Quantized bounds: 8-bit coordinates for each bounding plane

(6×1 byte per child box)

The local origin serves as the reference point for all quantized co-
ordinates within the node. By storing this origin in full precision,
we maintain positioning accuracy while allowing internal offsets to
be represented with reduced precision (see Figure 1).

Scale Factors. For each node, we compute scale factors as powers
of two, ensuring maximum precision within the 8-bit range. This
approach is equivalent to the compression performed by Ylitie et
al. [YKL17] for floating-point bounding boxes. The scale for each
axis is determined by:

scaleaxis =

⌈
log2

maxBoundsaxis−minBoundsaxis

28−1

⌉
. (1)

Origin. For the root node, the origin is calculated from the lower
point p of the floating-point bounding box by rounding it down to
the next fixed-point number using scaleaxis bits of precision:

originaxis =
⌊ paxis

2scaleaxis

⌋
. (2)

For all other nodes, origins are provided by the parent node.

Quantization of Bounds. Each node assigns a suitable origin and
scale factors to its children. The floating-point bounds plo, phi of
the child nodes are quantized to fixed-point using the scale factor
of the node as precision:

loaxis =

⌊
plo,axis−originaxis

2scaleaxis

⌋
, (3)

hiaxis =

⌈
phi,axis−originaxis

2scaleaxis

⌉
. (4)

Rounding down for lower bounds and rounding up for up-
per bounds ensures conservatively that child nodes are contained
within their parents. The resulting coordinates are guaranteed to be
within [0,255] due to the adaptive scale.

If a child node extent is small, the scale factors are adapted. In
this case, the child node might need less bits to represent its range.
We make sure every leaf node has the same quantization gaps and
enforce the quantization gaps of inner nodes to be at least as large
as their children. This is done to achieve hole-free meshes, as dis-
cussed later in this section.

Quantization of Triangles. For leaf nodes, we apply the same
quantization principles used for child bounding boxes. Each trian-
gle vertex is quantized to the leaf node’s local coordinate grid using
the node-specific scale factors for each axis. This ensures that trian-
gle geometry is represented with the same precision as its bounds.
With this scheme, each vertex coordinate requires 8 bits of storage,
resulting in a compact representation of 9 bytes per triangle (3 ver-
tices× 3 coordinates×1 byte). This represents a significant reduc-
tion from the 36 bytes typically required in traditional ray tracers
that use full-precision floating-point coordinates. Other vertex at-
tributes used for shading are stored seperately and are not part of
the comrpession scheme. Thus, only the compact representation of
a triangle is passed to the intersection tests.

Traditional vertex/index representations for quad meshes typi-
cally require around 28 bytes per quad (16 for indices, 12 for amor-
tized vertex data) with double indirection complexity. Our quan-
tized approach uses only 18 bytes per quad-equivalent while elim-
inating indirection overhead. Even optimized quad meshes with
8-byte vertices would consume more memory than this approach
making it beneficial for memory-constrained environments.

This compact triangle representation enables a potential opti-
mization: in a unified node structure, the 32 bytes used for child
references in internal nodes could store up to three triangles (27
bytes) directly within leaf nodes containing three or fewer triangles.
This would eliminate the need to access separate triangle storage,
potentially reducing memory traffic by keeping frequently accessed
small triangle groups in the node structure itself.

Hole-free meshes. To maintain hierarchical integrity, we must en-
sure that child nodes never extend beyond their parents after quan-
tization. This is inherently guaranteed by our compression scheme,
as the scale factors of child nodes are always finer or equal to those



4 of 13 M. Grauer & J. Hanika & C. Dachsbacher / Minimizing Ray Tracing Memory Traffic

struct BVHNode8
Children Bounds (192 bytes total)
float lo_x[8] 32 bytes
float hi_x[8] 32 bytes
float lo_y[8] 32 bytes
float hi_y[8] 32 bytes
float lo_z[8] 32 bytes
float hi_z[8] 32 bytes
Union (32 bytes total)
struct LeafNode
uint32_t primitiveOffset 4 bytes
uint32_t numPrimitives 4 bytes
uint32_t leafPad[6] 24 bytes
struct InnerNode
int32_t childOffsets[8] 32 bytes
NodeType type 1 byte

Total Size: 228 bytes

Figure 2: Memory layout of the BVHNode8 structure used in our
acceleration structure. The toal size as listed is 225 bytes, which is
padded to 228 bytes.

of their parents. However, conservative rounding of child bounding
boxes can create new overlaps between sibling nodes, potentially
increasing the number of ray-box intersections during traversal.

Our approach to maintaining the hierarchical scale factor con-
straint (child nodes must not use coarser scaling than parents) is to
propagate the established leaf-level scale factors upward through
the tree. Inner nodes are adjusted to use scale factors at least as
coarse as the maximum among their descendant leaf nodes. When
a node’s scale factors are adjusted, we re-quantize its child bound-
ing boxes to match the new coordinate system. This approach guar-
antees both correctness and visual fidelity while maintaining the
memory efficiency of our quantized representation.

A more subtle challenge arises with triangle quantization: For
watertight surfaces, triangles sharing an edge must remain con-
nected after quantization. If adjacent triangles reside in different
leaf nodes with different scale factors, they could become discon-
nected in fixed-point space, creating geometric holes. To prevent
this, we identify the largest scale factors for each axis among all
leaf nodes and broadcast these factors to all leaf nodes. This en-
sures consistent triangle quantization across the entire scene. Note
that this approach requires no preprocessing and guarantees cor-
rectness for all input meshes. However, scenes containing large tri-
angles will force coarser quantization throughout the entire struc-
ture, potentially producing more visible quantization artifacts. Pre-
subdividing meshes with large triangles would enable finer scal-
ing factors across the scene, resulting in better visual quality while
maintaining our memory efficiency benefits.

Memory Layout. Figure 2 illustrates a typical floating-point node
layout for an 8-wide BVH. In this standard representation, 192
bytes are required to store the six bounding planes (min/max for
each axis) of eight children, with each coordinate stored as a 32-bit
float. Additionally, the node stores eight 4-byte child indices, con-
suming another 32 bytes, for a total of 228 bytes per node. This

struct BVHNode8Comp
Children Bounds (48 bytes total)
uint8_t lo_x[8] 8 bytes
uint8_t hi_x[8] 8 bytes
uint8_t lo_y[8] 8 bytes
uint8_t hi_y[8] 8 bytes
uint8_t lo_z[8] 8 bytes
uint8_t hi_z[8] 8 bytes
Union (32 bytes total)
struct LeafNode
uint32_t primitiveOffset 4 bytes
uint32_t numPrimitives 4 bytes
uint32_t leafPad[6] 24 bytes
struct InnerNode
int32_t childOffsets[8] 32 bytes
Quantization Data (15 bytes total)
int32_t origin[3] 12 bytes
int8_t e[3] 3 bytes
NodeType type 1 byte

Total Size: 96 bytes

Figure 3: Memory layout of the BVHNode8Comp structure used in
our acceleration structure.

layout is typically shared between internal nodes and leaf nodes,
with leaf nodes repurposing the child index space to store primitive
counts and an index to contiguously stored primitives.

Figure 3 depicts our compressed node structure. While we still
represent six bounding planes for each of the eight children, each
coordinate is stored using only 8 bits mapped to the unsigned
[0,255] range. This reduces the space required for bounds to just
48 bytes–a 75% reduction from the uncompressed version. The 32
bytes for child and primitive indexing remain unchanged, as this
information is directly related to the size of the scene. To estab-
lish the local coordinate system within which the quantized bounds
are valid, we store a fixed-point origin point in 32 bit per axis (12
bytes) and three 8-bit exponents representing power-of-two scale
factors for each axis (3 bytes). The resulting compressed node re-
quires only 96 bytes, achieving a reduction of over 57% compared
to the uncompressed version.

Nodes for 2-wide and 4-wide BVHs follow the same organi-
zational principle, differing only in the number of children they
contain. For the 2-wide BVH, the node size is reduced from 64 to
36 bytes, a reduction of approx. 44%. For the 4-wide BVH, the
node size is reduced from 116 to 56 bytes, a reduction of approx.
52%. Since each node carries the fixed overhead of the quantiza-
tion frame (origin and scale factors) and indexing information, the
relative space efficiency improves with higher branching factors.
The 8-wide BVH nodes achieve the most compact representation,
as they amortize this fixed overhead across more children. Never-
theless, 2-wide and 4-wide BVH nodes still provide substantial size
reductions compared to their uncompressed counterparts.

Ray Quantization. For intersecting rays with our quantized struc-
tures, we transform each ray into a compatible fixed-point repre-
sentation. This is important because it reduces the memory foot-



M. Grauer & J. Hanika & C. Dachsbacher / Minimizing Ray Tracing Memory Traffic 5 of 13

print of the ray lists during ray stream tracing. This transformation
converts both the ray origin and direction from floating-point to
fixed-point format. While rays are initially generated in floating-
point representation (allowing direct comparison with traditional
methods), we apply an additional memory optimization during con-
version: the ray direction is encoded using an octahedral map-
ping technique, compressing it to a single 4-byte unsigned inte-
ger [CDE∗14]. During traversal, this compact direction representa-
tion is decoded back into fixed-point space as needed for intersec-
tion tests. This approach not only ensures compatibility with our
quantized acceleration structures but further reduces memory traf-
fic associated with ray storage. In total, a ray consumes 32 bytes of
memory: 16 bytes for an intersection record, 12 bytes for the ray
origin, and 4 bytes for the compressed direction.

4. Fixed-Point Traversal and Intersection

We perform traversal and intersection operations directly on quan-
tized data. This section details our fixed-point algorithms for ray-
box and ray-triangle intersection.

4.1. Fixed-Point Ray-Box Intersection

Our ray-box intersection test operates on quantized bounds using
fixed-point arithmetic. First we move the ray and the box into the
same space, using 64 bits of precision with the same quantization
gaps as the 8-bit box coordinates. The algorithm follows the slabs
method [WBMS05] but adapted for fixed-point representation. Un-
like floating-point operations where rounding without conservative
growing of the bounding boxes [Ize13] can lead to inconsistent re-
sults at boundaries (causing "cracks" or "leaks"), our fixed-point
comparison guarantees consistent outcomes. The algorithm is out-
lined in Algorithm 1. Special care must be taken when handling
zero ray direction components in the quantized representation. A
component of the ray direction can be zero in fixed-point if the
original floating-point value was too small to be represented within
the quantization precision. This makes this edge case appear more
often than in the floating-point case and results in directions that
go parallel to one side of the bounding box. The floating-point slab
test transparently handles such cases because division by zero re-
sults in NaN and signed infinity which can be resolved by the same
code as the regular case. When a ray is parallel to a bounding plane,
it should intersect the box if the ray passes between the minimum
and maximum bounds along that axis. In fixed-point, we have to
implement explicit handling for all these cases to ensure consistent
ray-box testing.

4.2. Fixed-Point Ray-Triangle Intersection

We extend the fixed-point approach to ray-triangle intersection us-
ing an edge-function based algorithm [Chi05] adapted for fixed-
point arithmetic. It is based on vector triple products like many
other ray triangle tests which could have been used in this place.
Algorithm 2 shows a simplified version of the ray-triangle intersec-
tion algorithm.

Key challenges in our fixed-point implementation are ensuring
sufficient precision during cross product and dot product operations

Algorithm 1: Ray-Box Intersection
Input: ray, box
Output: hit (boolean)
tmin← 0
tmax←MAX_FIXED_POINT
for axis ∈ {x, y, z} do

if ray.dir[axis] = 0 then
if ray.origin[axis]< box.min[axis] or

ray.origin[axis]> box.max[axis] then
// Ray parallel and outside
return false

else
// Two intersections
t1← FixedDiv(box.min[axis]−

ray.origin[axis],ray.dir[axis])
t2← FixedDiv(box.max[axis]−

ray.origin[axis],ray.dir[axis])
if ray.dir[axis]< 0 then

swap(t1, t2)

tmin← max(tmin, t1)
tmax← min(tmax, t2)
if tmin > tmax then

// No intersection
return false

return true

and avoiding rounding before the test has made its initial decision
(the dot checks). We address these challenges by maintaining all in-
termediate results in full fixed-point precision until the intersection
is definitively determined. This conservative approach guarantees
that no intersections are missed along edges of adjacent triangles,
which is critical for maintaining watertight surfaces. By postponing
any precision reduction until after the intersection decision, we pre-
vent the numerical inconsistencies that can lead to geometric holes
in traditional floating-point implementations.

4.3. Precision Analysis

This section provides an analysis of the precision requirements dur-
ing fixed-point ray-triangle intersection. We examine how precision
requirements increase throughout the intersection test, determin-
ing the theoretical minimum bit width needed for accurate results.
Given the following range and fractional bits per component:

• Ray Origin: Rorg range bits and Qorg fractional bits
• Ray Direction: Rdir range bits and Qdir fractional bits
• Triangle Vertices: Rtri range bits and Qtri fractional bits

The values for the ray origin and direction are parameters and can
be modified, whereas the triangle vertex precision is inferred from
the BVH. In our fixed-point representation, each number uses the
signed format (R.Q) where R bits represent the range (integer por-
tion) and Q bits represent the fractional precision. We trace pre-
cision requirements through the intersection test up to the point
where the intersection is initially decided (the edge plane tests).
Fixed-point arithmetic operations affect precision as follows:



6 of 13 M. Grauer & J. Hanika & C. Dachsbacher / Minimizing Ray Tracing Memory Traffic

Algorithm 2: Ray-Triangle Intersection
Input: ray, triangle, origin
Output: hit (boolean), updated ray information
a← origin+ triangle.v0
b← origin+ triangle.v1
c← origin+ triangle.v2
ab← b−a; ac← c−a; bc← c−b
a0← ray.origin−a
b0← ray.origin−b
c0← ray.origin− c
aN←Cross(ab,a0)
bN←Cross(bc,b0)
cN←Cross(c0,ac)
dota← Dot(aN,ray.direction)
dotb← Dot(bN,ray.direction)
dotc← Dot(cN,ray.direction)
if dota > 0 or dotb > 0 or dotc > 0 then

// Early rejection
return false

n←Cross(ab,ac)
dotn← Dot(ray.direction,n)
dist←−Dot(a0,n)/dotn
if dist < 0 or dist > ray.tMax then

// Out of bounds
return false

ray.hitDistance← dist
ray.hitTriangleIndex← triangleIndex
ray.hitBarycentrics←ComputeBarycentricsFixed()
return true

• Fixed-Point Addition/Subtraction

(R1.Q1)± (R2.Q2) : (max{R1,R2}+1).(max{Q1,Q2}) (5)

• Fixed-Point Multiplication

(R1.Q1) · (R2.Q2) : (R1 +R2).(Q1 +Q2) (6)

The rule for multiplication assumes that both operands do not take
the smallest possible negative value. In that case, one additional
bit would be required. However, this case is unlikely and avoidable
by constraining the input domain or by implementing sign-aware
multiplication that handles this edge case separately. Edge vectors,
computed by subtracting vertices, require:

R1 = Rtri +1

Q1 = Qtri
(7)

Vectors pointing from vertices to the ray origin are bounded by:

R2 = max{Rtri,Rorg}+1

Q2 = max{Qtri,Qorg}
(8)

Normals of the edge planes computed using cross products of ori-
gin and edge vectors require (additional bits in blue):

R3 = max{Rtri,Rorg}+1+(Rtri +1)+1

Q3 = max{Qtri,Qorg}+Qtri
(9)

Finally, the dot products between edge plane normals and ray di-
rection require (additional bits in blue):

R4 = max{Rtri,Rorg}+1+(Rtri +1)+1+Rdir +2

Q4 = max{Qtri,Qorg}+Qtri +Qdir
(10)

A typical scenario which we use for most of our results is

Rorg = 16, Rdir = 1

Qorg = 8, Qdir = 10

The 8-bit vertex coordinates are added to the node origin. Since
the triangle vertices are bounded by the bounding box of the leaf,
we typically obtain Rtri = 16. The precision for a triangle is deter-
mined by its leaf node. In our results, Qtri = 8 is an upper bound for
the leaf-level precision. Using these values, the final requirements
are R4 = 38 bits and Q4 = 26 bits, meaning that 64 bits plus a sign
bit are theoretically required to store exact intermediate results for
the intersection decision. It is important that the underlying fixed-
point integer data type supports sufficient bits to maintain precision
throughout the calculation. In practice, the actual required preci-
sion is often substantially lower than these theoretical bounds. Ge-
ometric distributions rarely approach worst-case scenarios simul-
taneously in all dimensions. Given the defined scene dimensions
and the fixed precision for global origins and ray directions, the
exact bit-width requirements for all intermediate calculations be-
come fully deterministic and can be precisely established prior to
hardware implementation.

4.4. Ray Stream Tracing with Wide BVHs

Beyond the memory savings achieved through quantization, our
approach further reduces memory traffic through the integration
of ray stream tracing with wide BVHs. This combination mini-
mizes traversal stack memory usage and maximizes SIMD effi-
ciency potential, addressing key bandwidth bottlenecks in tradi-
tional ray tracing. Ray stream tracing, as introduced by Barringer
and Akenine-Möller [BAM14], organizes rays into larger collec-
tions that are processed together through the acceleration structure.
Unlike traditional ray-by-ray traversal where each ray maintains its
own traversal stack, ray streams consolidate traversal state across
multiple rays. The key insight is that many rays, even if ultimately
taking different paths through the acceleration structure, often tra-
verse common nodes near the root. By organizing rays that need to
visit the same node into groups, we can amortize node fetch costs
and significantly reduce stack memory traffic.

The ray stream approach maintains a shared traversal stack con-
taining entries that associate BVH nodes with lists of rays that need
to visit them. Each stack entry contains:

• a reference to a BVH node,
• a list of ray indices that need to process this node,
• traversal state information (mark children as processed).

Node data is fetched only once for potentially hundreds of rays
and stack entries are shared among rays. In combination with our
compressed node structure, the memory traffic is further reduced.
On the other hand, during ray stream traversal, ray lists have to
be accessed, too. We thus provide a ray encoding scheme using



M. Grauer & J. Hanika & C. Dachsbacher / Minimizing Ray Tracing Memory Traffic 7 of 13

octahedral maps in Section 3, reducing memory loads when applied
within the ray stream tracing technique.

5. Results

Our evaluation focuses on the primary goal of this work: minimiz-
ing memory traffic while maintaining visual fidelity. We instru-
mented our code to measure memory transactions when loading
bounds, geometry, and ray streams during ray tracing. We also pro-
vide visual evaluation of the effect of quantization on the images.

We construct our acceleration structures using a two-phase ap-
proach. Initially, we build floating-point BVHs of widths 2, 4, and
8 using Embree [WWB∗14]. Once the conventional BVH is con-
structed, we convert it to our compressed representation in a post-
process. This involves two iterations over the nodes. For each node,
we compute the optimal local coordinate system as described in
Section 3 in a first pass. This includes defining the origin point and
scale factors that provide maximum precision within the 8-bit quan-
tization range. In the same step, we quantize all bounding boxes and
triangle vertices using these node-specific local coordinate systems.
The resulting quantized data is then stored in our compact memory
layout, ready for traversal using the fixed-point algorithms detailed
in Section 4. In the second iteration, the leaf-level precisions are
propagated up the tree, ensuring a consistent hierarchy (see Sec-
tion 3.

Test Scenes. For our evaluation, we used a diverse set of 6 scenes
spanning different complexity levels and characteristics. These in-
clude single object models with moderate triangle counts, detailed
indoor/room scenes with varied geometric features, and expansive
world scenes containing millions of triangles. The test scenes are
shown in Figure 4. For each scene, we list the total node count and
triangle count in Table 1 to provide context for the complexity.

Configurations We conducted comparisons across 2-wide, 4-
wide, and 8-wide BVH configurations. Each type of BVH is eval-
uated with and without applied quantization. All configurations are
tested with both traditional single-ray traversal and the ray stream
approach. The 12 different configurations are a combination of

• BVH2, BVH4, BVH8 for the number of children of the nodes,
• SR or RS for single ray or ray stream,
• and C for compressed and U for uncompressed.

Memory Reduction Analysis. An overview of the complexity of
our test scenes is provided in Table 1, which also illustrates the
memory savings achieved by using the compressed triangles and
BVH nodes presented in Section 3. As expected, larger scenes ex-
perience more significant reductions in absolute memory footprint.
The largest scene in our test suite, Viking, contains 3.9 million tri-
angles, requiring approximately 135 MiB of memory for vertex
coordinates alone. Our compression technique reduces this to less
than 34 MiB. This scene also demonstrates the highest absolute re-
duction in BVH node size with an 8-wide BVH. The 1.27 million
8-wide BVH nodes originally occupy 277 MiB of storage, while
our compressed representation requires only about 117 MiB, sav-
ing 160 MiB.

Table 1 further reveals that the node count decreases signifi-
cantly when transitioning from a 2-wide to a 4-wide BVH struc-
ture. However, the reduction is much less pronounced when mov-
ing from 4-wide to 8-wide configurations. This can be attributed
to two opposing factors: while the number of internal nodes de-
creases, there is a corresponding increase in leaf nodes and empty
nodes. For instance, in the Viking scene, the Embree builder cre-
ated 615,050 empty nodes. This suggests that careful optimization
of BVH builder parameters could yield more suitable hierarchies
that maximize the benefits of our compression scheme.

Memory Traffic Analysis. Table 2 provides intersection statis-
tics for all configurations, showing the number of ray-box and
ray-triangle intersection tests performed across the various scenes.
These intersection counters offer insight into the computational ef-
ficiency of each approach, with lower values indicating reduced
traversal work.

Table 3 shows memory access required for fetching rays during
ray stream tracing. This data shows that reducing the size of rays
in memory using techniques like encoding with octahedral maps is
important for the ray stream variants. Table 4 presents a detailed
breakdown of memory traffic for the same configurations, mea-
sured in MiB transferred per frame. For single-ray traversal, we
track node accesses, ray accesses, and stack accesses separately.
For ray stream tracing, we monitor node accesses, ray accesses,
ray stream stack accesses, and ray list accesses. All variants also
include geometry access. Throughout these experiments, the con-
figurations BVH4-RS-C and BVH8-RS-C come out as the two best
approaches overall, with a slight preference for BVH4 for high tri-
angle counts.

Figure 8 shows total memory traffic accumulated for diffuse
bounces using path tracing for the presented configurations. The
SR-U configurations accumulate the highest amounts of mem-
ory traffic among all candidates. The configurations BVH4-RS-C
and BVH8-RS-C consistently accumulate the least memory traffic
showing the effectiveness of both ray stream traversal and compres-
sion in unison. The memory traffic in configuration BVH8-RS-C
amounts to only 18% of the memory traffic produced in the respec-
tive uncompressed, single ray version BVH8-SR-U.

5.1. Visual Quality

Our quantization approach necessarily introduces some approxima-
tion compared to full floating-point precision. Figure 5 presents a
side-by-side comparison between images rendered using our com-
pressed BVH and triangle representation versus a floating-point ref-
erence. The compression artifacts manifest primarily as discretized
edges and subtle geometric distortions, including slightly enlarged
or displaced elements. These artifacts become particularly pro-
nounced at lower ray-precision settings, where the quantization ef-
fects are clearly visible. As ray precision increases, we observe a
significant reduction in the blocky artifacts, effectively producing
smoother image quality that approximates the reference rendering
more closely. Figure 6 shows a side-by-side comparison of path
traced images with and without compression. The most notable ar-
tifacts appear at edges and corners where the quantization error in



8 of 13 M. Grauer & J. Hanika & C. Dachsbacher / Minimizing Ray Tracing Memory Traffic

Teapot, View 1 Teapot, View 2 Teapot, View 3 Sponza, View 1 Sponza, View 2 Sponza, View 3

Classroom, View 1 Classroom, View 2 Classroom, View 3 Corridor, View 1 Corridor, View 2 Corridor, View 3

Courtyard, View 1 Courtyard, View 2 Courtyard, View 3 Viking, View 1 Viking, View 2 Viking, View 3

Figure 4: The test scenes used for our evaluation. For triangle counts and BVH sizes see Table 1.

Teapot Sponza Classroom Corridor Courtyard Viking
#Triangles 16k 262k 607k 292k 2.8m 3.9m
#BVH2 nodes 13.9k 263.4k 577.3k 290.6k 2.69m 3.65m
#BVH4 nodes 4.7k 86.3k 200.9k 101.3k 965.1k 1.33m
#BVH8 nodes 4.7k 81.7k 191.5k 94k 908.4k 1.27m
Triangles uncomp. [MiB] 0.54 9.00 20.86 10.04 95.95 135.06
Triangles comp. [MiB] 0.13 2.25 5.21 2.51 23.99 33.76
BVH2 nodes uncomp. [MiB] 0.85 16.07 35.23 17.73 164.46 222.58
BVH2 nodes comp. [MiB] 0.48 9.04 19.82 9.97 92.51 125.20
BVH4 nodes uncomp. [MiB] 0.52 9.56 22.22 11.20 106.77 147.01
BVH4 nodes comp. [MiB] 0.25 4.61 10.73 5.41 51.54 70.97
BVH8 nodes uncomp. [MiB] 1.02 17.75 41.63 20.44 197.52 277.00
BVH8 nodes comp. [MiB] 0.43 7.47 17.53 8.60 83.16 116.62

Table 1: An overview of scene complexity and memory savings due to compression. Note that our BVHs are constructed by Embree. Their
focus might have been on ray tracing performance instead of on memory footprint, so our BVH8 number of nodes is about the same as for
BVH4, resulting in a much larger memory footprint. Ylitie et al. [YKL17, Table 6] report similar BVH4 cost for Sponza, but only 2.3 MiB for
the corresponding BVH8.



M. Grauer & J. Hanika & C. Dachsbacher / Minimizing Ray Tracing Memory Traffic 9 of 13

Teapot Sponza Classroom Corridor Courtyard Viking
Configuration Box Tri Box Tri Box Tri Box Tri Box Tri Box Tri
BVH2-RS-C 25 4 69 10 60 15 54 4 79 23 53 10
BVH2-RS-U 24 4 59 5 46 4 51 3 70 18 49 8
BVH2-SR-C 25 4 69 10 60 15 54 4 79 23 53 10
BVH2-SR-U 24 4 59 5 46 4 51 3 70 18 49 8
BVH4-RS-C 23 7 63 16 53 19 50 9 84 31 53 14
BVH4-RS-U 23 7 55 9 43 6 47 7 76 21 50 11
BVH4-SR-C 23 7 63 15 52 18 49 8 78 27 51 13
BVH4-SR-U 23 7 57 10 43 5 47 6 71 19 48 10
BVH8-RS-C 40 9 87 22 74 25 74 11 148 48 93 22
BVH8-RS-U 38 8 75 11 56 8 71 8 132 33 92 18
BVH8-SR-C 35 6 83 16 66 19 68 8 112 28 75 13
BVH8-SR-U 34 6 55 9 52 6 65 6 70 18 70 10

Table 2: Box and triangle intersection counters (in millions) for 12 configurations on 6 scenes (averaged over 3 viewpoints). The BVH8-RS-
C configuration produces a larger amount of box and triangle intersections but stays relatively close to the best technique in terms of total
memory traffic (Table 4).

Teapot Sponza Classroom Corridor Courtyard Viking
BVH2-RS-C 427 (86%) 1184 (87%) 1075 (82%) 883 (89%) 1411 (81%) 895 (83%)
BVH2-RS-U 527 (75%) 1211 (82%) 929 (81%) 1030 (85%) 1515 (68%) 1022 (74%)
BVH4-RS-C 219 (74%) 600 (76%) 536 (71%) 438 (79%) 876 (71%) 507 (73%)
BVH4-RS-U 267 (51%) 617 (64%) 468 (66%) 507 (65%) 932 (53%) 573 (56%)
BVH8-RS-C 216 (70%) 503 (69%) 474 (64%) 366 (75%) 947 (65%) 522 (67%)
BVH8-RS-U 257 (46%) 468 (52%) 348 (52%) 413 (57%) 955 (44%) 613 (45%)

Table 3: Measured ray access traffic (in MiB) and fraction of of total traffic (in %) for the configurations using ray stream tracing on 6 scenes
(averaged over 3 viewpoints). The measured ray access traffic is constant for single ray tracing since there is no ray list to manage, rays are
processed one by one. Reducing the ray size is an effective way of reducing overall traffic for the ray stream variants.

Teapot Sponza Classroom Corridor Courtyard Viking
BVH2-RS-C 497 1364 1308 993 1739 1074
BVH2-RS-U 705 1469 1141 1206 2237 1381
BVH2-SR-C 555 1514 1424 1096 1890 1161
BVH2-SR-U 1027 2191 1682 1816 3120 1969
BVH4-RS-C 297 785 756 551 1229 693
BVH4-RS-U 525 969 710 775 1749 1024
BVH4-SR-C 506 1341 1218 946 1852 1093
BVH4-SR-U 1071 2346 1617 1782 3335 2069
BVH8-RS-C 308 731 742 489 1458 777
BVH8-RS-U 560 902 667 728 2195 1352
BVH8-SR-C 657 1591 1477 1119 2383 1392
BVH8-SR-U 1530 2905 1995 2354 4515 2894

Table 4: Measured total traffic (ray lists, ray traversal stacks, bounds, triangles, in MiB) for 12 configurations on 6 scenes (averaged over
3 viewpoints). Best, second best, and third best numbers for each scene are color coded. BVH4-RS-C and BVH8-RS-C are close contenders
for the best technique, the BVH4 option being a bit better for larger scenes.



10 of 13 M. Grauer & J. Hanika & C. Dachsbacher / Minimizing Ray Tracing Memory Traffic

a) floating-point b) fixed-point (8-bit ray precision) c) fixed-point (12-bit ray precision)c) fixed-point (10-bit ray precision)

Figure 5: Comparison of ray-traced images (Teapot and Viking) using the compressed BVH and triangle representations against a floating-
point reference. Quantization of ray directions results in visible differences, less pronounced when using 10-bit or 12-bit ray directions. In
the fixed-point images, the node origins use 32 bits per axis for the origins (see Figure 3). Triangles and child bounding boxes use 8-bit
addressing within the local frame, which has much less impact on the image.

the origin and direction of a bounced ray lead to different results as
in the uncompressed version.

The magnitude of visual artifacts correlates strongly with the
precision available at the leaf-level in the BVH. As detailed in Sec-
tion 3, large leaf nodes (resulting from either high triangle counts or
geometrically extensive triangles) force their scale factors to prop-
agate upward through the hierarchy. This propagation can cause
other leaf nodes to experience a decrease in precision. For exam-
ple, the Viking scene in Figure 5 (bottom) requires coarse scale
factors of (-3, -5, -4) for all leaf nodes using a 4-wide BVH. In
contrast, the smallest leaf nodes in this scene would optimally uti-
lize much finer scale factors of (-22, -22, -21) if evaluated indepen-
dently. This substantial disparity in quantization granularity results
in pronounced discretization errors for smaller triangles, explain-
ing the visible artifacts in scenes with high geometric complexity
variation. In contrast, the Teapot scene (Fig. 5, top) exhibits consid-
erably less geometric distortion, as it requires scale factors of (-4,
-4, -4) at the leaf-level while the smallest leaves would only need
moderately finer factors of (-10, -12, -11). This reduced quantiza-
tion disparity directly translates to less perceptible visual artifacts
in simpler scenes with more uniform geometric scale. It follows
that preprocessing the mesh so that the size difference between the
largest and smallest triangles becomes smaller directly improves
the visual quality of the image computed using compression.

6. Conclusion

We present an approach to reduce memory loads and stores in a ray
tracing core by systematically going through all sources of mem-
ory access: geometry bounds, triangles, and ray traversal stacks. We

Figure 6: Left: Path traced without compression. Right: Path
traced with compression of Rays, BVH and triangles. 10-bits were
used for the precision of ray origins and directions. Quantization
errors can be spotted mostly along edges.

leverage findings from previous work and present an analysis of an
integrated system combining. Interesting trade-offs arise in many
cases: quantized bounds reduce the absolute memory footprint of
BVHs but increase the number of ray/box intersections because
the bounds grow due to rounding. Ray stream tracing can extract
coherence even in incoherent rays when accessing the bounds on
the upper levels of the BVH. Compared to single ray tracing, this
introduces additional memory traffic for a combined ray stream
stack. Quantizing the triangle data can remove memory indirec-
tions and reduce the overall memory footprint significantly. This
comes, however, with a visual impact especially for very low bit
widths, and good BVH traversal should be dominated by accessing



M. Grauer & J. Hanika & C. Dachsbacher / Minimizing Ray Tracing Memory Traffic 11 of 13

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

BVH8-SR-U BVH4-SR-U BVH2-SR-U BVH8-SR-C BVH2-RS-U BVH2-SR-C BVH2-RS-C BVH4-SR-C BVH8-RS-U BVH4-RS-U BVH8-RS-C BVH4-RS-C

Total Memory Traffic in MiB

Teapot Sponza Classroom Corridor Courtyard Viking

Figure 7: Comparison of the total memory traffic for all evaluated configurations. The two best configurations, BVH8-RS-C and BVH4-RS-C
do not consistently achieve lowest memory traffic in all scenes (see Table 4), but more so for higher triangle counts.

0

500

1000

1500

2000

2500

3000

1 Bounce 2 Bounces 3 Bounces 4 Bounces 5 Bounces

Total Memory Traffic in MiB

BVH2-RS-C BVH2-RS-U BVH2-SR-C BVH2-SR-U BVH4-RS-C BVH4-RS-U

BVH4-SR-C BVH4-SR-U BVH8-RS-C BVH8-RS-U BVH8-SR-C BVH8-SR-U

Figure 8: Comparison of the accumulated total memory traffic over multiple diffuse bounces using path tracing for the cornell box (Figure 6)
scene. The two best configurations, BVH8-RS-C and BVH4-RS-C achieve the lowest memory traffic consistently over multiple diffuse bounces.
The other scenes exhibit similar statistics.



12 of 13 M. Grauer & J. Hanika & C. Dachsbacher / Minimizing Ray Tracing Memory Traffic

bounds, not triangles. From our in-depth analysis, we draw several
conclusions:

Visual impact of Quantization. Our quantization scheme intro-
duces slight shifts in bounding box coordinates and triangle vertices
compared to their original floating-point values. While these shifts
are imperceptible in rendered images, a direct comparison with
floating-point rendering reveals subtle geometric displacements.

Scaling with scene complexity. Larger scenes show different
trade-offs than smaller scenes, and the winning technique shifts
from BVH8 to BVH4 as triangle and bound data begins to dom-
inate the ray traversal stack.

BVH8 vs. BVH4. While BVH8 yields better results in small
scenes, BVH4 reduces memory traffic the most at high triangle
counts (Table 4). This emphasizes the need to evaluate the algo-
rithms on actual workloads. Traversing a BVH8 with ray streams
entails additional algorithmic complexity, with the promise to
amortize quantization data over more child boxes. From our results,
we can not prove that the added complexity in constructing 8-wide
BVHs compensates the reduction in memory traffic over BVH4.
An actual hardware implementation would thus need to carefully
weigh in the improved SIMD opportunities when intersecting rays
with eight boxes at a time. Since the memory numbers of BVH4-RS
and BVH8-RS are very close, it might still be that BVH8 result in
better performance due to the utilization of wider SIMD units. Ad-
ditionally, as shown by Ylitie et al. [YKL17], BVH8 builders can
be designed with more focus on low memory footprint than what
we got from Embree.

In summary, our numbers demonstrate that we can achieve a sig-
nificant reduction in memory traffic for ray tracing (see Figure 7) at
manageable visual impact. These findings suggest that future hard-
ware implementations can leverage these quantization and com-
pression techniques to optimize memory bandwidth utilization. A
useful abstraction to hide the intricacies of fixed-point arithmetic
from rendering engineers could for instance be that the internal
data representation of the acceleration structure in the Vulkan API
would be the quantized representation of BVH and triangles. This
way it would be opaque to the user and could be swapped out by
updated algorithms in future driver releases.

6.1. Limitations and Future Work

In this work, we focused only on the memory traffic implications of
a ray tracing core in several variants. We left some considerations
out of the analysis, which can have a big impact on performance.

Mesh preprocessing. To preserve watertightness of the input
mesh, we adjust the global quantization gap to the largest leaf
node in the scene. This means that large triangles on the input de-
teriorate ray tracing accuracy. Modern geometry moves towards
smaller triangles, suitable for on-the-fly tessellation [KWK∗25,
BS08, LCNV09, KSW21], so this problem might be less apparent
in the future. Still, moderate subdivision before BVH construction
will improve the accuracy of our approach.

BVH build times. We did not examine BVH construction. Pre-
processing and quantizing geometry and bounds (Section 5) adds
some overhead to the build times that might be alleviated with a
more specialized BVH build routine.

Actual hardware. We showed a CPU simulation of low-memory
ray tracing, working on compressed primitives. To achieve perfor-
mance competitive with current hardware ray tracing units, special-
ized hardware components must be designed to efficiently execute
the required fixed-point operations.

Bit widths of the fixed-point units. Our current implementation
moves rays and triangles into a shared, high resolution world space
(64-bit precision) before intersection. This necessitates hardware
units running at high bit widths. To avoid this, we could transform
the ray origins into low precision (8-bit) leaf node space before in-
tersection. Since our leaf nodes all operate in the same global pre-
cision, we do not foresee any issues transforming the ray origin to
a point on the leaf node box first. This has the potential to save a lot
of die space for the arithmetic intersection units.

References
[Áfr13] ÁFRA A. T.: Faster Incoherent Ray Traversal Using 8-

Wide AVX Instructions. Tech. rep., Babeş-Bolyai University, 2013.
URL: http://www.cs.ubbcluj.ro/~afra/publications/
afra2013tr_mbvh8.pdf. 2

[BAM14] BARRINGER R., AKENINE-MÖLLER T.: Dynamic ray stream
traversal. ACM Trans. Graph. 33, 4 (2014). doi:10.1145/
2601097.2601222. 2, 6

[BBM24] BARCZAK J., BENTHIN C., MCALLISTER D.: Dgf: A dense,
hardware-friendly geometry format for lossily compressing meshlets
with arbitrary topologies. Proc. ACM Comput. Graph. Interact. Tech.
7, 3 (2024). URL: https://doi.org/10.1145/3675383, doi:
10.1145/3675383. 2

[BP23] BENTHIN C., PETERS C.: Real-time ray tracing of micro-poly
geometry with hierarchical level of detail. Computer Graphics Forum 42
(2023). doi:10.1111/cgf.14868. 2

[BS08] BOUBEKEUR T., SCHLICK C.: A flexible kernel for adaptive
mesh refinement on gpu. Computer Graphics Forum 27, 1 (2008),
102–113. doi:https://doi.org/10.1111/j.1467-8659.
2007.01040.x. 12

[BWB08] BOULOS S., WALD I., BENTHIN C.: Adaptive ray packet
reordering. In IEEE Symposium on Interactive Ray Tracing (2008),
pp. 131–138. doi:10.1109/RT.2008.4634633. 2

[CDE∗14] CIGOLLE Z. H., DONOW S., EVANGELAKOS D., MARA M.,
MCGUIRE M., MEYER Q.: A survey of efficient representations for
independent unit vectors. Journal of Computer Graphics Techniques
(JCGT) 3, 2 (2014), 1–30. URL: http://jcgt.org/published/
0003/02/01/. 5

[Chi05] CHIRKOV N.: Fast 3d line segment-triangle intersection test.
journal of graphics, gpu, and game tools 10, 3 (2005), 13–18. 5

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow bounding
volume hierarchies for fast simd ray tracing of incoherent rays. Comput.
Graph. Forum 27 (2008). doi:10.1111/j.1467-8659.2008.
01261.x. 2

[EG08] ERNST M., GREINER G.: Multi bounding volume hierarchies.
In 2008 IEEE Symposium on Interactive Ray Tracing (2008), pp. 35–40.
doi:10.1109/RT.2008.4634618. 2

[FLPE15] FUETTERLING V., LOJEWSKI C., PFREUNDT F.-J., EBERT
A.: Efficient ray tracing kernels for modern cpu architectures. Journal
of Computer Graphics Techniques (JCGT) 4, 5 (2015), 90–111. URL:
http://jcgt.org/published/0004/04/05/. 2

http://www.cs.ubbcluj.ro/~afra/publications/afra2013tr_mbvh8.pdf
http://www.cs.ubbcluj.ro/~afra/publications/afra2013tr_mbvh8.pdf
https://doi.org/10.1145/2601097.2601222
https://doi.org/10.1145/2601097.2601222
https://doi.org/10.1145/3675383
https://doi.org/10.1145/3675383
https://doi.org/10.1145/3675383
https://doi.org/10.1111/cgf.14868
https://doi.org/https://doi.org/10.1111/j.1467-8659.2007.01040.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2007.01040.x
https://doi.org/10.1109/RT.2008.4634633
http://jcgt.org/published/0003/02/01/
http://jcgt.org/published/0003/02/01/
https://doi.org/10.1111/j.1467-8659.2008.01261.x
https://doi.org/10.1111/j.1467-8659.2008.01261.x
https://doi.org/10.1109/RT.2008.4634618
http://jcgt.org/published/0004/04/05/


M. Grauer & J. Hanika & C. Dachsbacher / Minimizing Ray Tracing Memory Traffic 13 of 13

[GR08] GRIBBLE C. P., RAMANI K.: Coherent ray tracing via stream
filtering. In IEEE Symposium on Interactive Ray Tracing (2008), pp. 59–
66. doi:10.1109/RT.2008.4634622. 2

[HK07] HANIKA J., KELLER A.: Towards hardware ray tracing using
fixed point arithmetic. In IEEE Symposium on Interactive Ray Tracing
(2007), pp. 119–128. doi:10.1109/RT.2007.4342599. 2

[HLS∗15] HWANG S. J., LEE J., SHIN Y., LEE W.-J., RYU S.: A mobile
ray tracing engine with hybrid number representations. In SIGGRAPH
Asia Mobile Graphics and Interactive Applications (2015), Association
for Computing Machinery. doi:10.1145/2818427.2818446. 2

[HRB∗09] HEINLY J., RECKER S., BENSEMA K., PORCH J., GRIBBLE
C.: Integer ray tracing. Journal of Graphics, GPU, and Game Tools 14,
4 (2009), 31–56. doi:10.1080/2151237X.2009.10129289. 2

[Ize13] IZE T.: Robust BVH ray traversal. Journal of Computer Graphics
Techniques (JCGT) 2, 2 (2013), 12–27. URL: http://jcgt.org/
published/0002/02/02/. 5

[KSW21] KARIS B., STUBBE R., WIHLIDAL G.: A deep dive into nanite
virtualized geometry. In Advances in Real-Time Rendering in Games,
Part 1 (2021). 12

[KWK∗25] KUSHWAHA V., WERNESS E., KUBISCH C., SCHMID
J., KNOWLES P.: Vk_nv_cluster_acceleration_structure. https:
//registry.khronos.org/vulkan/specs/latest/man/
html/VK_NV_cluster_acceleration_structure.html,
2025. 12

[LCNV09] LENZ R., CAVALCANTE-NETO J. B., VIDAL C. A.: Op-
timized pattern-based adaptive mesh refinement using gpu. In 2009
XXII Brazilian Symposium on Computer Graphics and Image Processing
(2009), pp. 88–95. doi:10.1109/SIBGRAPI.2009.37. 12

[LMSS18] LIER A., MARTINEK M., STAMMINGER M., SELGRAD K.:
A high-resolution compression scheme for ray tracing subdivision sur-
faces with displacement. Proc. ACM Comput. Graph. Interact. Tech. 1,
2 (2018). URL: https://doi.org/10.1145/3233308, doi:
10.1145/3233308. 2

[Mah05] MAHOVSKY J. A.: Ray tracing with reduced-precision bound-
ing volume hierarchies. PhD thesis, University of Calgary, CAN, 2005.
AAINR06958. 2

[MW06] MAHOVSKY J., WYVILL B.: Memory-conserving bounding
volume hierarchies with coherent raytracing. Computer Graphics Fo-
rum 25, 2 (2006), 173–182. doi:https://doi.org/10.1111/
j.1467-8659.2006.00933.x. 2

[RGD09] RAMANI K., GRIBBLE C. P., DAVIS A.: Streamray: a stream
filtering architecture for coherent ray tracing. SIGARCH Comput. Archit.
News 37, 1 (2009), 325–336. doi:10.1145/2528521.1508282.
2

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-level ray
tracing algorithm. ACM Transactions on Graphics - TOG 24 (2005),
1176–1185. doi:10.1145/1073204.1073329. 2

[SE10] SEGOVIA B., ERNST M.: Memory efficient ray tracing with hier-
archical mesh quantization. In Proceedings of Graphics Interface (2010),
GI ’10, Canadian Information Processing Society, p. 153–160. 2

[Tsa09] TSAKOK J. A.: Faster incoherent rays: Multi-bvh ray stream
tracing. In Proceedings of the Conference on High Performance Graph-
ics (2009), Association for Computing Machinery, p. 151–158. doi:
10.1145/1572769.1572793. 2

[VWB19] VAIDYANATHAN K., WOOP S., BENTHIN C.: Wide BVH
Traversal with a Short Stack. In High-Performance Graphics - Short
Papers (2019), Steinberger M., Foley T., (Eds.), The Eurographics Asso-
ciation. doi:10.2312/hpg.20191190. 2

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid of packets
- efficient simd single-ray traversal using multi-branching bvhs -. In
IEEE Symposium on Interactive Ray Tracing (2008), pp. 49–57. doi:
10.1109/RT.2008.4634620. 2

[WBMS05] WILLIAMS A., BARRUS S., MORLEY R. K., SHIRLEY P.:
An efficient and robust ray-box intersection algorithm. In ACM SIG-
GRAPH 2005 Courses (2005), SIGGRAPH ’05, Association for Com-
puting Machinery, p. 9–es. doi:10.1145/1198555.1198748. 5

[WGBK07] WALD I., GRIBBLE C. P., BOULOS S., KENSLER A.: SIMD
Ray Stream Tracing- SIMD Ray Traversal with Generalized Ray Packets
and On-the-fly Re-Ordering. Tech. Rep. UUSCI-2007-012, University
of Utah, 2007. 2

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER M.: In-
teractive rendering with coherent ray tracing. Computer Graphics Fo-
rum 20, 3 (2001), 153–165. doi:https://doi.org/10.1111/
1467-8659.00508. 2

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: a kernel framework for efficient cpu ray tracing. ACM
Trans. Graph. 33, 4 (2014). doi:10.1145/2601097.2601199. 7

[YKL17] YLITIE H., KARRAS T., LAINE S.: Efficient incoherent ray
traversal on gpus through compressed wide bvhs. In Proceedings of High
Performance Graphics (2017), Association for Computing Machinery.
doi:10.1145/3105762.3105773. 2, 3, 8, 12

Appendix A: Fixed-Point Arithmetic

Implementing fixed-point arithmetic requires careful attention
to precision and overflow. We use the following approach for
key operations, taking fixed-point numbers of varying formats
FixedP(integer value, R, Q).

Algorithm 3: FixedPoint Addition/Subtraction
Input: this, other: FixedP
Output: result: FixedP
R′←max(this.R,other.R)+1
if this.Q = other.Q then

return FixedP(this.val ± other.val, R’, this.Q)
else if this.Q < other.Q then

rescaled← this.rescale(other.Q)
return FixedP(rescaled.val ± other.val, R’, other.Q)

else
rescaled← other.rescale(this.Q)
return FixedP(this.val ± rescaled.val, R’, this.Q)

Algorithm 4: FixedPoint Multiplication
Input: this, other: FixedP
Output: result: FixedP
return FixedPRQ(this.val · other.val, this.R + other.R,

this.Q + other.Q)

Algorithm 5: FixedPoint Division
Input: this, other: FixedP
Output: result: FixedP
numerator← this.val≪ (other.Q+other.R)
return FixedP(numerator / other.val, this.R + other.Q,

other.R + this.Q)

https://doi.org/10.1109/RT.2008.4634622
https://doi.org/10.1109/RT.2007.4342599
https://doi.org/10.1145/2818427.2818446
https://doi.org/10.1080/2151237X.2009.10129289
http://jcgt.org/published/0002/02/02/
http://jcgt.org/published/0002/02/02/
https://registry.khronos.org/vulkan/specs/latest/man/html/VK_NV_cluster_acceleration_structure.html
https://registry.khronos.org/vulkan/specs/latest/man/html/VK_NV_cluster_acceleration_structure.html
https://registry.khronos.org/vulkan/specs/latest/man/html/VK_NV_cluster_acceleration_structure.html
https://doi.org/10.1109/SIBGRAPI.2009.37
https://doi.org/10.1145/3233308
https://doi.org/10.1145/3233308
https://doi.org/10.1145/3233308
https://doi.org/https://doi.org/10.1111/j.1467-8659.2006.00933.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2006.00933.x
https://doi.org/10.1145/2528521.1508282
https://doi.org/10.1145/1073204.1073329
https://doi.org/10.1145/1572769.1572793
https://doi.org/10.1145/1572769.1572793
https://doi.org/10.2312/hpg.20191190
https://doi.org/10.1109/RT.2008.4634620
https://doi.org/10.1109/RT.2008.4634620
https://doi.org/10.1145/1198555.1198748
https://doi.org/https://doi.org/10.1111/1467-8659.00508
https://doi.org/https://doi.org/10.1111/1467-8659.00508
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/3105762.3105773

