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Abstract
Cameras make images collecting per-pixel measurements of light reflected by the objects in the world. Commonly,
these measurements undergo a transformation so that they become values in a standardized color space, such as the
sRGB space. This makes it possible to send the values to a display device and produce a human a visual sensation as
close as possible to what would have been caused by the original scene. In this work we aim to explore the difficulties
and opportunities that arise in devising such non-bijective transformations, visualizing differences between device
vision and human vision. In particular we are interested in the practical impact of observer metamerism: different
camera devices and human observers can distinguish a different set of spectral stimuli presented to them. When
characterizing a camera, this is usually ignored, missing potential to increase chromatic acuity where the camera
can see more than the human observer. A question that arises is whether the metameric stimuli involved here do
actually appear in practice in relevant cases. We run numeric experiments to investigate these questions.

1. Introduction

Cameras and humans perceive, or measure, color differently,
as a consequence of the different spectral response functions
(SRF) that characterize them. The light stimulus q activates
the = SRFs � = {Ā0 (_), . . . , Ā=−1 (_)} performing an integral
over the wavelength domain Λ = [_min, _max]

08 =

∫
_∈Λ

Ā8 (_)q(_) d_ = 〈Ā8 , q〉. (1)

We call this the action of observer � on the stimulus q, and
we say that the result of the action is a measurement vector
(00, . . . , 0=−1).

The action of � is linear and in general, given two dif-
ferent observers � and � with the same number = of SRFs,
there will be no linear mapping from the 08 resulting from
� to the 18 from �. However, it is desirable to transform the
data recorded from a digital camera into appropriate signals
for a display device, so that the sensation observing the orig-
inal scene in person is as close as possible to observing the
reproduction on said display device. This is most accurately
performed by look-up tables (LUTs), which for a given set of
stimuli q8 provide a mapping between measurements from
the observers �(q8) ↦→ �(q8). This gives rise to a few ques-
tions that we set out to address at least partially:

• While using such a LUT on camera RGB ensures correct
gamut boundaries, it fails to resolve metamerism, i.e. one
camera RGB coordinate will be due to one from a number
of different spectra which might have induced different hu-
man measurements (and vice-versa). We know in theory
this difference can be substantial, but how much does this
matter in practice?

• For stimuli observed in photography, is there a signifi-
cant ‘‘chromatic fingerprint’’ due to the SRFs of a specific
camera model as compared to another?

• What is a relevant sample of stimuli (reflectance and illu-
mination spectra, potentially including indirect and fluo-
rescence) whichwould allow us to evaluate these questions
in a practical setting?

2. Background

Let us recap our notation for our audience. We will not dive
into post-vision phenomena or the limitations of display de-
vices, these are important aspects of the discussion but we
have not delved there for the present body of work.

Stimuli Our stimulus functions q(_) ≥ 0 (or stimuli for
short), measure light arriving at an observer, as a function
of wavelength over the so-called visible range. For this work
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LMS-2006-2deg metamers (DUT) as seen by XYZ-1931 (ref)
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Figure 1: Color mismatch volumes for 2deg-SCO. From left: CIE LMS 2006 data, CIE 1964 10◦ Supplementary Observer and
Canon 5D MkII camera. Fourth plot shows Canon metamers seen by Nikon D700. Details in section 3.1

we usedΛ = [400nm, 700nm]. Light comes into scenes from
illuminants and turns into stimuli by multiplication with re-
flectance distributions d(_). For the present work all stimuli
discussed are products of this kind.

Spectral response functions Our observers are ordered
collections of SRFs: � = {Ā0 (_), . . . , Ā=−1 (_)}, as used
in eq. (1) to convert stimuli q to measurement vectors, these
are called tristimulus coordinates when = = 3. The over bar
indicates that the functions have been scaled so that their col-
lective maximum is 1. This aligns with the names Ḡ(_), H̄(_),
and Ī(_) used by the CIE to define the 2◦, 1931, Standard
Colorimetric Observer (2deg-SCO in short) [WS82].

Ensembles A pair of different stimuli q1, q2 ∈ ( can map
to the same values under the action of �, in other words
�(q1) = �(q2). In this case we will say that q1 is an �-
metamer of q2, and that q1 and q2 form an �-metameric
pair. Through this we obtain the metameric ensemble over
q: "�(q) = {k ∈ ( |�(q) = �(k)} with respect to �.
Sometimes a pair of stimuli q1 and q2 will instead map to
the values that are ‘‘close’’ under the action of �, in other
words �(q1) ' �(q2). Such pairs are called �-parameric,
and their ensemble is %�(q) = {k ∈ ( |�(q) ' �(k)}.

3. Experiments

We compare two observers � and �: � will be the device
under test (DUT), while � will be our reference (ref). Im-
portantly in all our experiments we vary reflectance functions
d(_) under well-defined illuminants, chosen per-experiment.
This constrains the space of stimuli under analysis in impor-
tant ways, and is a different approach from other work in com-
putational vision.

All the computation in this work was executed in Python.
This paper focuses on color matters, so we have obtained a
PDF file with colors encoded in sRGB color space passing
the natural option to the xcolor LATEX package.

The OKLab color space To quantify and visualize color
differences and the location of color coordinates, we use the
OKLab color space [Ott20].
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The defining matrices "1 and "2 were numerically op-
timized to place the colors obtained from the Munsell Book
of Colors (MBoC) under Standard Illuminant C (StdIllC) as
seen by 2deg-SCO on shapes as close to concentric circles as
the degrees of freedom in the transform will allow.

We introduce the camera OKLab transform, which maps
camera RGB coordinates into OKLab coordinates directly.
We optimize the matrices "cam

1 and "cam
2 which define the

OKLab space so that they minimize the mapping error be-
tween the stimuli generated by MBoC under StdIllC with re-
spect to the prediction of their OKLab coordinates obtained
through the 2deg-SCO observer. Because the match is nec-
essarily imperfect, we will talk in the rest of the paper of a
camera OKLab space to signify the result of mapping camera
RGB data through its matching camera OKLab transform.

3.1. Color mismatch volumes

We have analyzed the difference in chromatic acuity between
pairs of observers. The metameric ensembles for DUT ob-
server �, as seen through the action of ref observer � are
called color mismatch volumes (CMV) in [Sch76].

We plotted maximal CMVs in camera OKLab space for
ref observer � as follows: we selected several patches from
MBoC, lit themwith StdIllC, obtaining stimuli {q1, . . . , q:}.
For each q8 we found the range of values .� (H being ref
observer �’s second coordinate) among all reflectances in
"�(q8). We picked several values H� ∈ .� and for each
solved again to find an -� range (being the first coordinate
as produced by ref observer �), constrained to be in "�(q)
as well as having the chosen H�. We repeated this a third
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Figure 2: Top row: change in volumes for empirical parameric ensembles for a Canon 5D Mk II with respect to the 2deg-SCO.
We plotted log2 (vol(%DUT (q))/vol(%ref (q))) encoded as the false color scale on the right, volumes from the PCA-aligned OBB
of each ensemble, the location of the dots is the center of the OBB, see section 3.1.1. Bottom row: The OKLab Hue, Saturation
and Luminance distributions of the data in the plots in the top row, plotted as a PDF. The gradients under the plot illustrate the
hue scale, saturation scale and luminance scale of OKLab

time picking G� ∈ -�, to find a /� range among spectra in
"�(q8) also meeting both our H� and G� targets. We then
plotted the resulting point clouds and obtained fig. 1. A direct
approach to describing CMVs was presented in [LFG14].

We observed that the volumes are sizable. While we ex-
pected larger sizes for neutral colors, we were somewhat sur-
prised to see how the blue-dominant region seemed rather
large even at higher saturation levels. This might correspond
to the larger responsivity gap between the short and medium
wavelength cone responses with respect to the conceptually
equivalent blue versus green response, except that we ex-
pected the region to be advantageous for the DUT, as con-
sequence of the even count of red versus green versus blue
photosites (often in a 1:2:1 proportion) as opposed to much
less even distribution in the retina (l:m:s are roughly 8:5:1
proportion in the foveal region). As the OKLab volume of
these projected metameric ensembles exhibited a strong de-
pendency on the color coordinate, we came to the question
of what should be important stimuli to map with low error.

3.1.1. Empirical parameric ensembles

For this purpose, starting from a database of roughly 42 mil-
lion spectral reflectances [ZFM16], we ran the following ex-
periment: All reflectance spectra in our database were turned
into stimuli bymultiplication with a reference illuminant. For

a given stimulus we have selected all the spectra �-parameric
to it, based on a Δ�OKLab threshold of 0.01 ' 0.5JND.

We then plotted log2 (vol(%�(q))/vol(%� (q))) in OKLab
space, using the color of the plotted mark to represent the
change in volume from � to � obtaining fig. 2. This is ef-
fectively an empirical (as opposed to maximal) form of fig. 1
built from spectra actually available in a given dataset. The
intuition for this visualization is that where a parameric en-
semble gives a larger volume, there the corresponding ob-
server has a better ability to separate the stimuli in it, the
tempering from available data being a way to explore where
this difference would actually make a difference in practice.
The logarithmic plotted scale gives us positive values indi-
cating that � separates the set better than �, and vice-versa
for negative values.

Repeating the same plotting for different parts of the
dataset, as visible in fig. 2, reveals an influence from the start-
ing database on the results obtained. One part of the expla-
nation might well be that more saturated reflection spectra
are scarcer than neutral colored ones, or medium brightness
ones would be more common than very dark or light ones. So
we asked ourselves how to visualize the distribution of large
databases of spectral reflectances.
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Figure 3: The distribution of IMFI values for the data used to generate fig. 2 Each spectral reflectance sample was lit by CIE
illuminants A, D50, D65, D250, F9, F11, F12. The resulting 2deg-SCO coordinates were adapted back to D65 using CIE CAT16
method. The IMFI is the RMS average of the Δ�OKLab resulting from this process

3.2. Analysis of large bodies of spectral reflectance data

Our basis for this analysis was again the data provided
with [ZFM16]. It is distributed in six files, so we ran some
analyses on these separately to explore structural differences.

The bottom row of fig. 2 shows statistics on the OKLab
HSV coordinates of the datase, plotted as probability dis-
tribution functions. We find that this visualization makes it
clear how the selection of spectra has a big impact on the
frequency of certain colour coordinates. The top row of fig. 2
shows large variations in parameric volume change even for
very similar tristimulus coordinates, manifesting as dark blue
dots near yellow dots, for example.

We suspect that the shape of the input reflectance spectra
might have an impact here as well. So we came upwith amet-
ric for what’s sometimes called color inconstancy, which we
called Illuminant induced Metamerism Failure Index (IMFI).
IMFI is similar to the notion of a Color Inconstancy Index
such as CMCCON02 [LRS03]. In particular, the IMFI is
an estimate of how much a given reflectance d(_) makes a
specific adaptation method fail, averaged over several illu-
minants. In this case we have lit d(_) with Standard Illumi-
nants A, D50, D250, F9, F11, F12 and then used CIECAT16
to adapt the resulting 2deg-SCO tristimulus back to D65.
The IMFI is the RMS average of the Δ�OKLab between the
adapted predictions and the D65 ground truth. We plotted the
distribution of these values in fig. 3 for 3 datasets from fig. 2.

4. Discussion, Limitations and Future Work

When comparing how two different observers � and � act
on the space of metamers, there are two competing perspec-
tives. From one point of view the question arises as to how
well observer � is able to simulate the vision behavior of �.
Typically when � is the 2deg-SCO this question is expressed
as how far the device under test � is frommeeting the Luther-
Ives condition. The concern with a failure to do so lies in the
fact that the reference observer � would be able to separate
stimuli that the device under test � might not. This seems
like would limit or impair the possibility of accurate color or
tone reproduction from data recorded through �.

The opposite point of view instead embraces the comple-

mentary condition: when observers � and � have substan-
tially different SRFs, � becomes able to separate stimuli that
� cannot, opening opportunities in terms of going beyond
what the reference observer can achieve unaided. It seems
that for the common case where � is a model of human vi-
sion, such as 2deg-SCO, this could come in service of artistic
purposes as well as scientific ones. At the same time, con-
structing an accurate LUT to characterize � will collapse the
metameric ensembles into a single point as perceived by �

which may be undesirable.

Another important question is whether human perception
resolves colors well enough to be able to distinguish the
‘‘chromatic fingerprint’’ of certain camera devices from oth-
ers. To quantify this it would be interesting to render a set
of relevant hyperspectral images through several DUT ob-
servers and then compare the images rendered through dif-
ferent input device transforms. From our analyses we expect
that there will be significant visible differences, depending a
lot on the spectral shape of input stimuli. It remains to answer
what are relevant stimuli. Will this be dominated by natural
objects, which have shaped the sensitivity of the eye over the
evolutionary time-scale, or by the things that people like to
photograph today?
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