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Which transport paths create this effect?

- Subtle blurring with depth
Let's take the underwater example:




Which transport paths create this effect?

Let's take the underwater example:
Light travels from the sun to under water




Which transport paths create this effect?

At each endpoint @:
How do we connect endpoints to &5 on the eye?




Which transport paths create this effect?

Classic next event estimation (NEE)?
Results in sharp images, no blur!
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Which transport paths create this effect?

Extend the path once more before NEE?
Also important, but visually different feature




Which transport paths create this effect?

. Achieve characteristic volumetric blur:
Need to sample phase function at !




How different are the two effects?

for moderately forward scattering phase function

L
@5 — flwo, ) Li(+)

Phasefunction f(w,, -)

. 0ol

Actually the same effect (product of light and phase function)
We know how to sample it: via joint importance sampling/tabulation

[GKH*13] Georgiev et al., “Joint importance sampling of low-order volumetric scattering”, SIGGRAPH Asia 2013.
O

Or evaluate analytically via series expansion of the phase function

[PSP10] Pegoraro et al., “A closed-form solution to single scattering for general phase functions and light
distributions”, EGSR 2010.
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Blue line: unit test collected histogram of contributions over all 1,
plotted over outgoing angle, contains L; - f,



How different are the two effects?

for highly forward scattering phase function
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How different are the two effects?

for highly forward scattering phase function
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Can sample phase function (marked peak), together with equiangular for best connection

[KF12] Kulla and Fajardo, “Importance sampling techniques for path tracing in participating media”, EGSR 2012.



How different are the two effects?

for highly forward scattering phase function

L
@5 — flwo, ) Li(+)

Phasefunction f(w,, -)

;
0
p T g = 0.95

Cannot sample the other lobe!
This is what we'll do in the remainder of this talk!
But is that visually important? What does not-so-peaky look like?
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Phase function is most important here!

Why don't we sample it first?



Phase function is most important here!

Why don't we sample it first: fix 6



Phase function is most important here!

Where to place &1 then?



Circumcircle geometry

"Waterlevel" in the demo determines @ at center vertex of triangle
Picking any a1 on the arc (above waterlevel) has constant 6!




Circumcircle geometry

A few definitions

— T



Circumcircle geometry

A few definitions

m20/0\0330

Corner vertices .



Circumcircle geometry

A few definitions

The phase function angle 6



Circumcircle geometry

A few definitions

Triangle edges: d1, d>, s
t is the fractional distance between @y and x-

t € |0,1] means @ < 7/2 means forward scattering only!



Circumcircle geometry

A few definitions

Sample ¢, then find &1 on the arc!

1

Pick £ such that the geometry terms - 7 cancel
1°%2



A change of variables

Need to integrate all flux via any a4

I(iBO < 5132) — / f(iBO <7 L1 < wz)dwl

Parameterise @1 in3D via 6, ¢, t
Your everyday Monte Carlo change of variables/Jacobian computation, let's do it!



A few pages of maths later..
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R(9) = 2ssin(mr—#) a 2sin(#) (10)

From this we can compute the normalised polar radius r as

r(r,R}:\/Rz—(lﬁ—r)z—\/Rz—lM, (11)
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As another intermediate step, we will next go to regular spherical
coordinates (7,6, ¢ = ¢) (see Figure 7):
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The fractional distance t and its derivatives are simple:
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Now we are ready to compute € from # and 7 as

.y di+d3 - s 28
(F,0) = m—arccos —Zdl 5 (28)
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2_52/4
= 7 —arccos | — dl;;’ ) (29)
4 22 2
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V1674 + 5% — 87252 cos 260

as well as the partial derivatives required for the Jacobian in Equa-
tion (19)
45(472 +52)sinf
1674 + 5% — 87252 cos 20
4fs(s2 —4F%) cosb

1674 + s* — 87252 cos 26

00/07 = (31)

30/06 = (32)

- Tri gReduce[

Fullsimplify[Abs[4 rr Sin[hh]/(4 rr"2 Cos[2+hh]-s*2)]/Sin[theta] /.
{
hh = ArcSin[sr [ Sqrt[s*2 (t-1/2)*2+s*2r 2],
rr = Sqrt[s*2 (t-1/2)*2+s"2r"2],
r =+ Sqrt[l/(4 Sin[theta]*2)-(1/2-t)*2]-Sqrt[1/(4 Sin[theta]*2)-1/4]
b
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and as it turns out, the Abs part in the denominatoris *always* negative. so remove abs and add a sign

before integrating:
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Sampling

Sample § ~ f,(0) - sinf
Samplet

t=P ' (£f) =

Sample ¢ ~ % (trivial)



PDF and Estimator




PDF and Estimator
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Phase function sampling
» Stock sampling routine: in solid angle, so theta slice contains Jacobian (sin 6)

> Resultsin 0/ sin @ in estimator (close to 1.0 for forward scattering)



PDF and Estimator

s sinf

0

p(wl) — fs(e)
v

[ = fe(@o <> @3) - ssin @

PDF contains geometry terms: )

Also contains s, the distance &g to @9

= Similar to Kalos 1963/equiangular sampling: replaced l/d2 singularity by 1/s
» Weinclude the (important!) phase function

= Ourdistance s is between @y, @5 (not @)



PDF and Estimator

s sinf

&2-d2 0

p(wl) — fs(g)
v

ssin®

I = fc(wo < 1132) .
It remains to mention the unsampled f.

fe(xg <> @2) = cosby - cosbs - u, - T'(xg,®1) - T(T1,T2) - W(22)
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Conclusion

Hope that we showed:
» Highly peaked forward scattering phase functions are important for the look!

» No efficient technique available to us previously

We provide once-more collided flux:
» Sampling the angle at the extra vertex first!

» Core of the technique: triangular geometry with circumcircle
0




Discussion/Limitations

Forward scattering only!
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We don't sample transmittance

» Butdoes it matter? Can be sampled with phase function

We don't sample the BSDF/phase function at x: /mgo

Can this lead to a parameterisation for more generic multiple scattering?



Thank you for listening!




Backup slides



Typical phase functions

. Are super peaky forward scattering (for water/haze):

. Two term HG fit: g; = 0.997, go = 0.960 and g; = 0.990, go = —0.440
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. Left: Fournier/Forand, Right: Mie
But is that visually important? What does not-so-peaky look like?



