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ABSTRACT

Using ray tracing for shadows is a great method to get accurate direct
illumination: precise hard shadows throughout the scene at all scales, and
beautiful penumbras from soft box light sources. However, there is a
long-standing and well-known issue: the terminator problem. Low
tessellation rates are often necessary to reduce the overall load during
rendering, especially when dynamic geometry forces us to rebuild a bounding
volume hierarchy for ray tracing every frame. Such coarse tessellation is
often compensated by using smooth shading, employing interpolated vertex
normals. This mismatch between geometric normal and shading normal
causes various issues for light transport simulation. One is that the
geometric shadow, as very accurately reproduced by ray tracing (see
Figure 4-1, left), does in fact not resemble the smooth rendition we are
looking for (see Figure 4-1, right). This chapter reviews and analyzes a simple
hack-style solution to the terminator problem. Analogously to using shading
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Figure 4-1. Low-polygon ray tracing renders are economical with respect to acceleration
structure build times, but introduce objectionable artifacts with shadow rays. This is especially
apparent with intricate geometry such as this twisted shape (left). In this chapter, we examine a
simple and efficient hack to alleviate these issues (right).
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Figure 4-2. A screen capture of the Blender viewport, to visualize the mesh and vertex normals
used for Figure 4-1. The triangles come from twisted quads and have extremely varying normals.
There are tiny and elongated triangles at the bevel borders especially at the back, which is where
some artifacts remain in the render.

normals that are smooth but inconsistent with the geometry, we will use
shading points which are inconsistent with the geometry but result in smooth
shadows. We show how this is closely related to quadratic Bézier surfaces but
cheaper and more robust to evaluate.

4.1 INTRODUCTION

Ray tracing has been an elegant and versatile method to render 3D imagery
for the better part of the last 50 years [1]. There has been a constant push to
improve the performance of the technique throughout the years. Recently, we
have seen dedicated ray tracing hardware units that even make this approach
viable for real-time applications. However, since this operates hard at the
boundary of the possible, some classic problems resurface. In particular,
issues with low geometric complexity and simple and fast approximations are
strikingly similar to issues that the community worked on in the 1980s and
1990s. In this chapter we discuss one of these: the terminator problem.

In 3D rendering, geometry is often represented as a polygon mesh. In fact,
today triangle meshes are the ubiquitous choice. While quad meshes are
often used to reduce memory footprint, individual quads are often treated as
two triangles (instead of a bilinear patch) internally. We will thus limit our
discussion here to triangle meshes. These can be used for intricate shapes
such as Figure 4-1, which are tessellated and triangulated as illustrated in
Figure 4-2. In this particular example, the shape is only very coarsely
tessellated. The mesh contains long and thin triangles as well as a large
variation of normals throughout one triangle (marked with blue in the image).
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Figure 4-3. Two incarnations of the terminator problem. Left: a (very) coarsely tessellated sphere
is illuminated. The sphere surface (dashed) we were trying to approximate would show smooth
shadow falloff, but the flat triangle surface facing the eye in this example would be rendered
completely black. Using vertex normals (i.e., Phong shading) to evaluate the materials smoothly
does unfortunately not render the shadow rays visible. For this to happen, we need to start the
shadow rays at the dashed surface. This chapter proposes a simple and cheap way to do this.
Right: the bump terminator problem is caused by mismatching hemispheres defined by the
geometric normals (black) and the shading normals (blue). This kind of problem persists even
when using smooth base geometry.

To hide the discretization artifacts coming from this, shading is traditionally
performed using a normal resulting from barycentric interpolation of vertex
normals across the triangle [9]. Using normals that are inconsistent with the
geometric surface normal can lead to various issues, for instance with
symmetry in the light transport operator [13]. Woo et al. [16] point out a
particular issue with ray traced shadows, which we illustrate again in
Figure 4-3, left. Say we want to render the dashed, smooth surface, but an
accurate representation is too expensive to intersect with a ray. We thus use a
triangle mesh indicated by the blue solid. The triangle facing the viewpoint to
the left should show a smooth falloff in shading to approximate the dashed
surface well. Instead, because it is facing away from the light source, it will be
rendered completely black: rays traced from the triangle surface to the light
will correctly and accurately report that this surface is in shadow.

This problem is well understood and solutions using small user-driven
epsilon values to push out the shading point from the triangle surface have
been proposed as early as 1987 [11]. Some years later, CPU ray tracing had
advanced significantly [15, 2], so objects with low tessellation became
interesting for real-time display. Such meshes are prone to showing the
terminator problem. Consequently, in a side note in [7, Section 5.2.9], a simple
way of determining an adaptive epsilon value was proposed as an inexpensive
workaround. In this chapter, we evaluate this approach in a bit more depth.
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4.2 RELATED WORK

Over the years, many approaches have been proposed to work around the
problems arising with shading normals. They can be roughly classified into
three groups. The first deals with geometry terms arising in bidirectional light
transport. Veach [13] observed that shading normals introduce an
inconsistency between path tracing and light tracing. He proposed a
correction factor based on the ratio of cosines between the geometry and
shading normals. The pictures in this chapter are rendered with a
unidirectional path tracer and thus do not use this correction factor. In fact,
the method proposed here, as is mostly the case when working with shading
normals, is not reciprocal.

The second class involves smoothing the shadow terminator by altering the
shading of a microfacet material model. These approaches start from the
observation that a shading normal other than the geometric normal can be
pushed inside the microfacet model, as an off-center normal distribution.
This idea can be turned into a consistent microsurface model [10], and from
there the surface reflectance can be derived by first principles. Since the extra
roughness introduced into the microsurface will lead to some overshadowing,
multiple scattering between microfacets can be taken into account to brighten
the look. This technique has been simplified for better adoption in practice
and refined to reduce artifacts caused by the simplifications [3, 4, 5]. These
approaches start from the observation that a bump map can make the
reflectance extend too far into the region where the geometric normal is, in
fact, shadowed (see the left two mismatching hemispheres in Figure 4-3). In
this case the result will be black, but the material response is still bright,
leading to a harsh shading discontinuity. The simple solution provided is to
introduce a shadow falloff term that makes sure that the material evaluation
smoothly fades to black. This is illustrated in Figure 4-4. As an example, we
implemented Conty et al.’s method [4]. Note that our material is diffuse, and
thus violates the assumptions they made about how much energy of the lobe
is captured in a certain angular range. Thus, the method moves the shadow
region, but not far enough by a large margin, at least for this very coarsely
tessellated geometry. The best we could hope for here is to darken the
gradient so much that it hides the coarse triangles completely, leading to
significant look changes as compared to the base version.

In some sense Keller at al. [8, Figure 21] are also changing the material
model. They bend the shading normal depending on the incoming ray, such
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Figure 4-4. This is how the problem illustrated in Figure 4-3 manifests itself in practice. Top row:
without bump map; left two: direct illumination from a spotlight only; right two: with global
illumination and an environment map. Note that the indirect lighting at the bottom of the sphere
does not push out the shading point in any of the images. Bottom row: with a bump map applied.
The hack leaves the look of the surface untouched as much as possible. Conty et al.’s shadowing
term [4] does not help on the diffuse surface.

that a perfectly reflected ray would still be just above the geometric surface.
This changes the hemisphere of the shading normal, whereas in a sense we
change the hemisphere of the geometric normal. At least we make sure that
some shadow rays will yield a nonzero result even when cast under the
geometric surface.

In general, it is hard to create a consistent microsurface model in the
presence of both normal maps and vertex normals. Figure 4-5 illustrates the
issue. Schüßler et al. [10] cut the surface into Fresnel lens–like microsteps,
where one side (orange in the figure) corresponds to the shading normal. To
complete the model and make it physically consistent, there needs to be
another microfacet orientation (drawn in light blue) to close the surface.
When two triangles meet at the same vertex with the same normal, the
orientation of these additional microfacets lead to a discontinuity.

On the other hand, we only want to smooth out the geometric shadow
terminator; i.e., we are dealing with shadow rays more than with misaligned
hemispheres for geometric and shading normal. This means that we can
make assumptions about slow and smooth variation of our normals across
the whole triangle. It follows that the technique examined here does not work
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Figure 4-5. The microsurface model of Schüßler et al. [10] at a vertex with a vertex normal (blue).
The facets oriented toward the shading normal (orange) have a smooth transition at the vertex
(facing the same direction in this closeup). However, the light blue facets orthogonal to the
geometric surface (dashed) will create a discontinuous look.

for normal maps, but could likely be combined with a microfacet model
addressing the hemisphere problem.

The third approach is the obvious choice: resolve issues with coarse
tessellation by tessellating more finely. A closely related technique is called
PN triangles [14]. One constructs Bézier patches from vertices and normals,
usually the cubic version [12]. Van Overveld and Wyvill [12] also mention the
possibility to do quadratic, which is more closely related to the technique
examined here. The main difference is that we don’t want to tessellate but
only fix the shadows instead.

4.3 MOVING THE INTERSECTION POINT IN HINDSIGHT

As a minimally invasive change to fix the harsh shadow from coarsely
tessellated geometry, we want to move only the primary intersection point
away from the triangle, ideally to a location on a smooth freeform surface (i.e.,
the dashed surface in Figure 4-3). For this, we want to look at how a simple
quadratic Bézier patch is constructed from vertices and vertex normals.

Figure 4-6 shows a triangle with vertices A,B,C, an intersection point P, and
an illustration of the barycentric coordinates u, v,w on the left. To construct a
point P′ on a quadratic Bézier patch defined by these vertices, these
barycentric coordinates, and the vertex normals nA, nB, nC, we use de
Casteljau’s algorithm. First, we construct additional control points AB,BC,CA.
We have some freedom in how to do this; options have been discussed in the
literature [14, 12]. Then, we use the barycentric coordinates u, v,w to compute
three additional vertices A′, B′, and C′ from the three triangles (A,AB,CA),
(AB,B,BC), and (CA,BC,C), respectively. These three new points form another
triangle, which we interpolate once more with the barycentric coordinates
u, v,w to finally arrive at P′.
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Figure 4-6. Left: illustration to show our naming scheme inside a triangle. Right: schematic of
the barycentric version of de Casteljau’s algorithm. P′ is computed as the result of a quadratic
barycentric Bézier patch, defined by the corner points A,B,C as well as the extra nodes
AB,BC,CA. These will in general not lie in the plane of the triangle ABC.

Let’s have a look how to place the extra control points such as AB. The
patches should not have cracks between them, so the placement can only
depend on the data available on the edge, for instance, A,B, nA, nB. Note that,
even then, using a real Bézier patch as geometry would potentially open
cracks at creases where a mesh defines different normals for the same
vertex on different faces. When only moving the starting point of the shadow
ray, this is not a problem. We could, for instance, place AB at the intersection
of three planes: the two tangent planes at A, nA and B, nB as well as the
half-plane at (A + B)/2 with a normal in the direction of the edge B – A. These
three conditions result in a 3× 3 linear system of equations to solve. This
requires a bit of computation, and there is also the possibility that there is no
unique solution.

Instead, let’s look at the simple technique proposed in [7, Section 5.2.9]. The
procedure is similar in spirit to a quadratic Bézier patch as we just discussed
it, and it is summarized in pseudocode in Listing 4-1. An intermediate triangle
is constructed, and the final point P′ is placed in it by interpolation using the
barycentric coordinates u, v,w. The difference to the quadratic patch is the
way this triangle is constructed (named tmpu, tmpv, tmpw in the code
listing). To avoid the need for the extra control points on each edge, the
algorithm proceeds as follows: the vector from each corner of the triangle to
the flat intersection point P is computed and subsequently projected onto the
tangent plane at this corner. This is illustrated in Figure 4-7, right. This
procedure is very simple and efficient, but comes with a few properties that
are different than a real Bézier surface, which we will discuss next.

71



RAY TRACING GEMS II

Listing 4-1. Pseudocode of the simple shading point offset procedure outlined in [7].

1 // get distance vectors from triangle vertices
2 vec3 tmpu = P - A, tmpv = P - B, tmpw = P - C
3 // project these onto the tangent planes
4 // defined by the shading normals
5 float dotu = min(0.0, dot(tmpu, nA))
6 float dotv = min(0.0, dot(tmpv, nB))
7 float dotw = min(0.0, dot(tmpw, nC))
8 tmpu -= dotu*nA
9 tmpv -= dotv*nB
10 tmpw -= dotw*nC
11 // finally P' is the barycentric mean of these three
12 vec3 Pp = P + u*tmpu + v*tmpv + w*tmpw

A

AB

P'
B A v uP

P'

B

Figure 4-7. Left: 2D side view visualization of a quadratic Bézier patch (for the w = 0 case),
showing the line between A and B. The barycentric coordinates (u, v) are relevant for this 2D slice:
de Casteljau proceeds by interpolating A and AB in the ratio v:u, as well as AB and B. The two
results are then interpolated using v:u again to yield P′. Right: our simple version does not require
the point AB for the computation: it projects the intersection point P on the flat triangle
orthogonally to the tangent planes at A and B (note that AB lies on both of these planes, but we
don’t need to know where). These temporary points are then interpolated in the ratio v:u again, to
yield the shading intersection point P′. The Bézier line from the left is replicated to emphasize the
differences.

4.4 ANALYSIS

To evaluate the behavior of our cheap approximation, we plotted a few side
views in flatland, comparing a quadratic Bézier surface to the surface
resulting from the pseudocode in Listing 4-1. The results can be seen in
Figure 4-8.

The first row shows a few canonical cases with distinct differences between
the two approaches. In the first case in Figure 4-8a, the two surfaces are
identical, as both vertex normals point outward with a 45◦ angle to the
geometric normal. In Figure 4-8b, an asymmetric case is shown; note how
the point AB is moved toward the left. It can be seen that our surface (green)
has more displacement from the flat triangle, only approximately follows the
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Figure 4-8. 2D comparison against quadratic Bézier: (a) Canonical case, equivalent.
(b) Asymmetric case, no tangent at B and out of convex hull with control point AB. (c) Degenerate
case not captured by quadratic Bézier. (d) Concave case clamped by min() in our code. (e–h) The
behavior when moving AB toward the geometric surface.

tangent planes at both vertices, and is placed outside the convex hull of the
control cage of the Bézier curve. Though all this may be severe downsides for
sophisticated applications, the deviations from the Bézier behavior may be
acceptable for a simple offset of the shadow ray origin.

In Figure 4-8c, a degenerate case is shown: both vertex normals point in the
same direction. This happens, for instance, in the shape in Figure 4-2 at the
flanks of the elevated structures, where one normal is interpolated toward the
top and one toward the bottom, but with both pointing the same direction. The
approach to solve for AB by plane intersection now fails because the two
tangent planes are parallel, and no quadratic Bézier can be constructed. This
is a robustness concern, especially if the vertex normals aren’t specifically
authored for quadratic patches or are animated.

In Figure 4-8d the concave case is shown. Because we clamp away positive
dot products, such a case will evaluate to the flat surface instead of bulging to
the inside of the shape. This is the desired behavior: we don’t push shadow
ray origins inside the object.

The second row varies the distance of AB to the surface. In Figures 4-8e
and 4-8f, AB is far away from the surface, where the former is almost
degenerate. The quadratic Bézier patch consequently moves the curve very
far away, too. This may not be the desired behavior in our case, as animation
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might have caused a normal to be this extreme by accident. The cheap
approximation stays much closer to the geometric surface.

Figures 4-8g and 4-8h show vertex normals closer to the geometric normal
than 45◦. Here, the situation turns around, and the cheap surface is farther
away from the geometry than the Bézier patch. At these small deviations,
however, this is much less of a concern.

In summary, the cheap surface is only approximately tangent at the vertices
and violates the convex hull property with respect to the control cage.

4.5 DISCUSSION AND LIMITATIONS

The surface examined in this chapter does not strictly follow the tangent
condition at the vertices. Because we only use it to offset the origin of the
shadow ray, this is not a big issue: the shading itself will use the vertex
normal to determine the upper hemisphere for lighting.

We have seen that the cheap surface does not obey the control cage of the
Bézier patch. Instead, it is farther from the surface for small vertex normal
variations, and closer for large variations, as compared to the Bézier surface.
As the interpolation is just quadratic, it does not overshoot or introduce
ringing artifacts of any kind.

The larger offsets for small variations may lead to shadow boundaries that
are slightly more wobbly than expected. See, for instance, Figure 4-1 just
above the blue inset. The shadow edge was already choppy because of the low
tessellation both in the shadow caster and in the receiver. Offsetting the
shadow ray origin seemed to aggravate this issue. However, in the foreground
(to the left of the orange inset), the opposite can be observed: the shadow
edges look smoother than before.

We have seen that the surface offset can work with concave objects in a sense
that it will not push the shadow ray origins inside the object. However, special
care has to be taken when working with transparent objects. Transmitted rays
may need to apply the offset the other way around, i.e., flip all the vertex
normals before evaluation.

The mesh in Figure 4-2 was modeled with bevel borders, i.e., the sharp
corners consist of an extra row of small polygons to make sure that the edge
appears sharp. If such creases are instead modeled using face-varying vertex
normals, the shadow ray origins will have a discontinuous break at the edge.
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Note that the surface will still be closed and the shading will depend on the
normals, so this only affects the shadows.

Further, the method is specifically tailored for vertex normals. This means
that for multi-lobe and off-center microfacet models, such as multi-modal
LEADR maps [6], there is still a necessity to adapt microfacet surface models
or adjust the shadowing and masking terms.

We only discussed shadow rays for evaluation of direct lighting. The same can
be said about starting indirect lights when material scattering is used. In this
case, the effect of the shadow terminator is a bit different and more subtle;
see, for instance, the bottom half of the spheres with global illumination
enabled in Figure 4-4.

4.6 CONCLUSION

We discussed a simple and inexpensive side note on the terminator problem
from the time when CPU ray tracing became interesting for real-time
applications. This method effectively resembles quadratic Bézier patches, but
is cheaper to evaluate and also works in degenerate cases where creating the
additional control points for such a patch would be ill-posed. It only offsets
the shading point from which the shadow ray is cast; the surface itself
remains unchanged. This means that low-polygon meshes will receive
smooth shadows without resorting to more heavyweight tessellation
approaches that may require a bounding volume hierarchy rebuild, too. In the
long run, the problems of low-polygon meshes may go away as finer
tessellations will become viable for real-time ray tracing. Until then, this
technique has a valid use case again.
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