
Fast temporal reprojection without motion vectorsFast temporal reprojection without motion vectors

Johannes HanikaJohannes Hanika and Lorenzo Tessari and Lorenzo Tessari

and Carsten Dachsbacherand Carsten Dachsbacher

Karlsruhe Institute of TechnologyKarlsruhe Institute of Technology

1

motivationmotivation
a lot of coherence on the table, re-rendering similar things every few milliseconds!

image: Schied et al. Gradient Estimation for Real-Time Adaptive Temporal Filtering 2018

many methods use motion vectors, for instance
temporal anti aliasing (TAA)
screen space adaptive importance sampling (ReSTIR)
input to (recurrent) neural networks

2

motion vectorsmotion vectors
motion is incoherent, contradicting, and hard to track analytically!

"Seascape" by Alexander Alekseev aka TDM

0:00 / 0:10 0:00 / 0:10

3

related work: path spacerelated work: path space
possible to track every path space effect separately (do we want that? does it scale?):
Zimmer et al.

Path-space Motion Estimation and Decomposition for Robust Animation Filtering

(EGSR 2015)
Zeng et al.

Temporally Reliable Motion Vectors for Real-time Ray Tracing

(CGF 2021)

4

related work: image spacerelated work: image space
Hasinoff et al.

Burst photography for high dynamic range and low-light imaging on mobile cameras

(TOG 2016)

Darbon et al.

Fast nonlocal filtering applied to electron cryomicroscopy

(Biomedical imaging 2008)

we'll combine ideas from these last two to arrive at a fast technique

5

find best displacement vector for each pixelfind best displacement vector for each pixel
shift images against each other and take difference [Darbon et al. 2008]

6

find best displacement vector for each pixelfind best displacement vector for each pixel
shift images against each other and take difference

black is better: zero shift looking pretty good for the static parts!

s = (0, 0)

7

find best displacement vector for each pixelfind best displacement vector for each pixel
shift images against each other and take difference

s = (0, 250)

8

find best displacement vector for each pixelfind best displacement vector for each pixel
shift images against each other and take difference

s = (250, 250)

9

find best displacement vector for each pixelfind best displacement vector for each pixel
shift images against each other and take difference

this could be good for the moving circle
input is noisy, pixel difference doesn't tell us much
use patch-based difference, equivalent to blurring the difference images [Darbon et al. 2008]

s = (250, 0)

10

find best displacement vector for each pixelfind best displacement vector for each pixel
shift images against each other and take difference

s = (0, 0)

11

find best displacement vector for each pixelfind best displacement vector for each pixel
shift images against each other and take difference

s = (0, 250)

12

find best displacement vector for each pixelfind best displacement vector for each pixel
shift images against each other and take difference

s = (250, 250)

13

find best displacement vector for each pixelfind best displacement vector for each pixel
shift images against each other and take difference

s = (250, 0)

14

find best displacement vector for each pixelfind best displacement vector for each pixel
which shift vector has the smallest error for each pixel?s

s = (0, 0) s = (0, 250) s = (250, 0) s = (250, 250)

15

implementationimplementation

 → ⋯ ⋯ ⋯ ⋯

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

← ⋯ ⋯ ⋯ ⋯

16

acceleration: hierarchical matchingacceleration: hierarchical matching

enables smaller windows (we use 5x5)

enforces coherence/smoothness (a good thing?)

offset vectors limited to one of the discrete shifts we tested!

|S|

17

smooth upsampling of offsets [Hasinoff et al. 2016]smooth upsampling of offsets [Hasinoff et al. 2016]
generate "landscape" of distance values in 5x5 grid (for each pixel)
fit quadric, compute minimum
subpixel offsets from low res matching buffers!

= −2sx = −1sx = 0sx = 1sx = 2sx

= −2sy ⋯ ⋯ ⋯ ⋯ ⋯

= −1sy ⋯ ⋯ ⋯ ⋯ ⋯

= 0sy ⋯ ⋯ ⋯

= 1sy ⋯ ⋯ ⋯ ⋯ ⋯

= 2sy ⋯ ⋯ ⋯

18

blurblur
fast blur on array of textures?

we use Kawase style blurs (on low res buffers)
requirement: need to preserve extrema of non-downsampled blur!
see our source code for current version (I'm sure this can be improved)

19

applicationsapplications
this work is only dealing with offset/motion vector detection!
no image merging/denoising/TAA!
lots of applications in the paper

20

one more result (not in the paper)one more result (not in the paper)
TAA for ray tracing with per-pixel filter importance sampling
sample 3x3 Blackman/Harris

vec2 res = vec2(cos(rand.y*M_PI*2.0), sin(rand.y*M_PI*2.0));

float r = 0.943404 * asin(0.636617 * asin(sqrt(rand.x))); // surprisingly good fit to inverse cdf

return res * r;

21

let's look at some videoslet's look at some videos
setting:

matching on AOV buffers
5x5 blur
1920x1080
RTX 2080Ti

will show two variants: full res and 4x4 subsampled input

22

offsets without subsampling: 5msoffsets without subsampling: 5ms

23

offsets 4x4 subsampling: 0.5msoffsets 4x4 subsampling: 0.5ms

24

TAA without subsamplingTAA without subsampling

25

TAA with 4x4 subsamplingTAA with 4x4 subsampling

26

accuracy vs. performanceaccuracy vs. performance
the 4x4 has better edges because it doesn't undo the pixel filter importance sampling!

 1x1

27

accuracy vs. performanceaccuracy vs. performance
the 4x4 has better edges because it doesn't undo the pixel filter importance sampling!

 4x4

28

conclusionconclusion
there may be inconsistent motion vectors even for one pixel

objects
shadows
reflections
procedural noise / water / clouds / fire ..

coherence often works/helps to speed things up
work on downsampled buffer!
careful: don't enforce coherence where there is none

29

conclusion contd.conclusion contd.
presented a relatively fast technique for "motion vectors" in image space

0.5ms / 1080p / 2080Ti (5x5 blur, 4x4 subsampling)
can still compute motion vectors in layers as [Zeng et al. 2021]

at least don't have to manually run after each effect

future work
how to optimally combine aligned frames for denoising? AMD FSR 2.0?
optimise more for speed!

30

thank you for listening!thank you for listening!

code on github

updated occasionally

https://github.com/hanatos/vkdt/tree/master/src/pipe/modules/align

31

https://github.com/hanatos/vkdt/tree/master/src/pipe/modules/align

