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Figure 1. Top: The HIMALAYA scene, rendered with (left) and without (right) reprojected

information from previous frames. The procedural scene is composed of ray-marched signed

distance fields and volumetric, scattering clouds. The clouds move due to complex, nonlinear

noise functions, and the features seen on screen cannot be mapped to a unique depth coordi-

nate due to semitransparency. This makes estimation of true motion vectors a hard problem

or, at times, even impossible. Bottom: The PENUMBRA scene, where a moving light source

causes the shadow to move separately from the geometry. We devise a fast algorithm to com-

pute image-space correspondences that can be used as motion vectors in various reprojection

scenarios, such as temporal denoising.
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Abstract

Rendering realistic graphics often depends on random sampling, increasingly so even for real-
time settings. When rendering animations, there is often a surprising amount of information
that can be reused between frames.

This is exploited in numerous rendering algorithms, offline and real-time, by relying on
reprojecting samples, for denoising as a post-process or for more time-critical applications
such as temporal antialiasing for interactive preview or real-time rendering. Motion vectors
are widely used during reprojection to align adjacent frames’ warping based on the input ge-
ometry vectors between two time samples. Unfortunately, this is not always possible, as not
every pixel may have coherent motion, such as when a glass surface moves: the highlight
moves in a different direction than the surface or the object behind the surface. Estimation
of true motion vectors is thus only possible for special cases. We devise a fast algorithm to
compute dense correspondences in image space to generalize reprojection-based algorithms to
scenarios where analytical motion vectors are unavailable and high performance is required.
Our key ingredient is an efficient embedding of patch-based correspondence detection into a
hierarchical algorithm. We demonstrate the effectiveness and utility of the proposed reprojec-
tion technique for three applications: temporal antialiasing, handheld burst photography, and
Monte Carlo rendering of animations.

1. Introduction

Generating believable computer-generated imagery involves the highest requirements
on all components, because the human eye is extremely critical. In particular, it re-
quires one to simulate photorealistic transport of light to generate familiar global il-
lumination in detailed and complex scenes. This means that many effects can only
be created using Monte Carlo sampling, for instance, by using full path tracing or by
computing individual effects such as soft shadows [Pharr et al. 2016]. In very detailed
scenery, even antialiasing of a geometry can result in noisy renderings.

To address this issue, usually many hundreds or thousands of samples are gen-
erated per pixel. Even for offline rendering applications, it is common practice to
denoise the resulting images once Monte Carlo sampling passes the line of dimin-
ishing returns for computational cost versus quality obtained [Zwicker et al. 2015].
This strategy becomes increasingly more important when faster frame times are re-
quired, such as for interactive preview rendering for look development or layout or
for real-time rendering for games.

Such noise reduction techniques usually work spatially (i.e., inter-pixel) and often
have a temporal component (i.e., inter-frame): the previous (and/or next) frames are
warped to approximately align with the current frame to generate a larger amount of
effective samples per pixel via reprojection.

This can be done precisely by retracing visibility rays [Fascione et al. 2019;
Bekaert et al. 2002]. Inspired by the availability of fast ray tracing hardware (NVIDIA’s
RTX and the vendor-neutral Khronos extension to the Vulkan API), we are mostly in-
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Figure 2. Examples of complex nonlinear motion. Top: The cloud front is formed and evolves

as 2D coverage noise and 3D Worley noise interact (see [Tatarchuk et al. 2015]). Bottom:

Multiple wave patterns with different velocities interfere and specular highlights move in an

emergent direction. Analytically deriving motion vectors to warp a previous frame into the

next one is extremely hard and often not possible in such cases.

terested in real-time performance. We want to empower applications like Spatiotem-
poral Variance-Guided Filtering (SVGF) [Schied et al. 2018], where Schied et al.
spent substantial effort deriving path-space gradients for indirect lighting, by provid-
ing fast image-space gradients to align the previous frame.

To provide visually-rich geometric detail, procedural modeling and physics sim-
ulation for volumetrics and fluids are indispensable tools. Unfortunately, it can be
close to intractable to derive motion vectors in such cases (see Figure 2).

Fluids are often simulated using particles, from which a smooth surface is recon-
structed via implicits such as blobbies [Blinn 1982]. The movement of the resulting
surface is not trivially expressed by the motion vectors of the input particles [Stam
and Schmidt 2011]. Even worse, for instance, an ocean surface will have foam at
the tips of the waves. The waves are formed by the particles, but these do not move
with the wave ridge, usually rotating underneath. For a noise reduction application,
however, we would like to track the salient features with similar shading, i.e., the dif-
fuse foam on the wave ridge, or even a specular reflection. The world-space motion
vectors of the particles are thus rendered useless. Similar concerns apply to ocean
rendering via Fourier synthesis, signed distance fields, and procedural volumetrics.
Even explicit tessellation using marching cubes does not solve the issue because of
inter-frame topology changes. When rendering clouds, the volumetric density is con-
tinuously changing between frames, and the evolution cannot be described by rigid
motion. This makes it impossible to obtain world-space motion vectors, yet we can
still match features in 2D image space. Another difficult scenario arises when track-
ing radiance from secondary effects such as subsurface scattering or shadows with
moving lights: in the first case the pattern changes in non-rigid ways, making mo-
tion estimation unreliable, whereas in the second case each light source would have
to be tracked separately. We follow the observation that estimating true motion vec-
tors is an ill-posed problem [Buades et al. 2005a] and pursue the search for relevant
pixel correspondences instead. Previous work has used multi-scale pyramids and reg-
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ularized optical flow methods for robust patch-based estimation [Buades and Lisani
2020]. We use a multi-scale approach to achieve real-time performance. To make use
of reprojected frames in real time, we compute a dense set of pixel correspondences,
which satisfy a number of properties. Our algorithm is fast, is resilient against noise,
and aligns similar colors rather than estimating plausible motion.

In summary, our contribution is a fast method to compute hierarchical pixel cor-
respondences based on non-local means (NLM), which is a denoising technique that
searches similar pixels by matching the contents of the surrounding patches [Buades
et al. 2005a]. To make this efficient, we use an intermediate warping step between the
levels of the hierarchy, along with a subpixel offset estimation step to reduce the jit-
ter otherwise caused by the hierarchical approach. This subpixel estimation can also
be used to provide fine-scale offsets while operating on a downsampled buffer only,
further speeding up the operation. Our approach is general and, as such, can extract
motion where other methods struggle, and it is suitable when real-time interaction is
essential. We demonstrate the performance of the resulting algorithm on three appli-
cations (temporal antialiasing, burst photography, and Monte Carlo rendering). Full
source code is available.

2. Previous Work

This paper is inspired by work in computational photography [Hasinoff et al. 2016;
Wronski et al. 2019; Liba et al. 2019]. In this field, there are similar performance
constraints and resulting trade-offs with respect to alignment quality. Misalignment
is corrected by rejecting some pixels, much like it is done in rendering.

Optical flow. We do not attempt an exhaustive comparison to the extensive existing
optical flow literature (see, e.g., [Butler et al. 2012]) because our aim is different than
that of the vision community (see [Buades et al. 2005a]). We want to strike different
trade-offs, mainly less quality and more speed, but also we do not require plausible
motion but a warped picture that has RGB values as close as possible to the refer-
ence image. We evaluate this criterion against a selection of optical flow techniques
[Farnebäck 2003; Sánchez Pérez et al. 2013; Plyer et al. 2016] in Section 5. In partic-
ular, the coarse-to-fine hierarchical Lucas–Kanade approach of eFOLKI [Plyer et al.
2016] is related to ours. We replace the iterative inner core of the method by a simpler
non-iterative technique related to non-local means (see the end of this section). Our
hierarchical scheme is closely related to the iterative warping scheme that has been
applied to optical flow [Le Besnerais and Champagnat 2005] but has been shown to
result in divergent behavior in conjunction with the iterative core of the method. We
show that in our context, the scheme is stable.
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Reprojection. Reprojection has been proposed many times in different contexts. For
instance, Bekaert et al. [Bekaert et al. 2002] reuse paths for neighboring pixels, which
is a variation of reuse over time [Fascione et al. 2019]. Temporal reprojection has been
explored for shading and for shadows [Nehab et al. 2007; Scherzer et al. 2007]. We
explore simple image-based reprojection, without precisely looking at the transport
paths.

Temporal antialiasing. One of our applications is temporal antialiasing (TAA). We
refer to a recent survey [Yang et al. 2020] for an extensive discussion of the state
of the art. TAA is usually performed by using known motion vectors of the input
geometry. Extending this to more general cases such as indirect lighting, complex
motion, or transparency is a hard problem and requires special case treatment [Olejnik
and Kozłowski 2020].

General correspondences. A fast CPU method to compute general correspondences
between pixels in adjacent frames is patch match [Barnes et al. 2009]. This iterative
method converges impressively fast at the beginning, due to the collaborative search
where results are shared between pixels. In our implementation we had issues con-
verging to final quality, however, and concluded that other approaches might be more
suitable for a very fast GPU implementation. This would be needed to replace the
gradient computation in real-time denoising approaches, such as Adaptive Spatiotem-
poral Variance Guided Filtering (ASVGF) [Schied et al. 2018].

There is work on computing motion vectors for indirect lighting effects for offline
rendering [Zimmer et al. 2015]. This approach can track the movement of highlights
via manifold walks, motion vectors, and geometric derivatives. It will, however, com-
pute precise screen-space motion for every effect depending on path length. This
does not lend itself well for an image-based denoising pipeline, and it suffers from
the curse of dimensionality (because every bounce needs to be processed separately).
It also uses a non-local means approach for the noise removal step. Though we do not
propose any new method for denoising, we employ the core of the non-local means
algorithm in the core of our correspondence estimation.

Non-local means. NLM is a method originally devised for image denoising [Buades
et al. 2005b]. It works by match-making between pixels by looking at a patch of con-
text pixels around every pixel and comparing the difference between the two patches.
Similar pixels are averaged and written back to yield an image with less noise. This
approach has been extended to multiple frames and has been used to estimate motion
vectors for ray tracing of implicits [Roegner et al. 2015]. However, the authors did
not attempt a real-time implementation. Today, we can embed such an estimation
into more mature temporal denoising methods, and also there is a more pressing need
due to the widespread availability of hardware ray tracing. We exploit a technique to
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speed up non-local means in a GPU implementation [Darbon et al. 2008] and extend
it to hierarchical matching and subpixel offset estimation.

3. Computing Fast Pixel Correspondences

We take as input a new noisy image and another image (noisy or the result of previous
runs) to align to the first image.

The search for corresponding pixels between the frames is expensive, and the
cost increases with the size of the search window around each pixel. In order to ef-
ficiently find matching pixels at greater distances, we use an iterative scheme that
works hierarchically on a resolution pyramid. This allows us to extend a small win-
dow to a larger effective search radius: on each hierarchy level we want to compute
the best displacement vector for each pixel akin to non-local means, which compares
the (weighted) differences of two pixel neighborhoods. A naive approach to this is too
costly; however, accelerated variants compute pixel differences for the whole buffer
at once (Section 3.1) and use the exact same search window for every pixel. This is
fundamentally incompatible with hierarchical processing, where every pixel has a dif-
ferent input from the coarser level. To overcome this problem, we introduce a warping
scheme that iteratively aligns the coarse images before refining the displacement vec-
tors on the next-finer level. After alignment, we use the residual patch distances to
drive rejection schemes to remedy alignment errors (Section 3.2).

3.1. Alignment

We make use of a non-local means pattern-matching scheme and iterate it in a hier-
archical coarse-to-fine manner. All our processing is done on grayscale images. A
schematic overview of one such step at a single scale is depicted in Figure 3.

Traditional non-local means finds the shift sk ∈ S to similar pixels in the neighbor-
hood S of a pixel (i, j) by comparing a local patch p ∈ P around (i, j) and computing
a patch-based distance by summing the pixel distances weighted by w(p):

dk = ∑
p∈P

w(p) ·
∥

∥I
(

(i, j)+ p
)

− I
(

(i, j)+ sk + p
)∥

∥

2
. (1)

Implementing this in a straightforward manner results in three nested loops:

for each pixel (i,j) in the image I

for each shift s_k in a search window S

d_k = 0

for each p in a patch P

d_k += w(p)*|I((i,j)+p) - I((i,j)+s_k+p)|^2

This has an asymptotic runtime of O(|I||S||P|). Here, w are some arbitrary smoothing
weights depending on the patch offset p (this can be Gaussian or a box blur).
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Figure 3. Pixel correspondence estimation on one scale (see Section 3.1). The two input

images (left) pass through three stages: distance, blur, and merge, indicated by the three

columns. First, the images are offset by the set of 25 shift vectors sk ∈ [−2,2]2, represented

by the rows in the distance and blur columns. The output of the blur stage represents the

patchwise distance between the two images for the given pixel (i, j) and shift sk. The merge

stage collects all 25 of these distances dk and selects the minimum dm. Around this position

in the 5×5 stencil of collected distances, a quadric is computed, which points us to a subpixel

motion vector. The end result is sm plus this subpixel shift.

One optimization that significantly speeds up the computation on one level in the
hierarchy is to reorder the computation and evaluate the shifts sk ∈ S for all pixels
simultaneously [Darbon et al. 2008]:

for each shift s_k in a search window S

for each pixel (i,j) in the image I

d_k(i,j) = |I(i,j) - I((i,j)+s_k)|^2

convolve d_k(i,j) by w(p)

This convolution can be implemented by any means of a fast blur kernel. This
scheme avoids duplicate computation of pixel distances, has better asymptotic run-
time O(|S||I|), and results in more cache-friendly memory access patterns. It also
depends on a standard convolution that can be optimized aggressively, as the kernel
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shape may be approximated. The exact shape of w(p) does not impact the results
drastically, so an O(|I|) box blur can be used.

Our main contribution is to efficiently embed this scheme into a hierarchical al-
gorithm: Because the runtime depends on the search window size |S|, we use a small
S = [−2,2]2 and build a hierarchical pipeline around it to extend the maximum offset.
We split the alignment process into four kernels: distance computation, blur, merge

(Figure 3), and warp for the hierarchical application (Figure 4).

Distance kernel. To compute the L2 distance for all shift offsets sk ∈ S, we use a
distance kernel, taking two grayscale images I1 and I2 as input. For every sk ∈ S, we
offset the two images, compute the L2 distance dk(i, j) between two pixels I1(i, j) and
I2((i, j)+ sk), and output it in an array of |S| images.

Blur kernel. We then blur this array of images using a 3D compute shader dispatch,
running over the dimensions of the image and the length of the array (width, height,
|S|). Because any blur kernel can be used, we employ an iterated filter that approx-
imates a Gaussian shape and downsamples the intermediate buffers to save memory
bandwidth (similar to Kawase blur [Kawase 2003]). We make use of hardware tex-
ture interpolation to simulate a 5× 5-tap filter using five texture fetches. Note that
this scheme is strictly speaking not O(|I|) as a box blur would be, but is a lot faster
on GPU than such an implementation.

Merge kernel. The merge kernel takes an array of |S| blurred distance images as
input. One pixel in the kth image represents the patch-based distance between the
images I1 and I2 offset against each other by the shift vector sk. For every pixel,
we find the offset sk ∈ S that results in the minimum patch distance. This amounts
to searching through the |S| distance images and remembering the index k with the
smallest value.

However, because this is a discrete decision, it will only output integer shift vec-
tors, which makes subtle subpixel camera movements jittery and causes problems
with hierarchical processing. Thus, we insert another step to estimate subpixel shift
vectors. We employ a method similar to one used for burst photography [Hasinoff
et al. 2016] and utilize it at several levels in the hierarchy to reduce the propagation
of errors: First, the |S| distance values dk are written next to each other in a grid,
according to the corresponding shift vectors sk (see Figure 3, top right). Then, we
select the minimum value dm ≤ dk∀k. We next compute a quadric matching the 3×3
neighborhood of dm (Figure 3, center right) and compute its minimum to arrive at
an interpolated subpixel offset (marked in blue in the figure). We skip this step on
the coarsest two levels of hierarchical processing because the results were prone to
aliasing.
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Downsampling Upsampling

Warping

sk sk

sk

Frame 1

Frame 0

Figure 4. Illustration of the hierarchical warping process. The two frames are aligned coarse

to fine by iteratively matching patches around each pixel to determine shifts sk on every level

l = 3, . . . ,0 (only three levels shown here). After matching, frame 0 is warped to align with the

shifts on this level, and the residual difference to frame 1 on the next level is searched for. For

illustration purposes, the frames are actually ten frames apart to emphasize the differences.

This causes fail cases; see, for instance, the white sphere in the bottom right corner in the

foreground.

Hierarchical processing. To extend the effective search window beyond |S|, we iter-
ate the previous three kernels in a hierarchical fashion. The input is first downsampled
a few times, and then the three alignment kernels are run on each level l, starting at the
coarsest. The next-finer level l receives the shift vectors sk per pixel from the coarser
level l+1 as input. Because the distance kernel as previously described needs to com-
pute the same offset sk for all pixels in the image, it cannot support summing up such
coarse shift vectors varying per pixel. To work around this, we conceptually introduce
a warp kernel, which pre-warps the coarse input images coming from level l +1. On
level l we only need to search for fine displacement offsets that will be summed to
the coarse ones. The processing graph is visualised in Figure 4. This illustration uses
only three resolution levels. In our implementation we use four, at a reduction of 4×
in both dimensions. This results in ∑3

l=0±2 px · 4l = ±170 px maximum offset. In
practice we do not use a separate compute shader dispatch for the warp kernel but
input the coarse offsets into the distance kernel directly.

Discussion. Warping changes the results algorithmically as compared to other hier-
archical, patch-based similarity matching algorithms. It replaces the square neighbor-
hood on all but the coarsest levels by a warped context window around the current
pixel. Because the square context region was only a heuristic choice, this has no neg-
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ative impact on the result. We use bilinear interpolation to read the coarse offsets
when processing the next-finer image. This prevents our warped context windows
from taking on extreme deformed shapes. Because our algorithm is non-iterative, we
also do not suffer from divergence issues such as previous hierarchical schemes [Le
Besnerais and Champagnat 2005].

3.2. Blending/Rejection

Ideally we would want zero alignment error and very good agreement of the new
frame buffer and the warped one. Unfortunately this is not always possible, due to
disocclusions and sometimes an overaggressive implicit smoothing constraint that is
enforced by the hierarchical matching scheme. Thus, we make use of the patch dis-
tance that is computed on the finest level of the alignment process, to filter out mis-
aligned pixels. In particular, we choose the blend weight α′ = clamp(α ·(1−m),0,1).
Here, α is the user-supplied blend weight and m is a mask that is computed from the
patch distance ε as m = κ · ε−η, where κ scales the error up and η subtracts a noise
threshold.

To make motion vector detection more robust, we compute the distance for a shift
dk in a few different variants that are useful for different applications. In particular
we experimented with the following:

L2 : dk =
∣

∣I(i, j)− I
(

(i, j)+ sk

)∣

∣

2
(2)

L1 : dk =
∣

∣I(i, j)− I
(

(i, j)+ sk

)∣

∣ (3)

logL1 : dk = log
(

2+
∣

∣I(i, j)− I
(

(i, j)+ sk

)∣

∣

)

(4)

logLc
1 : dk = log

(

2+
∣

∣I(i, j)− I
(

(i, j)+ sk

)∣

∣

)

·
(

2− exp(−0.02|sk|
2)
)

. (5)

To get cleaner motion vectors, we regularized the L1 distance by using a center
weighting (i.e., the exponential part in Equation (5)). Because this weight is in the
range of [1,2] (it only increases the distance when the shift sk is large), we compress
the L1 norm into a similar range. It worked well in our tests to use a simple loga-
rithmic transform here. The effect on both error masks and motion vectors can be
observed in Figure 5.

3.3. Parameters

Our technique has a few parameters. The first set consists of the blur radii on every
scale. For relatively noise-free image sequences, a constant radius of 2 works well
because it results in a 5× 5 neighborhood that captures salient features in full HD
resolution. Figure 1 has been computed with this setting, for instance. The trade-off
for larger radii is the same as for non-local means (see Figure 6): larger patch sizes are
more robust to noise but result in less sharpness. The influence of the patch distance
from the alignment process on rejection is steered by the two parameters κ and η.
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1logLc
1 TAATAA

Mask L2Mask L2 Mask L1Mask L1 Mask logLc
1Mask logLc
1 mv L2mv L2 mv L1mv L1 mv logLc

1mv logLc
1

Figure 5. A challenging test case, illustrating the behavior of different error norms: the

spheres and camera are moving very quickly here. From left to right: one frame of noisy input,

the reprojected and blended frames without any correction applied, using the L2 error from

Equation (2) to reject disocclusions and alignment errors, using the L1 error from Equation (3),

using the logLc
1 error from Equation (4), and using the standard TAA box rejection method.

The second row shows that the error masks are quite similar. We used the mask on the first

downsampled level, because the finest level is noisy in this case. Note that κ and η are adjusted

according to the norm. The last three images in this row show motion vectors. The cleanest

results are obtained using the regularized logLc
1 error from Equation (5).

Figure 6. Testing noise resilience of the proposed dense correspondence algorithm. The

synthetic disc is moving from left to right. We added white Gaussian noise with a magnitude

of 2% and 10% of the clipping threshold, and we tested small blur radii (2, 2, 2, 2) and large

radii (32, 16, 8, 8). From left to right: 2% noise, small blur; 2% noise, large blur; 10% noise,

small blur; and 10% noise, large blur.
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Frame 1Frame 1 Frame 50Frame 50

Figure 7. Temporal antialiasing in a game-style setting (rendered at 2048× 1152). The ge-

ometry has 22M triangles, some of them smaller than a pixel on screen, causing geometric

aliasing. On an RTX 2080Ti the full-resolution alignment took 5.44 ms, and the half resolu-

tion alignment took 1.96 ms. Please also see the supplemental videos for camera motion with

mouse and keyboard interaction.

4. Applications

We implemented the proposed hierarchical alignment method in Vulkan/GLSL com-
pute shaders and tested its performance on three applications, described in the follow-
ing: temporal antialiasing, aligning photographs, and Monte Carlo rendering.

Temporal antialiasing. Here, we blend (1−α) times the new frame with a fraction
of α times the warped old frame. This results in an exponential averaging scheme.
We use the regularized logLc

1 distance and apply the established variance-clipping
technique [Yang et al. 2020]: the mean and variance of the new render is estimated
in a 3 × 3 neighborhood, and the color of the warped buffer is clamped to a box
with radius σ = 1 for every color channel. Using this safeguard, we do not need
the error mask computed from the patch-based distance to reject alignment errors.
Instead, we use it to detect disocclusions and regions of change. In TAA, these are
the regions where averaging should take place, because in this application the image
is relatively noise free in flat regions but needs smoothing at the occluding geometric
edges. We thus invert the mask and apply the averaging only where needed. A result
can be seen in Figure 1 (top), which has slow forward camera movement, at subpixel
speeds. Without the subpixel motion refinement step, the TAA video shows noticeable
stuttering. The scene also features ambiguous, non-rigid motion in the clouds.

Figure 7 shows a version using subpixel jittered ray tracing for image formation
along with Monte Carlo integration for soft shadows. These images use variance
clipping and Catmull–Rom resampling of the warped buffer. The motion vectors are
estimated from relatively noise-free channels (diffuse albedo and normal, only ex-

30

http://jcgt.org


Journal of Computer Graphics Techniques

Fast Temporal Reprojection without Motion Vectors
Vol. 10, No. 3, 2021

http://jcgt.org

hibiting geometric aliasing but no Monte Carlo noise). The high geometric complex-
ity along with low-noise features make the motion estimation more robust. However,
the geometric aliasing, caused by tiny triangles disappearing between the pixel grid,
can cause some pulsing at certain distances from the camera. In the supplemental
material, we provide a video with fast user interaction.

This application uses standard variance clipping as a rejection scheme to avoid
ghosting artifacts, though this is not ideal to reduce Monte Carlo noise. In the supple-
mental video, we thus use variance clipping with an adaptive threshold: the tolerance
is decreased if the auxiliary buffers show significant differences, because we inter-
pret such differences as misalignment or geometric aliasing. On the other hand, the
shadows will clip variance at a rather loose 2σ bound.

We use arbitrary output variables for motion detection here, because these are
often available. Likewise, if true motion vectors are available, these can be used at
any scale and for any masked region in the image to guide or overwrite our matching
procedure for more stable results.

Aligning photographs. We used our alignment procedure to drive a denoising ap-
plication based on burst photography, similar to a mobile camera technique [Hasi-
noff et al. 2016]. This application depends on fast computation for non-destructive
workflows on desktop machines, where user interaction can trigger a complete re-
evaluation of the processing graph. Moreover, it has a crucial performance constraint
if deployed on embedded devices such as camera firmware or as smartphone software.
For this, we merged six raw shots of a 16MP Fujifilm camera before demosaicing.
Due to the X-Trans sensor layout (which can be analysed in 3×3 blocks), the aligned
buffers have 1632× 1088 pixel resolution, and the subpixel refinement lifts it to the
full resolution of 4896× 3264 after demosaicing. We use the L1 distance here. The
full pipeline takes 33.9 ms, out of which 19.4 ms are spent aligning the six images.
On loading, 6×2.5 ms are needed to upload the images to the GPU. The input images
and the result can be seen in Figures 8 and 9. When blending the buffers, we use a
Gaussian/Poissonian noise model that was fitted to the camera at this ISO beforehand
[Foi et al. 2008].

Monte Carlo rendering. In the DINING TABLE scene (Figure 10) we tested a very
noisy diffuse global illumination render. We use a large blur radius of 10 pixels for the
finest scale, 4 on the next-finer scale, and the default 2 otherwise. The figure shows
split-screen renders with the 1 spp input on the left and our aligned/merged version
on the right. Even in the presence of this amount of noise, we can track features and
align the images. Total frame times were 5.7 ms, out of which 3.1 ms were spent on
ray tracing and 2.4 ms on aligning at full resolution (1024× 1024). The split screen
is applied after rendering the full image.

The SUBSURFACE SCATTERING scene (Figure 11) shows the searchlight prob-
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Frame 3/6Frame 3/6 MergedMerged

Figure 8. Moving teapot. Bottom: A sequence of six handheld photographs taken in burst

mode, at ISO 3200 and pushed by +2.5ev in post. We can align these images despite the

walking teapot moving and perform a noise-based merging. Processing takes 34 ms. No

denoising other than averaging the aligned images has been performed.

Frame 4/7Frame 4/7 MergedMerged

Figure 9. Still life. Bottom: A sequence of six handheld photographs taken in burst mode,

at ISO 3200 and pushed by +3.5ev in post. We can align these seven images and perform

noise-based merging. Processing takes 30 ms, out of which 22 ms are aligning and merging.

There is light wavelet denoising applied to the result. See the supplemental material for a

comparison with and without additional denoising.

lem: a slab of path-traced subsurface scattering with a highly anisotropic phase func-
tion (mean cosine 0.97). Over the course of the animation, the incident light beam
is tilted from normal incidence (θ = 0) to the grazing angle (θ = π/2). The appear-
ing scattering pattern changes in non-rigid ways, and our alignment helps moving
noise patterns from the previous frames. This leads to good noise reduction, mak-
ing it possible to judge the resulting surface brightness and color from the preview
render. For low sample counts and high variance, this is a problem because of the
nonlinear output device transform (ODT) [Academy Color Encoding System (ACES)
Project Committee 2014]: besides applying the tone reproduction curve, it clips out-
lier samples to the maximum display value and thus leaves less energy in the image
than noise-free samples would. Hence, previews of noisy renders often look much
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Figure 10. A few frames from the DINING TABLE scene, rendered with three bounces of

global illumination at one sample per pixel, all diffuse and with motion blur. The small insets

show the initial frames of the sequence (every fourth frame is shown), where the system still

needs to adjust. The larger images show frames 180 and 250. Every image has a split screen:

the 1 spp input (left) and the aligned and merged output (right).

Input 50 spp Ours 10K spp Motion
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Figure 11. Subsurface scattering: frames 20, 160, and 239 from an animation. The angle

of incidence of a light beam illumination on the surface changes from orthogonal (frame 0:

θ = 0) to grazing (frame 240: θ = π/2). Our alignment and merging (second column) helps

moving the bright areas in previous frames to match the shape of the scattering lobe in the

new frame, making it possible to predict the brightness and color of the final render (third

column) much better than the input at 50 spp (first column).
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BaseBase 4 spp4 spp OursOurs 4 spp4 spp TAATAA 4 spp4 spp Ref.Ref. 512 spp512 spp MotionMotion

BaseBase 4 spp4 spp OursOurs 4 spp4 spp TAATAA 4 spp4 spp Ref.Ref. 512 spp512 spp MotionMotion

Ref.Ref. 512 spp512 spp OursOurs 4 spp4 spp Mo. Ref.Mo. Ref. 512 spp512 spp MotionMotion 4 spp4 spp MaskMask 4 spp4 spp

Figure 12. Frames 38 (top row) and 102 (middle row) from an animation with moving light

source and camera. This causes the objects in world space to have different motion than the

shadow boundaries. At only 4 spp our method manages to both antialias edges (orange insets)

and show shadows (blue insets) close to the much more expensive 512 spp reference. Note

that TAA box rejection creates unpleasant quantization artifacts in this case. The bottom row

shows our motion vectors in the case that the surface texture is not demodulated. Now, we

need to track two contradicting motions at the same time, which results in slightly degraded

noise removal performance due to the error mask that detects contradicting motion.

too dark. This application uses the logLc
1 norm as the patch distance, because it is

more resilient to the outlier noise often encountered in Monte Carlo estimates than
the L2 norm. We do not use any additional variance-clipping rejection, in contrast to
the TAA application.

The PENUMBRA scene (Figure 12) shows the incident illumination on a scene
with moving camera and moving light, featuring soft shadows. The motion is am-
biguous, because the shadow and the geometry move in different ways. Such a buffer
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Frame 0Frame 0 Frame 1Frame 1

FarnebäckFarnebäck Diff.Diff.

TVL1TVL1 Diff.Diff.

eFOLKIeFOLKI Diff.Diff.

OursOurs Diff.Diff.

Frame 0Frame 0 Frame 1Frame 1

FarnebäckFarnebäck Diff.Diff.

TVL1TVL1 Diff.Diff.

eFOLKIeFOLKI Diff.Diff.

OursOurs Diff.Diff.

Figure 13. Comparison to optical flow methods. From top to bottom: input frames,

Farnebäck, DUAL-TVL1, eFOLKI, and ours. The diff. images show the absolute difference,

where more black and darker pixels are better.

is often obtained by albedo demodulation, which is a common practice in real-time
denoising [Chaitanya et al. 2017]. Our alignment correctly registers soft shadows and
sharp edges and results in antialiased shapes as well as smooth shadows. However
possible, it would be involved in deriving motion vectors for soft shadow boundaries,
and such special-case algorithms would need to be implemented for every path-space
effect separately. To result in cleaner motion vectors, we used the regularized logLc

1

distance here.

5. Evaluation

Comparison to optical flow. Figures 13 and 14 show two consecutive frames of an
animation, as well as the warped versions when computing the dense pixel corre-
spondences with various techniques. We compared two well-established optical flow
methods (Farnebäck [Farnebäck 2003] and TVL1 [Sánchez Pérez et al. 2013]) be-
cause their implementations are readily available in OpenCV. We also compared
against eFOLKI [Plyer et al. 2016] as a close contender because of its speed (see
[Butler et al. 2012] for a performance comparison).

We show the absolute difference between the warped frames and the ground truth.
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Frame 0Frame 0 Frame 1Frame 1

FarnebäckFarnebäck Diff.Diff.

TVL1TVL1 Diff.Diff.

eFOLKIeFOLKI Diff.Diff.

OursOurs Diff.Diff.

Frame 0Frame 0 Frame 1Frame 1

FarnebäckFarnebäck Diff.Diff.

TVL1TVL1 Diff.Diff.

eFOLKIeFOLKI Diff.Diff.

OursOurs Diff.Diff.

Figure 14. Comparison to optical flow methods on two sequences from the Sintel dataset.

From top to bottom: input frames, Farnebäck (0.100 s), DUAL-TVL1 (12–260 s), eFOLKI

(runtime in Python: 7 s), and ours (0.0012 s). The diff. images show the absolute difference,

where more black and darker pixels are better.

These are relevant to our application, because large pixel-color differences mean that
the intra-frame averaging has to reject the aligned pixels. That is, more black pixels
and ones with smaller absolute difference values are better. Note that eFOLKI instead
minimizes distortion, which may be the better way to fail in different applications.

The SPHERES scene (Figure 13, left) is challenging because it introduces noise
from various sources: depth of field, motion blur, and soft shadows. It also has a lot
of disocclusion and contradicting incoherent motion, as for instance smaller spheres
bouncing in the background of a lens or motion-blurred foreground. For our goal to
use optical flow for real-time noise reduction, this case is very important. Our method
shows a much-improved difference image as compared to the other three. Note that
this is battle-testing our approach because the colorful spheres can best be discerned
by their color, while our matching is performed on scalar pixel differences.

The OCEAN scene (Figure 13, right) tests contradicting non-rigid motion, as
caused by small wavelets passing over larger waves at a different velocity, as well
as specular reflections moving separately. We observe that eFOLKI and our method
both work more robustly on these test scenes than the other two methods.

We also provide a test on the Max Planck Institute SINTEL scenes (Figure 14).
Our algorithm is more well suited for merging frames, as can be seen because more
pixels are darker than for the others and because it is much faster to compute. Note
that we are not trying to compute actual flow and that our method is thus not applicable
to cases where the real optical flow is needed.
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Figure 15. Testing subpixel refinement on different scales, with 2% added noise. The disc

here moves slowly, so subpixel velocity jitter is important. The images are grouped into rows

for frame 0 and frame 1. Ideally there would be very little difference in motion between

frames. Top: Without subpixel refinement. Center: Always refined on all levels. Bottom:

Adaptive, i.e., only refined on scales 0 and 1. The images for each scale show the resulting

motion vectors when only displacement on the given scale plus potentially subpixel refine-

ment on other scales is considered.

Subpixel motion refinement. In Figure 15 we evaluate the importance of subpixel
motion vector refinement on all scales. We evaluate the final outcome as well as the
temporal aliasing between two frames. It can be seen that frame 0 and frame 1 show
substantially different motion on scale 1 when the subpixel refinement is off, even
though the disc moves at a constant speed. We conclude that subpixel refinement is
essential to avoid temporal jittering in the motion. This is most apparent in frames 0/1
for scale 1 without refinement, but also carries over to more subtle jitter on the finest
scale. On coarse scales, however, there is too much spatial aliasing to compute useful
subpixel refinement. Thus, we adaptively switch on the refinement only for the finer
half of the scales.

Note that subpixel refinement can fail if the input is extremely noisy, because the
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Pass Dist. Blur Merge Sum

Level 3 0.007 0.003 0.010 0.020
Level 2 0.015 0.006 0.010 0.031
Level 1 0.131 0.031 0.055 0.217
Level 0 2.202 0.361 0.807 3.370

Down Warp Blend
Overhead 0.140 0.119 0.112 0.371

4.008

Table 1. Breakdown of our timings for the HIMALAYA scene in Figure 1 at 2350× 1000

resolution run on an NVIDIA RTX 2080 Ti. All numbers are in milliseconds. The down

overhead collects all timings required to compute the four pyramid levels of the two input

images. Rendering the scene takes 4.9 ms on this device. The kernels dist., blur, and merge

refer to the kernels introduced in Section 3.1 and are listed separately for each level of the

pyramid on which they are run, level 0 being the finest and 3 the coarsest.

Pass Dist. Blur Merge Sum

Scale 3 0.006 0.004 0.009 0.019
Scale 2 0.010 0.004 0.009 0.023
Scale 1 0.039 0.010 0.019 0.068
Scale 0 0.498 0.100 0.207 0.805

Down Warp Blend
Overhead 0.118 0.111 0.107 0.336

1.251

Table 2. Breakdown of our timings for the HIMALAYA scene in Figure 1, in the same setup as

Table 1 only using 2×2 downsampling for the motion vector estimation. As expected, mainly

the higher resolutions profit from initial downsampling.

noise destroys the underlying smoothness assumption. This means that the quadric fit
will not be a meaningful interpolation. Please also see the supplemental material for a
comparison video with and without subpixel refinement. It also contains detailed in-
formation about memory usage and how it is reduced when working with downscaled
buffers for motion detection.

Performance. We show a timing breakdown in Table 1. As expected, most of the
time is spent on the high-resolution scale (85–93%). To further speed up the method,
it is possible to rely on the subpixel refinement and only perform the alignment up
to half resolution. We explored this possibility in an experiment where alignment is
performed on a 2×2 downsampled input buffer. For the HIMALAYA scene, runtimes
went down from 4.0 ms to 1.25 ms, with only minor differences in output quality (see
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FullFull 2×2 Sub.2×2 Sub. 8× Absolute Diff.8× Absolute Diff.

Figure 16. Frame 200 of the HIMALAYA sequence when computing the full-resolution corre-

spondences (235×1000 px, 4.00 ms, left), or based on a 2×2 subsampled version (1.25 ms,

center). The absolute difference (right) is 8×.

Table 2 and Figure 16). This is also exploited in the photography application, where
3×3 downsampling is done (Figure 8).

We qualitatively compared our method to the result of the eFOLKI method [Plyer
et al. 2016] by running the CPU/Python code provided by the authors (https:
//github.com/aplyer/gefolki). To gauge the relative performance to
their GPU implementation, we can approximately normalise the runtimes for com-
pute power or bandwidth of the utilised devices. We arrive at roughly a 1.4–1.8×
speedup or 4.5–5.0× for the 2×2 downsampled version of our method.

Memory requirements. When running the shader kernels, we use a memory allocator
to manage the input and output image buffers. That is, the memory is aliased and can
be reused by later kernel invocations in the command buffer. Thus, we provide peak
resident set size (rss) as well as address space size (vmsize) numbers when evaluating
memory usage. In general, the hierarchical matching requires single-channel versions
of a pyramid of the source and target image buffers. The largest resolution is either the
input size or the size downsampled by 2×2. For instance, a full pipeline for a 1024×
1024 render takes 17 MB rss of image buffers without any alignment. These base
buffers are used for intermediate outputs of the rendering kernel, the blend module,
and an A/B split-screen comparison module as well as blue noise input textures. The
full-resolution alignment pipeline then takes 71 MB, and the half-resolution alignment
pipeline takes 35 MB rss.

Figure 7 shows a more complex scene with millions of triangles and large tex-
tures. The memory requirements without any alignment kernels are rss 733.953 MB
and vmsize 733.953 MB, at 2048×1152 resolution. The complete memory require-
ments for all geometry and textures and the intermediates for alignment were peak
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rss 895.562 MB and vmsize 932.72 MB for full resolution, and peak rss 806.312 MB
and vmsize 828.094 MB for half-resolution.

Please see the supplemental material for more numbers.

Limitations and fail cases. The hierarchical approach assumes that there is some
coherence of motion. Arbitrary correspondences can only be established within the
5× 5 window on every level of the pyramid. Relying on an upsampled version of
a coarser-level motion vector to extend the range means that a whole block on the
finer level will start the search in a similar region. Even in the presence of incoherent
motion, often the results are still a good match to the pixel surroundings, but this can
cause some random buzzing in animations, which has to be addressed in a rejection
step. Please refer to the supplemental videos of the underwater scene for a comparison
of different rejection approaches. In the future we hope that edge-aware upsampling
can improve such cases.

Excessive noise in the input will lead to lower accuracy in the output. Applications
with a large amount of noise can also not rely on the quadric fit for refinement, because
a polynomial fit to noisy values is not meaningful.

We presented an efficient correspondence detection method, but did not explore
good averaging/rejection strategies tailored for specific use cases.

6. Conclusion and Future Work

We proposed a hierarchical algorithm for fast alignment of subsequent frames in real-
time rendering. This has many use cases also for interactive preview rendering or
for faster denoising in offline rendering. Our approach is completely deterministic
and non-iterative and, though bearing similarity to neural networks in the data flow
diagrams, can be evaluated completely without optimizing weights. It can, however,
serve as input to sophisticated denoising methods, some based on neural networks
[Chaitanya et al. 2017; Thomas et al. 2020; Xu et al. 2019], as these depend on
motion vectors or pre-warped input frames. We showed that, at similar quality, the
matching speed can be improved substantially by running on reduced resolution and
relying on the subpixel motion vector estimation for the final upsampling step.

There are many things to be explored to improve our work. First, the alignment
quality might be improved by exploiting forward and backward searches, if all frames
are available (as for offline denoising). The hierarchical scheme might be improved
by using more sophisticated bilateral/edge-aware upsampling instead of the simple
bilinear scaling we used. The enforced coherence between the hierarchical levels
may be broken up to result in more precise alignment by using an iterative refinement
as a post-process, if the application allows for more budgeted render time.

We demonstrated fast speed in a large variety of situations: even though standard
TAA with motion vectors is still at least one order of magnitude faster for certain
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specific scenarios, our solution is more general and can be applied in cases where
there are no simple motion vectors. With increasing visual complexity, we expect this
to be of importance going forward. More complex light transport will require more
sophisticated temporal reuse. We think advanced techniques such as image-space
control variates [Rousselle et al. 2016] could also greatly benefit from alignment.
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