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Figure 1: Left. A spectral rendering performed using the proposed technique. This scene uses a variety of RGB textures that have been
converted into reflectance spectra. Right. Plots of highlighted surface regions over the visible range.

Abstract
We present a versatile technique to convert textures with tristimulus colors into the spectral domain, allowing such content to be
used in modern rendering systems. Our method is based on the observation that suitable reflectance spectra can be represented
using a low-dimensional parametric model that is intrinsically smooth and energy-conserving, which leads to significant simpli-
fications compared to prior work. The resulting spectral textures are compact and efficient: storage requirements are identical to
standard RGB textures, and as few as six floating point instructions are required to evaluate them at any wavelength. Our model
is the first spectral upsampling method to achieve zero error on the full sRGB gamut. The technique also supports large-gamut
color spaces, and can be vectorized effectively for use in rendering systems that handle many wavelengths at once.

CCS Concepts
• Computing methodologies → Reflectance modeling;

1. Introduction

Physically-based rendering techniques are able to generate images
of striking realism using a detailed simulation of the interaction of
light and matter. In the pursuit of realism, many modern rendering
systems have recently started to perform the underlying light trans-
port simulation in the spectral domain, usually covering the visible
range with wavelengths from roughly 360 to 830 nanometers.

This trend is motivated by several benefits of spectral color
representations: spectral quantities faithfully describe the physi-
cal process that gives rise to color, which simplifies interfacing

rendering systems with measured data or parametric models de-
rived from first principles. Many modern reflectance models have
a natural dependence on wavelength, e.g. to account for irides-
cence in thin layers [IA99, BB17] or diffraction from surface
microstructure [DWMG15, WVJH17, YHW∗18]. Products of re-
flectance spectra, which are needed e.g. to simulate multiple scat-
tering, have been found to be in better agreement with real-world
reflectance compared to products of RGB triplets [Pee93, WEV02,
FHF∗17]. Another benefit of a higher-dimensional representation
is the ability to model metamerism.
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On the flipside, spectral color representations introduce addi-
tional complexities: first, a numerical integration over wavelengths
is required, which can introduce chromatic noise in a Monte Carlo
renderer. This is typically ameliorated by using some form of vec-
torization to integrate over multiple wavelengths at once. A more
severe issue is that scene specifications will generally only provide
spectral data for a small subset of components such as materials,
sensors, and light sources. A practical rendering system must thus
be able to deal with “legacy” content based on tristimulus represen-
tations such as RGB. This article proposes a versatile solution to the
latter problem, specifically the conversion of tristimulus reflectance
data (e.g. textures) into an equivalent spectral representation.

Reflectance spectra due to reflection from absorbing surfaces are
typically very smooth functions in the visible range†. Although
reflectance spectra exist in a wide variety of shapes, we tend to
observe functions that are well-approximated by constant (white,
black), approximately linear, or peaked curves with one (green, yel-
low) or two modes (blueish-purple). Figure 2 shows a few examples
from a color checker.

Spectral upsampling is a highly ill-posed problem, since each
tristimulus color corresponds to an infinite dimensional subspace
of potential reflectance spectra. There is thus a large design space
of admissible solutions, making it feasible to impose a number of
additional desiderata:

1. The composition of mappings from tristimulus values to spectra
and the reverse should generally be an identity, i.e.

rgb(spec(b)) = b.

This is not always possible, e.g. for very saturated and imagi-
nary colors, in which case we want to minimize

‖rgb(spec(b))−b‖ ≈ 0,

where ‖ · ‖ is an arbitrary perceptual metric that defines the
gamut mapping strategy being used.

2. Spectra should be as smooth as possible and furthermore have
a smooth dependence on the input tristimulus value.

† In the UV and IR, absorption bands tend to cause sharp transitions. Also,
wave-optical phenomena such as iridescence produce more complex oscil-
latory spectra and are not considered in this article. Our method also does
not apply to light source spectra, which are often highly discontinuous due
to stimulated emission.

Figure 2: Spectral measurements of several X-rite color checker
patches in the 380 to 730 nm range.

3. Evaluation must be extremely efficient, as it will occur billions
of times during a typical rendering.

4. The code that implements evaluation of the spectrum should be
compact enough so that it can be inlined into shader code.

5. Memory latency and throughput are key limiting factors in the
performance of modern rendering systems, hence it is crucial
that the conversion does not negatively affect them.

6. Most spectral rendering systems use SIMD instruction sets such
as SSE or AVX to integrate over multiple wavelengths at once.
The conversion must thus be amenable to vectorization.

Our method is based on the observation that a simple analytic
model can satisfy all of the above criteria. It produces smooth spec-
tra that are intrinsically energy-conserving, which leads to signif-
icant simplifications compared to prior work that has focused on
this problem. Numerical evaluation consists of two steps: a brief
pre-processing step at scene load time translates RGB texel values
into parameters of an analytic model, which is then evaluated at
render time. Only three coefficients are needed to parameterize the
spectrum, which means that storage requirements of transformed
textures are identical to those of ordinary RGB textures, and no ad-
ditional memory traffic occurs at render time. The evaluation step
is trivially vectorizable and extremely efficient, requiring as few as
six floating point operations. Our model achieves low color repro-
duction errors on a variety of color spaces, and zero error on the
commonly used sRGB gamut. A reference implementation of all
components is provided in the supplemental material.

2. Previous Work

An important constraint that distinguishes reflectance spectra from
emission spectra is that they conserve energy and thus cannot ex-
ceed a value of one at any wavelength. This restriction is subtly
related to color saturation: a color appears more saturated when the
spectrum contains narrow peaks, i.e. when the ratio between val-
ues at different wavelengths is maximized. Narrowing a peak while
maintaining its maximum, however, will make the color darker
since brightness is related to the integral of the spectrum. This has
been recognised early on [Sch19], and the corresponding gamut
of valid reflectances was constructed sixteen years later [Mac35b].
Note that we only target reflectance spectra in this article.

The first spectral upsampling methods can be found in the lit-
erature from many decades ago. Due to the growing importance
of realistic color and spectral transport, a number of increasingly
sophisticated methods have been proposed since then.

MacAdam. The technique of MacAdam [Mac35a] is mainly inter-
esting for its theoretical merit. The tristimulus to spectrum upsam-
pling method is a byproduct of a constructive proof of theoretical
limits to the brightness of colors of certain saturation. The spectra
are box (or inverted box) shaped and only consist of a rising and a
falling edge. They are thus always able to represent colors of max-
imum brightness for any given saturation, but are not a good match
for natural spectra that are usually smooth (cf. Figure 2).

Smits. The technique of Smits [Smi99] is also based on a box basis
that is split into ten discrete bins. The bin values are derived using
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a snake-based optimisation that accounts for energy conservation
as well as the target RGB color of the spectrum. While this works
well inside the sRGB gamut, the approach can become unstable
for finer resolutions (more than ten spectral bins) and wider gamuts
(for instance Rec. 2020). This is partly because arbitrarily saturated
color and high brightness cannot be achieved in general [Mac35b].

Meng et al. The method of Meng et al. [MSHD15] is closest to our
goals, hence we will discuss it in greater detail. The method sup-
ports wide gamut color spaces and produces smooth output spectra,
but it is characterized by several undesirable aspects:

1. Energy conservation. Meng et al. optimize the smoothness
of their spectra without constraining them to be physical (i.e.
bounded by 1). The spectra must later be re-scaled, which intro-
duces considerable errors even on “simple” color spaces such
as sRGB. In contrast, our optimization minimizes colorimetric
error on a function space of intrinsically energy-conserving
spectra. Our solutions are generally very smooth but can also
encode sharp or rectangular peaks when this is needed to satisfy
the optimization objective, enabling us to reproduce the full
sRGB gamut with zero error.

2. Dimension. Meng et al. precompute spectra for 2D xy chro-
maticity coordinates, while our method uses a 3D tabulation that
also accounts for brightness. This is based on the observation
that spectra near the gamut’s rim of maximum brightness must
necessarily approximate MacAdam’s box-shaped spectra, while
spectra of lower brightness can be smoother. There should thus
be different shapes of spectra for different levels of brightness.

3. Storage. Meng et al. rely on a table of dense spectral discretiza-
tions (∼ 60.7 KB, i.e. about the size of the L1 cache of modern
processors) that will be accessed at least 4 times as part of every
texture lookup. Since the stored functions are very smooth, a
dense discretization seems excessive. Our method also relies on
a tabulation that is even larger—however, a crucial difference is
that it must only be accessed once when the texture is loaded
from disk, and we also do not discretize the spectra themselves.

4. Meshing. Meng et al. mesh the spectral locus using quadrilat-
eral interior cells and triangular boundary cells. This approach is
very general and works for any RGB color space that lies within
the spectral locus, but lookups on such an irregular cannot be
vectorized effectively and thus lead to comparatively slow per-
formance. We instead target specific RGB color spaces, which
allows for a much simpler and more regular discretization.
The supplemental material includes optimization code and pre-
computed parameters for four color spaces: sRGB (Rec. 709),
Rec. 2020, ProPhoto RGB, and ACES 2065-1, which is widely
used by the film industry.

Otsu et al. The most recent spectral upsampling technique by Otsu
et al. [OYH18] employs a clustered principal component analysis
(PCA) to reconstruct spectra that resemble natural reflectance spec-
tra from a database. The method organizes xy chromaticity space
into a kd tree containing eight clusters and a PCA per cluster to de-
rive spectra from XY Z values. The tables used here are a bit smaller
than those of Meng et al., but still relatively large (4.875 KB at the
low 10nm bin resolution used in the paper.)

There are three issues with this approach: nearby colors that
cross cluster boundaries can produce very different spectra, since
there is no interpolation across clusters. This leads to color dis-
continuities in renderings. Secondly, output spectra often exceed
the [0,1] range including significant negative regions and must be
clamped, which results in color reproduction errors. Finally, the de-
pendence on brightness is affine, hence the method cannot alter the
peakedness of spectra based on this parameter.

3. Method

The general problem that we wish to solve is to find a smooth spec-
trum f̂ (λ) that maps to a RGB color b ∈ [0,1]3 in a specified color
space. If an exact match is impossible, the spectrum should ap-
proximate the input color as closely as possible. We formalize this
objective as the following optimization problem:

f̂ = argmin
f

∥∥∥∥b−T
∫

Λ

f (λ)W (λ)xyz(λ)dλ

∥∥∥∥ , (1)

where W represents the spectral power distribution of the white
point (e.g. D65), xyz(λ) denotes the CIE 1931 color matching func-
tions in vectorial form, T ∈ R3×3 is a color transformation matrix
that maps from CIE XYZ values to the RGB color space,‡ and the
integration domain Λ = [360,830] covers the visible spectrum. We
define the norm ‖·‖ as CIE76 ∆E to quantify the perceptual magni-
tude of color differences. Finally, we use a composite Simpson 3/8
rule to compute the above integral with discretization of ∼1.6nm
(3× the resolution of the CIE color matching functions, which we
interpolate linearly.)

Instead of solving for an arbitrary discretized function such as a
piecewise constant or linear interpolant [MSHD15], we found that
a simple analytic model can be sufficiently expressive to yield high-
quality solutions to the above optimization. We specifically set

f (λ) = S(c0λ
2 + c1λ+ c2) (2)

where ci are coefficients of a second-order polynomial and S is
a sigmoid function that maps the interval (−∞,∞) to [0,1]. The
sigmoid function encodes the energy conservation constraint: due
to the nonlinear mapping, nonphysical spectra with values outside
of the interval [0,1] cannot be produced irrespective of the model
parameters.

Note that a number of functions with a sigmoidal shape exist,
such as the arc tangent, the hyperbolic function, and the logistic
function. All of them are in principle admissible, but we prefer
a simple algebraic variant that does not require the evaluation of
transcendental functions:

S(x) =
1
2
+

x
2
√

1+ x2
. (3)

The combination of parabola and nonlinearity allows the model

‡ This formulation is specific to the human visual system, since it opti-
mizes projected errors on the subspace spanned by the CIE color matching
functions. Targeting other subspaces (e.g. for a camera), requires a different
set of response curves—changing the linear transform T is not enough.
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Algorithm 1 Evaluation of the spectral model f (λ)

1: function f (c0, c1, c2, wl)
2: # Evaluate polynomial for wavelength ’wl’
3: x = fma(fma(c0, wl, c1), wl, c2)
4:
5: # Evaluate nonlinear map
6: return fma(.5 * x, rsqrt(fma(x, x, 1)), .5)

to produce a number of shapes that are commonly seen in re-
flectance spectra, including a single mode (e.g. green spectra), two
separated peaks (e.g. purple spectra), flat regions (maximally bright
colors), and constant spectra (e.g. white and black). A number of
examples are shown in Figure 1.

Evaluating the composition of the polynomial and sigmoid (Al-
gorithm 1) requires as little as six floating point operations when
implemented using fused multiply-additions (“fma“) and recipro-
cal square root operations (“rsqrt”) provided by current proces-
sor instruction sets. The evaluation is trivially vectorizable on mod-
ern instruction sets such as SSE, AVX and AVX512. We provide
reference implementations in the supplemental material.

3.1. Optimization

Having decided on the model, we now turn to the task of comput-
ing the coefficients ci for a given RGB value. We use the CERES
solver [AMO] to do so, which internally relies on a variant of the
Levenberg-Marquardt algorithm along with gradients of the objec-
tive (1) computed via forward mode automatic differentiation. The
optimization rapidly converges in a few iterations from a starting
guess of zero.

However, simply running the nonlinear solver for all input RGB
values would not yield satisfactory results: because the solution is
not always unique for saturated bright or very dark colors, drastic
changes to the output spectra can result from small perturbations to
the input color. Such transitions would cause visible discontinuities
in a spectral rendering whenever a material is lit by an illumination
spectrum other than the white point illuminant. The solution to this
problem is simple: starting from a color value c= (r,g,b) of moder-
ate brightness where the solution is stable (e.g. max{r,g,b}= 0.1),
we iteratively solve for brighter and darker colors (αr,αg,αb) in
both directions, while using the solution of the previous iterate as a
starting guess.

Another problem is that the nonlinear solver is far too costly to
be invoked during texture lookups, hence the optimization must be
carried out beforehand. Meng et al. [MSHD15] store precomputed
spectra on a discretization of the spectral locus into square and tri-
angular elements. As discussed in Section 2, this leads to a rela-
tively complex implementation that we wish to sidestep by special-
izing to specific RGB color spaces.

This prompts the question of how the RGB domain should be
discretized: Figure 3a-c show optimized coefficients c0, c1, and c2
for maximally bright colors on the sRGB gamut, which reveals an
interesting pattern: several ridges pass along straight lines connect-
ing the white point to red, green, blue, and their complementary

(a) c0 (b) c1

(c) c2 (d) Discretization

(e) Discretization (unwarped)

(1, 0, 0) (1, 1, 0)

(1, 0, 1) (1, 1, 1)

(0, 1, 0) (0, 1, 1)

(1, 1, 0) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 1) (1, 1, 1)

Figure 3: Coefficient maps and chosen discretization for sRGB

colors cyan, magenta, yellow. These are locations where the spec-
tra considerably change in shape–for instance, by switching from
one central peak to two separate peaks. Motivated by this obser-
vation, we define three quadrilateral regions (Figure 3d) that are
bounded by exactly these points and map a regular grid onto each
one. The coefficients are very smooth within each region, and we
found a discretization of 64×64 to be more than sufficient.

Implemented in this way, our method would produce a set of
three coefficient maps requiring 144KiB of storage that encode the
parameters of maximally bright (i.e. α := max{r,g,b}= 1) RGB
colors. To handle darker colors, we could adopt the approach used
by most previous work, which exploits the linearity of the map-
ping by fetching coefficients for normalized colors (r,g,b)T /α and
scaling the resulting spectra by α.

While the small footprint of a 2D tabulation is appealing, the fo-
cus on maximally bright colors is problematic: this approach maps
dark colors to spectra that tend to be much more strongly peaked
than is actually necessary (Figure 4). Secondly, it is often impossi-
ble to achieve zero error for a maximally bright RGB color value
when working with large-gamut color spaces, which complicates
the use of such a scheme.

These issues motivate our decision to extend the tabulation with
an extra dimension that captures different values of α ∈ [0,1],
where darker colors generally map to smoother spectra that achieve
lower (or zero) error. Our final discretization then consists of three

c© 2019 The Author(s)
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Figure 4: Spectral plots corresponding to the color [.2,.2,.5]
in ACES 2065-1, using a 2D (blue) and a 3D tabulation (red). The
latter maps darker colors to significantly smoother spectra.

separate 3D cubes of resolution 643 requiring a total of 9 MiB of
storage (Figure 6). Interestingly, this exceeds the size of all tables
in prior work by a significant margin, yet this overhead is unprob-
lematic: since the tables must only be accessed once at load time
to transform RGB texels into model parameters (c0,c1,c2), they do
not cause additional memory traffic while rendering.

The last detail that must be discussed is how to discretize the
newly added dimension: instead of a linear spacing, we use a map-
ping that dedicates a larger fraction of the resolution to very bright
and very dark spectra where the parameters of our model vary
more quickly (Figure 5). The i-th slice corresponds to Figure 3e,
scaled by αi := smoothstep(smoothstep(i/63)). Algo-
rithm 2 shows how to fetch spectrum coefficients from the resulting
tabulation. Depending on the target color space, the complete opti-
mization takes 10-60s on an Intel i7-6700K laptop CPU.

Algorithm 2 Lookup into precomputed tabulation

1: function FETCH(color)
2: # Find the largest component
3: i = color.argmax()
4:
5: # Normalize other two components
6: color_norm = [
7: color[(i + 1) % 3] / color.max(),
8: color[(i + 2) % 3] / color.max(),
9: color.max()]

10:
11: # Trilinearly interpolated lookup
12: return table[i].eval(color_norm)

4. Evaluation

In the following we compare our work to the upsampling methods
by MacAdam [Mac35a], Smits [Smi99], Meng et al. [MSHD15],
and Otsu et al. [OYH18].

Execution speed. We evaluated the speed of all methods on a sim-
ple test that involves upsampling a 4096× 4096 pixel floating point
RGB texture to spectra with 16 wavelengths per pixel. Results can
be found in Table 1. Our method is broken down into two steps:
a preprocess where RGB tristimulus values are replaced by the
coefficients for our parametric spectra, and the actual conversion.

Figure 5: The coefficients of our model change rapidly near α = 0
and α = 1 (left), hence we use a discretization that increases the
resolution in these regions (right).

Our method is significantly faster than the other methods. Only
MacAdam’s reconstruction could potentially be faster if performed
during a preprocess. On the Knights Landing platform, we achieve
good speedups with SSE and AVX, but for the AVX512 case the
memory access and control logic around the reconstruction code
begins to dominate, which diminishes the performance benefits of
very wide vectorization.

Method Core i7 Xeon Phi

MacAdam 1.50803 9.16001
Smits 2.32672 11.9571
Meng 8.53176 60.73
Otsu 2.60984 14.216
Our (preprocess) 1.30309 8.16992
Our (scalar) 0.83751 3.43802
Our (SSE4.2) 0.20926 0.88243
Our (AVX) 0.10790 0.43730
Our (AVX512) - 0.34988

Table 1: Evaluation speed (measured in seconds) when up-
sampling a 4K texture into a spectral representation with 16 wave-
lengths per pixel, on an Intel Core i7-5500U CPU @ 2.40GHz and
an Intel Xeon Phi CPU 7210 @ 1.30GHz Knights Landing proces-
sor (both single threaded).

Colorimetric properties. Figure 8 shows errors produced by the
different upsampling methods, plotted in the CIE xy graph. Ev-
ery pixel in the image shows the CIE76 ∆E difference between the
original color b and the one corresponding to the upsampled spec-
trum, i.e. rgb(spec(b)). The top row shows XYZ input normalized
such that the maximum component is one. These are often infeasi-
bly bright colors that need to be brought into the reflectance gamut,
hence all methods show relatively large error. The second row is
normalized such that the input color is scaled to half the brightness
of the theoretical limit for reflectances [Mac35b] All input colors
should be well represented by reflectance spectra here. Meng et al.’s
method still shows some error near the boundaries of the spectral
locus. The spectra are extremely peaked in these regions, which
makes errors susceptible to details of the quadrature scheme, as
well as the ability of approximating Dirac delta functions. The third
row finally shows input in sRGB color space with maximum com-
ponent equal to one, representing a common use case in practical
usage. Our method is the only one with zero error in this case.

Our optimization process considers 3D input, i.e. it will create
flatter spectra for colors with lower saturation, allowing it to out-
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Figure 6: Visualization of precomputed model coefficients for several widely used RGB color spaces (the α = 1/2 slice is shown.) (top
left): The sRGB gamut is fully contained in the spectral locus, which leads to very smooth coefficients with color reproduction errors in
the order of the machine precision. (bottom left): The Rec. 2020 gamut is interesting because it touches the spectral locus, which leads to
a localized error increase that is visible in the top left of all slices. (right column): Both ProPhotoRGB and ACES2065-1 are large-gamut
color spaces containing imaginary colors that lie outside of the spectral locus. Our model also supports such colors but gamut-maps them
onto a realizable spectrum that minimizes the CIE ∆E error. The resulting change in behavior and increased errors are apparent in the plots.

perform Meng et al.’s and Otsu et al.’s methods that are based on
2D precomputations (on a grid or a kd-tree, respectively).

MacAdam’s method suffers from quantization issues due to the
sharp edges of the box spectra coupled with the fixed resolution
of our integration scheme. We include it for completeness, since
MacAdam’s spectra represent the limiting case of maximum color
saturation. We note that they are usually not a good choice for ren-
dering.

Figure 7 shows one potential issue with Meng at al.’s method:
Since the spectra are only precomputed at a sparse set of points,
they need to be interpolated to span the whole XY Z gamut. While
this results in the correct color, the shape of the spectra can be os-
cillatory when interpolating between four spiky spectra. The com-
parison to Otsu et al.’s and our method shows that much smoother
spectra representing the same color are possible in this case.

Radiometric properties. Figure 10 shows three different RGB
color ramp textures (in sRGB adapted to illuminant E) lit using
CIE illuminants E and F2, generated using all previously discussed
upsampling techniques.

We show our method in two variants: Ours upsamples the inter-
polated RGB values from the input texture ramp, which leads to
output that is identical to the illuminant E-lit reference (first row of
each plot in the left column). Ours (int.) transforms the RGB col-

400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2 Ours
MacAdam
Smits
Meng et al.
Otsu et al.

RGB value: 1.000, 0.201, 0.003

Figure 7: Example spectrum where Meng et al.’s method shows
clear interpolation artifacts: the four spectra which are used for
interpolation here have distinctly different peaks which all show up
in the non-smooth final result.

ors of the endpoints of the color ramp into coefficients (c0,c1,c2)
of our model and upsamples the interpolated coefficient representa-
tion instead. We emphasize that this is not how our method would
typically be used, but include the result to show the relationship
between the resulting color and its coefficient representation. We
conclude that—within limits—it can be reasonable to interpolate
coefficients instead of RGB values or spectra. Because of the non-
linear sigmoid transformation S(·), this is different from interpo-
lation in RGB or in the spectral domain, but the smooth mapping
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Figure 8: Round-trip errors between the input color and the one corresponding to the reconstructed spectra (CIE76 ∆E, an error of 2.3
would be a “just noticable difference’ (JND)). The brightness of the input color in the top row is normalised such that the maximum XYZ
component is unity. These spectra are gamut mapped to be a valid reflectance (i.e. bounded values in the interval [0,1]) which is visible in
large round trip errors for all methods. The center row is scaled to half of MacAdam’s theoretical limit on brightness. The bottom row shows
the most common use case of upsampling sRGB colors. These are normalized to maximum component of one, which is different to the first
row. Due to the 3D optimization approach, our method performs best in all cases and achieves zero error on the sRGB gamut.

does not produce unexpected artifacts (jitter, non-monotonicity, or
additional intermediate color transitions).

MacAdam’s method suffers from substantial numerical jitter due
to the sharp edges in the spectra. Otsu et al.’s method shows discon-
tinuities when crossing kd-tree cell boundaries in the blue/magenta
gradient, and when it is lit by illuminant F2, which models a fluo-
rescent light source.

We also evaluated the shape of the resulting spectra and their
behavior with indirect lighting. We selected several patches from
the X-Rite ColorCheckerSG and simulated nine bounces of light on
them by multiplying the spectra. The results are converted to sRGB
and shown as color patches in Figure 9. MacAdam’s spectra have a
tendency to decay faster with multiple bounces due to their compa-
rably low maximum value. Otsu et al.’s method achieves an excel-
lent match to the spectrum in row 3, potentially because a similar
spectrum was used as part of the method’s training. However, the
spectra produced for the other patches are very different in shape.
In row 4, the method of Smits saturates at 1.0 and thus does not
decay at all with multiple bounces. Our method yields results that

are comparable to the other methods, but without artifacts such as
overly fast decay (MacAdam) or sustaining saturation (Smits).

5. Conclusion

We presented a fast and practical technique to upsample tristimu-
lus textures to full spectra suitable for spectral rendering. The pro-
posed method works on input color with arbitrary gamut and repre-
sents spectra with a simple parametric model. This model produces
smooth spectra where possible (low brightness) and transparently
blends over to boxy spectra for high color saturation and brightness.
This is possible because we optimize spectra for 3D input, not only
on the 2D space of xy chromaticities such as previous work. We
use three input parameters, i.e. an RGB texture converted to our
coefficients maintains the exact same memory footprint. Run time
evaluation for any given wavelength requires as little as six floating
point operations and is trivially vectorized for modern instruction
sets, and we demonstrate run time speedups over previous work of
15× up to 150×.
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indirect color input spectra spectra after 9 bounces
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Figure 9: Evaluation of indirect light: the input spectrum (lit by illuminant E) is multiplied by itself several times, simulating indirect lighting.
The first row shows this directly on the input spectrum (obtained from the X-Rite ColorCheckerSG), the others first convert the spectrum to
RGB and then back to a spectrum with the signified method, and the indirect lighting is simulated on this spectrum. The reflectance spectra
are plotted in the middle and the output spectra after nine bounces are plotted on the right.
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Figure 10: RGB texture with a color ramp (directly visualized on
the top row in each figure), rendered under illuminants E (left) and
F2 (right). Ideally all methods should look the same (and equal to
the top row for illuminant E). However, overly saturated and bright
colors lead to clamped reflectance spectra in the range [0,1] and
thus to different RGB depending on the shape of the spectrum.
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