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A NEGATIVE RESULT ON LINEAR RECONSTRUCTIONS
Our bounded MESE reconstructs a bounded signal from trigonomet-

ric (0, 1)-moments in a non-linear fashion although the moments

themselves depend on the signal linearly. In the paper we motivate

this non-linear approach with a fundamental limitation of linear

reconstructions: Binning is the only linear reconstruction that pre-

serves non-negativity of signals. In the following, we formalize this

statement and provide a proof. Our formulation focuses on non-

negativity but if a constant function is part of the basis, it applies

equally to all other lower or upper bounds.

To avoid technicalities of functional analysis, we only consider

signals assigning a value to finitely many samples. With arbitrarily

high sample counts, all well-behaved signals can be approximated

to arbitrary accuracy, even those defined on a multi-dimensional

domain. Therefore, this simplification does not limit the significance

of our claim in practice.

Theorem A.1. Let D be a finite set and denote the space of functions
f : D→ R by F. Let f0, . . . , fm−1 ∈ F be a basis of a subspace of F
and fix a weighting functionw ∈ F withw > 0. Suppose that for all
f ∈ F with f ≥ 0, we also have

∑m−1
j=0 yj fj ≥ 0 where the coefficients

y0, . . . ,ym−1 ∈ R minimize the weighted least-squares error

∑
x ∈D

w(x)
©«f (x) −

m−1∑
j=0

yj fj (x)
ª®¬
2

. (A.1)
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(a) Disconnected support
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(c) Classical binning

Fig. A.1. Least-squares fits of f using a few possible bases д0, д1, д2.

Then we can find a basis д0, . . . ,дm−1 ∈ F spanning the same space
as f0, . . . , fm−1 using only non-negative functions 0 ≤ д0, . . . ,дm−1

with pairwise disjoint support.

In the modified basis, each function дj corresponds to one bin

and the weighted least-squares fit of f ∈ F takes a simple form:

m−1∑
j=0

yj fj =
m−1∑
j=0

y′jдj with y′j :=

∑
x ∈Dw(x)дj (x)f (x)∑
x ∈Dw(x)д2j (x)

.

Disregarding the normalization factor, the optimal least-squares

weight y′j just accumulates the function f over the support of дj ,

weighted bywдj . Each basis function дj is weighted by y′j to obtain

the least-squares fit. This procedure is a weighted form of binning.

Although the computation to obtain the fit

∑m−1
j=0 yj fj is different,

the fit is the same and it suffers from the same drawbacks.

In theory, each basis function дj may vary within its support and

the support may be any set. Figure A.1 gives a few examples of what

that means in practice. In Figure A.1a, д0 and д1 have disconnected
support. Thus, the values of the fit at different locations become

dependent in a way that is usually undesirable. Figure A.1b uses

a differentiable basis but since the support of д0,д1,д2 must be

disjoint, this goal can only be accomplished by approaching zero at

the boundary of the support. Therefore, the fit vanishes in locations

determined by the basis, not by the signal f . If we want to avoid

both issues, the natural choice is classical binning where д0,д1,д2
are disjoint box functions covering the entire domain D. Then the

fit is piecewise constant as shown in Figure A.1c.

Theorem A.1 tells us that fits resulting from binning approaches

are the only way to guarantee preservation of non-negativity. In

other words, ringing artifacts are all but specific to the Fourier basis.

Any basis that provides more sophisticated least-squares fits than

binning must also suffer from ringing.

The proof interprets the least-squares fit as orthogonal projector

with non-negative entries. Therefore, we prove two lemmata on

such projectors before we prove the theorem itself.
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LemmaA.2. LetQ = (qj ,k )
n−1
j ,k=0 ∈ Rn×n be an orthogonal projector,

i.e. Q = QT = Q2, with qj ,k > 0 for all j,k ∈ {0, . . . ,n − 1}. Then Q
has rank one.

Proof. For all k ∈ {0, . . . ,n − 1} denote the k-th canonical basis

vector by ek ∈ Rn . We consider a normalized column vector of Q :

rk :=
1∑n−1

j=0 qj ,k
Qek

Our goal is to prove that all rk are equal. To this end, let

wl ,k := ql ,k

∑n−1
j=0 qj ,l∑n−1
j=0 qj ,k

> 0

for all l ∈ {0, . . . ,n − 1}. Since Q is a projector, we obtain

rk = Qrk =
n−1∑
l=0

Qele
T
l rk =

n−1∑
l=0

ql ,k∑n−1
j=0 qj ,k

Qel =
n−1∑
l=0

wl ,krl .

Furthermore, the weights sum to one:

n−1∑
l=0

wl ,k =

∑n−1
j=0

∑n−1
l=0 qj ,lql ,k∑n−1

j=0 qj ,k
=

∑n−1
j=0 qj ,k∑n−1
j=0 qj ,k

= 1

In other words, rk is a convex combination of r0, . . . , rn−1 using

positive weights only.

Let v ∈ Rn and let j,k ∈ {0, . . . ,n − 1} such that

vTr j = min

l ∈{0, ...,n−1}
vTrl , vTrk = max

l ∈{0, ...,n−1}
vTrl .

Then we find

vTrk =
n−1∑
l=0

wl ,kv
Trl = w j ,kv

Tr j +
n−1∑

l=0,l,j

wl ,kv
Trl

≤ w j ,kv
Tr j +

n−1∑
l=0,l,j

wl ,kv
Trk = w j ,kv

Tr j + (1 −w j ,k )v
Trk .

The inequality implies vTr j ≥ vTrk and thus vTr j = v
Trk . Since

v ∈ Rn is arbitrary, we conclude that all rk must be equal. �

Lemma A.3. Let P = (pj ,k )
n−1
j ,k=0 ∈ Rn×n be an orthogonal projector

with pj ,k ≥ 0 for all j,k ∈ {0, . . . ,n − 1}. Then any two columns of P
are either linearly dependent or orthogonal.

Proof. We define a relation on index pairs j,k ∈ {0, . . . ,n − 1}:

j ∼ k :⇔ pj ,k > 0 ∨ j = k

This relation is reflexive by definition and symmetric because P
is symmetric. It is also transitive because for all pairwise different

j, t,k ∈ {0, . . . ,n − 1}:

j ∼ t ∧ t ∼ k ⇒ 0 < pj ,tpt ,k ≤

n−1∑
l=0

pj ,lpl ,k = pj ,k ⇒ j ∼ k

In consequence, ∼ is an equivalence relation and as such it partitions

{0, . . . ,n − 1} into equivalence classes. Without loss of generality,

rows and columns of P are ordered such that the equivalence classes

are {jl , . . . , jl+1−1}with a class index l ∈ {0, . . . ,m−1} and starting

indices 0 = j0 < . . . < jm = n. Then P is a block diagonal matrix

P =
©«
Q0

. . .

Qm−1

ª®®¬
with blocks Ql ∈ R(jl+1−jl )×(jl+1−jl ) because by definition of the

equivalence relation, entries pj ,k for non-equivalent index pairs

j,k ∈ {0, . . . ,n − 1} must be zero. We distinguish two cases for each

block.

Case 1, Ql has a vanishing diagonal entry: Let k ∈ {0, . . . ,n − 1}

be the column index of the vanishing diagonal entry pk ,k = 0. Then

we know

0 = pk ,k =
n−1∑
j=0

pk , jpj ,k =
n−1∑
j=0

p2j ,k ,

i.e. the whole column is zero. In particular, k is only equivalent to

itself and we conclude Ql = 0 ∈ R1×1.
Case 2, all diagonal entries of Ql are non-zero: Since all indices

within the equivalence class {jl , . . . , jl+1 − 1} are equivalent, all

entries of Ql are positive. Furthermore, Ql is still an orthogonal

projector because

P =
©«
QT
0

. . .

QT
m−1

ª®®®¬ = PT = P2 =
©«
Q2

0

. . .

Q2

m−1

ª®®¬ .
Applying Lemma A.2, we find that Ql has rank one.

Thus, two columns j,k ∈ {0, . . . ,n−1} of P are linearly dependent

if j ∼ k and orthogonal if they belong to two different classes. �

With these lemmata, we are prepared to prove the theorem.

Proof of Theorem A.1. Without loss of generality, the domain

is D = {0, . . . ,n − 1}. We identify functions with weighted vectors

through the vectorspace isomorphism

ψ : F→ Rn

f 7→ (
√
w(x)f (x))n−1x=0.

Through this identification, the weighted least-squares error in

Equation (A.1) agrees with the squared 2-norm of Rn . Then the

solution of the least-squares system in Equation (A.1) is given by

(y0, . . . ,ym−1)
T = (ATA)−1ATψ (f )

where A := (ψ (f0), . . . ,ψ (fm−1)) ∈ R
n×m

.

The matrix P := A(ATA)−1AT ∈ Rn×n is the orthogonal projector

mapping the vectorψ (f ) to its least-squares fitψ (
∑m−1
j=0 yj fj ). Let

k ∈ {0, . . . ,n − 1} and consider the function f ∈ F with

f (x) :=


1√
w (x )

if x = k ,

0 otherwise.

By construction,ψ (f ) = ek is the k-th canonical basis vector. Since

f ≥ 0, we know ψ−1(Pek ) ≥ 0. It follows that all entries of P are

non-negative and therefore Lemma A.3 is applicable. If we pick a

basis amongψ−1(Pe0), . . . ,ψ
−1(Pen−1), it spans the same space as
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f0, . . . , fm−1 and the basis functions are known to be pairwise or-

thogonal. Since they are also non-negative, they must have pairwise

disjoint support. �

B THE BOUNDED MESE
Our explanation of the boundedmaximum entropy spectral estimate

(MESE) in the paper does not include proofs. We provide these in

the following sections in the order in which they are mentioned in

the paper.

B.1 The Fourier Coefficients of the Herglotz Kernel
The Herglotz transform is central to our derivation. To work with

it, we first have to derive its Fourier series.

Proposition B.1. The Fourier coefficients of the Herglotz kernel for
all j ∈ Z and z ∈ C with |z | < 1 are

1

2π

∫ π

−π

exp(iφ) + z

exp(iφ) − z
exp(−ijφ) dφ =


2z−j if j < 0,
1 if j = 0,
0 if j > 0.

Proof. Let φ ∈ R and w := exp(iφ). Then the claimed Fourier

series for the Herglotz kernel is:

1 +

−1∑
j=−∞

2z−jw j = 1 +

∞∑
j=1

2

( z
w

) j
= −1 + 2

∞∑
j=0

( z
w

) j
= −1 + 2

1

1 − z
w
= −1 + 2

w

w − z

=
2w − (w − z)

w − z
=
w + z

w − z
=

exp(iφ) + z

exp(iφ) − z

�

B.2 Reducing Bounded to Unbounded Problems
We show that for a continuous 2π -periodic function д(φ) ∈ [0, 1]

lim

z→exp(iφ)
ℜH[д](z) = д(φ). (B.1)

Proof. For all z ∈ C with |z | < 1 and φ ∈ R, the real part of the
Herglotz kernel is a Poisson kernel:

ℜ
exp(iφ) + z

exp(iφ) − z
= ℜ

(exp(iφ) + z)(exp(−iφ) − z)

| exp(iφ) − z |2

=
ℜ

(
1 − exp(iφ)z + exp(−iφ)z − |z |2

)
|1 − z exp(−iφ)|2

=
1 − |z |2

|1 − z exp(−iφ)|2
= 2πPz (φ)

From Proposition B.1, it is evident that the Poisson kernel is normal-

ized, i.e.

∫ π
−π Pz (φ) dφ = 1. It has its global maximum at φ = arg z

and for |z | → 1, it localizes all of its mass in this maximum. Thus

lim

z→exp(iφ)
ℜH[д](z) = lim

z→exp(iφ)

∫ π

−π
Pz (ψ )д(ψ ) dψ = д(φ).

�

B.3 Exponential Moments
Next we prove the recurrence formula for exponential moments

using a technique of Roger Barnard [Gustafsson and Putinar, 2017,

p. 12].

Proof of Proposition 2. Let the Fourier coefficients c j ,γj ∈ C
of the signals д(φ) ∈ [0, 1] and d(φ) ≥ 0 be defined for all j ∈ Z. The
Herglotz transform is an inner product with the Herglotz kernel.

Using Proposition B.1, we can rewrite it as an inner product of the

Fourier transforms:

H[д](z) = c0 + 2
−1∑

j=−∞
c jz

−j = c0 + 2
∞∑
j=1

c jz
j

H[d](z) = γ0 + 2
∞∑
j=1

γjz
j

Thus, Equation (3) becomes

exp

©«πi ©«c0 − 1

2

+ 2

∞∑
j=1

c jz
jª®¬ª®¬ = iα + 2πγ0 + 4π

∞∑
j=1

γjz
j
. (B.2)

We define γ ′
0
:= i

4π α +
1

2
γ0 and γ

′
j := γj for all j ∈ N to simplify the

right-hand side to 4π
∑∞
j=0 γ

′
j z

j
.

Now we take the derivative with respect to z on both sides and

rearrange terms:

∂

∂z
exp

(
πi

(
c0 −

1

2

+ 2

∞∑
k=1

ckz
k

))
= 4π

∂

∂z

∞∑
j=0

γ ′j z
j

⇔
©«4π

∞∑
j=0

γ ′j z
jª®¬ 2πi

∞∑
k=1

kckz
k−1 = 4π

∞∑
j=0

jγ ′j z
j−1

⇔ 2πi
∞∑

j ,k=0

kγ ′j ckz
j+k−1 =

∞∑
j=0

jγ ′j z
j−1

⇔ 2πi
∞∑
l=0

©«
l−1∑
j=0

(l − j)γ ′j cl−j
ª®¬ zl−1 =

∞∑
j=0

jγ ′j z
j−1

Hence, for all l ∈ N

2πi
l−1∑
j=0

(l − j)γ ′j cl−j = lγl ,

which implies Equation (7).

To obtain γ ′
0
, we set z = 0 in Equation (B.2):

exp

(
πi

(
c0 −

1

2

))
= iα + 2πγ0 ⇒ γ ′

0
=

1

4π
exp

(
πi

(
c0 −

1

2

))
�

B.4 Trigonometric Moments of the MESE
In this Section, we introduce a novel linear recurrence to compute

all trigonometric moments of the MESE. We begin by proving a

Lemma that performs the first step of this recurrence:
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Lemma B.2. Let γ ∈ Cm+1 such that C(γ ) is positive definite. Let
q := C−1(γ )e0 and let

γm+1 := −
1

q0

m∑
j=1

γjqm+1−j .

Then

C−1

(
γ

γm+1

)
e0 =

(
q
0

)
∈ Cm+2.

Furthermore, if f is the MESE for γ ,

γm+1 =
1

2π

∫ π

−π
f (φ) exp(−i(m + 1)φ) dφ

is the first unconstrained moment of the MESE.

Proof. Let v := 1

2π (γm+1, . . . ,γ1) ∈ C
1×(m+1)

. Then

C

(
γ

γm+1

) (
q
0

)
=

(
C(γ ) v∗

v
γ0
2π

) (
q
0

)
=

(
C(γ )q
vq

)
=

(
e0

1

2π

(
q0γm+1 +

∑m
j=1 γjqm+1−j

))
= e0 ∈ Cm+2.

To prove that the extended Toeplitz matrix has full rank, we let

w := 1

2π (γ1, . . . ,γm+1)
T ∈ Cm+1 and denote the k-th canonical

basis vector by ek ∈ Cm+1. Then for all k ∈ {0, . . . ,m}

C

(
γ

γm+1

) (
0

C−1(γ )ek

)
=

( γ0
2π w∗

w C(γ )

) (
0

C−1(γ )ek

)
=

(
w∗C−1(γ )ek

ek

)
.

Since e0 is also in the column span, the matrix must be regular. It is

even positive definite because by Cramer’s rule

detC(γ )

detC

(
γ

γm+1

) = e∗
0
C−1

(
γ

γm+1

)
e0 = e∗

0

(
q
0

)
= q0 = e∗

0
C−1(γ )e0 > 0.

Now we consider the MESE for the moments γ0, . . . ,γm+1:

fm+1(φ) :=
1

2π

e∗
0
C−1

(
γ

γm+1

)
e0����e∗0C−1

(
γ

γm+1

) (
c(φ)

exp(i(m + 1)φ)

)����2
=

1

2π

q∗e0

|q∗c(φ)|2
= f (φ)

Thus, the MESE fm+1 for γ0, . . . ,γm+1 is identical to the MESE f
for γ0, . . . ,γm . Since the (m + 1)-th Fourier coefficient of fm+1 is
γm+1, the same is true for f . �

Nowwe formulate and prove the actual recurrence for the trigono-

metric moments of the MESE f .

Proposition B.3. Letγ ∈ Cm+1 and f as in Theorem 4. For all j ∈ N
with j > m let

γj :=
1

2π

∫ π

−π
f (φ) exp(−ijφ) dφ.

Then for all k ∈ N0

γm+1+k = −
1

q0

m∑
j=1

γj+kqm+1−j (B.3)

and for the sequence defined in this manner

C−1
©«

γ0
...

γm+1+k

ª®®¬ e0 =
(
q
0

)
∈ Cm+2+k .

Proof. We proceed by induction over k .
Induction start, k = 0: The claim is proven by Lemma B.2.

Induction hypothesis: The claim holds for k − 1.

Induction step, k − 1 → k : According to the induction hypothesis

C−1
©«
γ0
...

γm+k

ª®®¬ e0 =
(
q
0

)
.

Using this result with Lemma B.2, we have

γm+1+k = −
1

q0

m+k∑
j=k+1

γjqm+1+k−j = −
1

q0

m∑
j=1

γj+kqm+1−j .

Applying the other part of Lemma B.2 we find

C−1
©«

γ0
...

γm+1+k

ª®®¬ e0 =
©«
C−1

©«
γ0
...

γm+k

ª®®¬ e0
0

ª®®®®¬
=

(
q
0

)
.

�

B.5 The Herglotz Transform of the MESE
We are now prepared to derive our novel algorithm for computing

the Herglotz transform of the MESE efficiently. First we derive a

less efficient method. Then we prove its equivalence to Algorithm 1

and thus our efficient method to evaluate the bounded MESE.

Proposition B.4. Let γ and f as in Theorem 4. Let I be the identity
matrix and let

U := −
1

q0

(
0 −q0I
qm qm−1 · · ·q1

)
∈ Cm×m .

Let γj ∈ C denote the j-th Fourier coefficient of f for all j ∈ Z. Then
for all k ∈ N0

(γ
1+k , . . . ,γm+k )

T = U k (γ1, . . . ,γm )T. (B.4)

Furthermore, for all z ∈ C with |z | ≤ 1

H[f ](z) = γ0 + 2e
∗
0
(z−1I −U )−1(γ1, . . . ,γm )T.

Proof. For k = 1, Equation (B.4) is merely a reformulation of

Equation (B.3). For greater k , it follows by induction.

Since U is the transposed companion matrix of a polynomial

[Golub and Van Loan, 2012, p. 382], its eigenvalues are solutions for

w ∈ C of

1

q0

m∑
j=0

qm−jw
j = 0 ⇒ wm = 0 ∨

m∑
j=0

qjw
−j = 0.

The polynomial

∑m
j=0 qjw

j
only has roots with |w | > 1 [Peters et al.,

2015, Lemma 1] and therefore all eigenvalues of U have magnitude

less than one.
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Hence, we can apply the geometric series for matrices to zU .

Using Proposition B.1, we obtain:

H[f ](z) = γ0 +
−1∑

j=−∞
γj2z

−j = γ0 + 2z
∞∑
k=0

γk+1z
k

= γ0 + 2z
∞∑
k=0

e∗
0
U k (γ1, . . . ,γm )Tzk

= γ0 + 2ze
∗
0

(
∞∑
k=0

(zU )k

)
(γ1, . . . ,γm )T

= γ0 + 2ze
∗
0
(I − zU )−1(γ1, . . . ,γm )T

= γ0 + 2e
∗
0
(z−1I −U )−1(γ1, . . . ,γm )T

�

Proof of Theorem 5. For all l ∈ {0, . . . ,m}, the variable pl is a
polynomial evaluated at z−1 using the Horner scheme:

pl =
m−l∑
j=0

qjz
j+l−m ∈ C

Let

w :=
1

p0

m∑
k=1

pkγk ∈ C, v :=

(
wz−l −

l∑
k=1

γkz
k−l

)m−1

l=0

∈ Cm .

Using notions from Proposition B.4, we want to prove that v solves

(z−1I −U )v = (γ1, . . . ,γm )T. (B.5)

Indeed, for all l ∈ {0, . . . ,m − 2}:

e∗l (z
−1I −U )v = z−1vl −vl+1

=wz−l−1 −
l∑

k=1

γkz
k−l−1 −wz−l−1 +

l+1∑
k=1

γkz
k−l−1

=γl+1z
l+1−l−1 = γl+1

Furthermore:

e∗m−1(z
−1I −U )v = z−1vm−1 +

1

q0

m∑
j=1

vj−1qm+1−j

=wz−m −

m−1∑
k=1

γkz
k−m +

1

q0

m∑
j=1

(
wz1−j −

j−1∑
k=1

γkz
1+k−j

)
qm+1−j

=γm +
1

q0

m+1∑
j=1

(
wz1−j −

j−1∑
k=1

γkz
1+k−j

)
qm+1−j

=γm +
w

q0

m+1∑
j=1

qm+1−jz
1−j −

1

q0

m+1∑
j=1

j−1∑
k=1

qm+1−jz
1+k−jγk

=γm +
w

q0
p0 −

1

q0

m+1∑
j=1

j−1∑
k=1

qm+1−jz
1+k−jγk

=γm +
1

q0

m∑
k=1

m−k∑
j=0

qjz
j+k−mγk −

1

q0

m∑
j=0

m−j∑
k=1

qjz
j+k−mγk

=γm

Thus, Equation (B.5) is proven. Using Proposition B.4, we conclude:

H[f ](z) = γ0 + 2e
∗
0
(z−1I −U )−1(γ1, . . . ,γm )T

= γ0 + 2e
∗
0
v = γ0 + 2w = γ0 +

2

p0

m∑
k=1

pkγk

Therefore, Algorithm 1 is correct.

Equation (5) gives us a density with the required properties, which

equals h(φ):

1

π
arg

(
iα + lim

z→exp(iφ)
2πH[f ](z)

)
+
1

2

=
1

π
arg

(
4πiℑγ ′

0
+ lim

z→exp(iφ)
2πH[f ](z)

)
+
1

2

=
1

π
arg

(
2iℑγ ′

0
+H[f ](exp(iφ))

)
+
1

2

= h(φ)

Note that the correctness proof of Algorithm 1 covers the limit case

|z | = 1. As an optimization, Algorithm 1 may exploit z−1 = z.
To prove that the log sin entropy is maximized, we utilize Propo-

sition 6. Let λ0, . . . , λm ∈ C as in this Proposition. We observe that

log sin(πд) is a strictly concave function for all д ∈ (0, 1):

∂

∂д
log sin(πд) = π

cos(πд)

sin(πд)
= π cot(πд)

∂2

∂д2
log sin(πд) = −

π 2

sin
2(πд)

< 0

Thus, the log sin entropy is strictly concave as well and any critical

point constitutes a global maximum. Let u(φ) ∈ R be a 2π -periodic
perturbation that leaves the Fourier coefficients unchanged, i.e.∫ π

−π
u(φ)c(φ) dφ = 0 ∈ Cm+1.

Let t ≥ 0 such that h(φ) + tu(φ) ∈ (0, 1) for all φ ∈ R. We consider

the change of the log sin entropy as a function of t :

∂

∂t

����
t=0

∫ π

−π
log sin(π (h(φ) + tu(φ))) dφ

=

∫ π

−π

∂

∂t

����
t=0

log sin(π (h(φ) + tu(φ))) dφ

=

∫ π

−π
π cot(π (h(φ)))u(φ) dφ

=

∫ π

−π
π cot

(
arctan

(
ℜλ0 + 2ℜ

m∑
l=1

λl exp(−ilφ)

)
+
π

2

)
u(φ) dφ

=

∫ π

−π
−π

(
ℜλ0 + 2ℜ

m∑
l=1

λl exp(−ilφ)

)
u(φ) dφ = 0

Thus, h must be a critical point and consequently a global maximum.

�

B.6 Computation of Lagrange Multipliers
We now derive novel formulas for the computation and use of La-

grange multipliers from the algorithm discussed in the previous

section.
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Proof of Proposition 6. Let z := exp(iφ). From the proof of

Theorem 5, we know

H[f ](z) = γ0 +
2

p0

m∑
k=1

pkγk = γ0 + 2

∑m
k=1

∑m−k
j=0 qjγkz

j+k−m∑m
j=0 qjz

j−m

= γ0 +

∑m
k=1

∑m−k
j=0 qjγkz

j+k

πc∗(φ)q
.

Using Equation (B.1), we rewrite h(φ) as

πh(φ) −
π

2

= arctan

2ℑγ ′
0
+ ℑH[f ](exp(iφ))

ℜH[f ](exp(iφ))

= arctan

2iℑγ ′
0
+H[f ](exp(iφ)) − ℜH[f ](exp(iφ))

iℜH[f ](exp(iφ))

= arctan

(
2iℑγ ′

0
+H[f ](exp(iφ))

i f (φ)
+ i

)
.

The MESE may be written as

f (φ) =
1

2π

q0
c∗(φ)qq∗c(φ)

.

As we combine the previous three equations, c∗(φ)q cancels out:

πh(φ) −
π

2

= arctan
©« 2

iq0

©«2πγ ′0c∗(φ)q +
m∑
k=1

m−k∑
j=0

qjγkz
j+k ª®¬q∗c(φ) + iª®¬

= arctan
©« 2

iq0

©«
m∑
j=0

qjγ
′
0
z j +

m∑
k=1

m−k∑
j=0

qjγ
′
kz

j+k ª®¬q∗c(φ) + iª®¬
= arctan

©« 2

iq0

m∑
k=0

m−k∑
j=0

qjγ
′
kz

j+kq∗c(φ) + iª®¬
= arctan

©« 1

πiq0

m∑
k=0

m−k∑
j=0

m∑
n=0

γ ′kqnqjz
j+k−n + i

ª®¬
The exponents on z range from −m tom. Since the sum is real, we

are dealing with a real Fourier series and it suffices to consider the

coefficients for non-positive exponents on z. The sum of coefficients

for z−l with l ∈ {0, . . . ,m} is exactly

1

πiq0

m−l∑
k=0

m−k−l∑
j=0

γ ′kqj+k+lqj = λl .

Hence, we have proven

πh(φ) −
π

2

= arctan

(
ℜλ0 + 2ℜ

m∑
l=1

λlz
−l

)
.

�

B.7 Uncertainty Bounds
Kovalishina and Potapov [1982] have devised an inequality that

provides bounds on the Herglotz transform of a signal using solely

0
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Fig. B.1. Uncertainty bounds for all spectra of the X-Rite color checker using
m = 7, r = 0.8 and mirroring (Equation (12)). The bounds are particularly
tight for spectra that are close to boundary cases, i.e. that use values near
zero or one on long intervals.

knowledge of its trigonometric moments. In Section B.2, we have

seen that the Poisson kernel and the Herglotz kernel are related by

Pz (φ) =
1

2π
ℜ

exp(iφ) + z

exp(iφ) − z
. (B.6)

Hence, we can use their result to compute bounds on a bounded den-

sity smoothed through convolution with a Poisson kernel. Figure B.1

shows some results.

Before we prove the uncertainty bounds themselves, we introduce

a more general lemma on the Herglotz transform.

Lemma B.5. Let d(φ) ≥ 0 be a periodic density with trigonometric
moments

γ :=

∫ π

−π
d(φ)c(φ) dφ.

Assume that C(γ ) is invertible. Let z ∈ C \ {0} with |z | < 1 and

a(z) :=
1

2π
(z−1−j )mj=0, b(z) :=

1

2π

(
z−1−j

(
γ0 +

j∑
k=1

2γkz
k

))m
j=0

,

p(z) :=

2

1−|z |2 + b
∗(z)C−1(γ )a(z)

b∗(z)C−1(γ )b(z)
,

ρ(z) := |p(z)|2 −
a∗(z)C−1(γ )a(z)

b∗(z)C−1(γ )b(z)
.
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Then the Herglotz transformH[d](z) lies in the disk

|H[d](z) − p(z)|2 ≤ ρ(z).

This bound is sharp in the sense thatH[d](z) may be arbitrarily close
to each point on the bounding circle.

Proof. The result is a special case of the fundamental matrix

inequality [Kovalishina and Potapov, 1982, p. 19], which has been

formulated by Karlsson and Georgiou [2013, Equation (22)]. �

Proposition B.6. Let д(φ) ∈ [0, 1] be a bounded signal with trigono-
metric (0, 1)-moments

c :=

∫ π

−π
д(φ)c(φ) dφ ∈ Cm+1.

Let γ ∈ Cm+1 and γ ′
0
∈ C be as in Equations (6) and (7). Let z :=

r exp(iφ) for r ∈ (0, 1) and p(z), ρ(z) as in Lemma B.5. Then we obtain
the following sharp bounds for the smoothed density Pr ∗ д:����Pr ∗ д(φ) − 1

π
arg(2iℑγ ′

0
+ p(z)) −

1

2

���� ≤ 1

π
arcsin

√
ρ(z)

|p(z)|
(B.7)

Proof. Combining Equation (3) and Equation (B.6) yields

ℜH[д](z) = −
1

π
ℜi log

(
4πiℑγ ′

0
+ 2πH[d](z)

)
+
1

2

⇒ Pr ∗ д(φ) = −
1

π
arg

(
2iℑγ ′

0
+H[d](z)

)
+
1

2

By Lemma B.5, 2iℑγ ′
0
+ H[d](z) lies anywhere in the disk with

center 2iℑγ ′
0
+ p(z) and radius

√
ρ(z). Basic trigonometry reveals

that Equation (B.7) computes sharp bounds on the argument of

points in this disk. �

C COMPUTATION OF MOMENTS
In the paper we point out that trigonometric (0, 1)-moments must

be computed in a way that is guaranteed to compute the integral

of a signal bounded between zero and one. Considering that the

spectral domain is usually sampled with a fairly low sample count,

violating this rule may introduce significant errors. Therefore, we

propose to use linear interpolation and to compute the moments

exactly.

Suppose we are given phases φ0, . . . ,φn−1 ∈ [−π , π ] and corre-

sponding reflectance values д0, . . . ,дn−1 ∈ [0, 1]. The phases are

sorted and cover the entire range, i.e. φ0 = −π and φn−1 = 0 if

the signal is being mirrored and φn−1 = π otherwise. The linear

interpolant is a piecewise linear function. For all l ∈ {0, . . . ,n − 2},

we define the gradient and y-intercept

al :=
дl+1 − дl
φl+1 − φl

, bl := дl − alφl .

Then the interpolated signal for φ ∈ [φl ,φl+1] is

д(φ) := alφ + bl .

To compute trigonometric (0, 1)-moments, we consider the fol-

lowing indefinite integrals for all j ∈ {1, . . . ,m}:∫
exp(−ijφ) dφ =

i

j
exp(−ijφ) +C∫

φ exp(−ijφ) dφ =
1 + ijφ

j2
exp(−ijφ) +C

Substituting in the expression for д(φ), we obtain:

c j :=
1

2π

∫ π

−π
д(φ) exp(−ijφ) dφ

=
1

2π

n−2∑
l=0

∫ φl+1

φl
(alφ + bl ) exp(−ijφ) dφ

=
1

2π

n−2∑
l=0

[(
al

1 + ijφ

j2
+ bl

i

j

)
exp(−ijφ)

]φl+1
φl

∈ C

For j = 0, the result is

c0 :=
1

2π

n−2∑
l=0

∫ φl+1

φl
alφ + bl dφ =

1

2π

n−2∑
l=0

[al
2

φ2 + blφ
]φl+1
φl

∈ C.

If the signal is being mirrored, the j-th real trigonometric (0, 1)-

moment is given by 2ℜc j .
When moments are computed for a whole texture, this formula

should only be evaluated once per pair j ∈ {0, . . . ,m} and l ∈

{0, . . . ,n − 1} with a spectrum where дl = 1 and all other values

are zero. The resulting C(m+1)×n matrix maps vectors of samples

(д0, . . . ,дn−1)
T
to vectors of moments c ∈ Cm+1.

For emission spectra, the same formulas may be used but a com-

mon discrete Fourier transform is an acceptable alternative since

the spectral densities do not obey an upper bound.
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