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Fig. 1. We store six moments per texel in 8 bytes to represent the spectral albedo textures in this scene. Our novel reconstruction method (green stripes) uses
this data to approximate the actual reflectance spectrum. Thus, color reproduction is accurate, even with challenging illuminants such as the fluorescent lamp
used here. The interleaving in the upper part, the magnified insets and the insets with distances in CIELAB show how strongly state of the art tristimulus
techniques [Jakob and Hanika, 2019] (orange stripes) deviate from ground truth (black stripes).

We present a compact and efficient representation of spectra for accurate

rendering using more than three dimensions. While tristimulus color spaces

are sufficient for color display, a spectral renderer has to simulate light trans-

port per wavelength. Consequently, emission spectra and surface albedos

need to be known at each wavelength. It is practical to store dense samples

for emission spectra but for albedo textures, the memory requirements of

this approach are unreasonable. Prior works that approximate dense spectra

from tristimulus data introduce strong errors under illuminants with sharp

peaks and in indirect illumination. We represent spectra by an arbitrary

number of Fourier coefficients. However, we do not use a common truncated

Fourier series because its ringing could lead to albedos below zero or above

one. Instead, we present a novel approach for reconstruction of bounded

densities based on the theory of moments. The core of our technique is

our bounded maximum entropy spectral estimate. It uses an efficient closed

form to compute a smooth signal between zero and one that matches the

given Fourier coefficients exactly. Still, a ground truth that localizes all of its

mass around a few wavelengths can be reconstructed adequately. Therefore,

our representation covers the full gamut of valid reflectances. The resulting

textures are compact because each coefficient can be stored in 10 bits. For

compatibility with existing tristimulus assets, we implement a mapping from

tristimulus color spaces to three Fourier coefficients. Using three coefficients,
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our technique gives state of the art results without some of the drawbacks of

related work. With four to eight coefficients, our representation is superior

to all existing representations. Our focus is on offline rendering but we also

demonstrate that the technique is fast enough for real-time rendering.
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1 INTRODUCTION
Color representation is one of the most fundamental problems in

computer graphics. The ubiquitous tristimulus color spaces are

adequate for color display, yet insufficient for accurate rendering. A

physically based renderer should simulate light transport at each

wavelength and thus dense spectra for light emission and surface

reflectances need to be known. The accuracy of techniques that

infer dense spectra from tristimulus data is limited as the problem

is severely underconstrained [Jakob and Hanika, 2019, Meng et al.,

2015, Otsu et al., 2018, Smits, 1999]. Especially for scenes with spiky
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emission spectra, e.g. due to fluorescent lamps, defining reflectance

with tristimulus values gives uncontrollable errors (Figure 1).

To overcome this problem, more information about the spectra

must be stored. For emission spectra, dense sampling is viable be-

cause they usually do not take a major portion of the scene memory.

On the other hand, textures storing reflectance spectra for poten-

tially multi-layered surface albedos take huge amounts of memory,

even for tristimulus colors. Access to densely sampled reflectance

spectra during rendering is hardly practical. The spectra may be

projected into a lower-dimensional linear function space, using e.g.

a truncated Fourier series. However, such approaches are prone

to ringing, which may lead to albedos outside of the valid range

between zero and one. Non-linear representations of spectra in turn

are incompatible with linear prefiltering of textures.

We present a novel approach that offers good approximations to

reflectance spectra using three to eight scalars per spectrum. The

spectra are represented by common Fourier coefficients. Thus, the

approach is compatible with linear filtering. However, we do not use

a truncated Fourier series for the reconstruction. Instead, we use a

non-linear reconstruction originating from the theory of moments.

The so-calledmaximum entropy spectral estimate (MESE) provides a

good way to reconstruct positive densities from Fourier coefficients

[Burg, 1975, Peters et al., 2015]. It yields useful reconstructions for

emission spectra but violates the upper bound of one for reflectance

spectra. Therefore, we employ a duality between problems with

and without an upper bound [Markoff, 1896] and derive a novel

algorithm to compute a bounded MESE for use with reflectance

spectra.

TheMESE and the boundedMESE always realize the given Fourier

coefficients exactly. At the same time, they always obey their re-

spective bounds. The reconstructions are smooth functions but

nonetheless they can localize mass strongly in particular points or

intervals if the spectra call for it. A constant spectrum is represented

just as well as a spectrum made up of several nearly monochromatic

components. Hence, the color space covers the full valid gamut. Both

reconstructions are computed by efficient closed-form solutions. We

also compute error bounds in closed form.

Unlike the Fourier basis, spectra are usually aperiodic. We resolve

this issue with an approach similar to the discrete cosine transform.

To ensure that information captured by tristimulus color spaces is

also captured well by our approach, we apply an optimized warp to

spectra before we compute Fourier coefficients. Our representation

is compact. Storing each Fourier coefficient in 10 bits is sufficient

such that six coefficients only take up eight bytes. Assets that use

tristimulus color spaces are converted to three real Fourier coeffi-

cients at loading time by means of a lookup table.

Using four to eight coefficients per texel, the accuracy of our ap-

proach is superior to all prior work. With six coefficients, even the

most unusual illuminants only lead to minor errors in rendered im-

ages (Figure 1). The method to convert assets from tristimulus color

spaces to three Fourier coefficients yields state of the art results but

does not require lookup tables during rendering and still supports

linear filtering. Although we focus on offline rendering, our tech-

nique is fast enough for use in real-time renderers with stochastic

sampling of wavelengths. We provide optimized implementations

in C, C++, HLSL and Python.

2 RELATED WORK
Any perceived color arises from a spectrum s mapping a wavelength

λ ∈ R to a density s(λ) ≥ 0. The CIE has specified a standard

observer by defining color matching functions x(λ), y(λ), z(λ). The
XYZ coefficients

X :=

∫ ∞

0

s(λ)x(λ) dλ, Y :=

∫ ∞

0

s(λ)y(λ) dλ, Z :=

∫ ∞

0

s(λ)z(λ) dλ

fully describe how a stimulus s(λ) is perceived by the standard

observer. For all other purposes, the XYZ coefficients provide in-

complete information about the spectrum s .
A variety of RGB color spaces is defined in terms of linear trans-

forms of the XYZ color space. Many renderers use the simplification

that each of these channels corresponds to exactly one wavelength

and only simulate light transport at these three wavelengths. While

this model is self-consistent, simple and highly efficient, it fails to

capture the complex reality [Fascione et al., 2017].

Spectral densities arise for any non-negative, wavelength-depen-

dent quantity but emission spectra and reflectance spectra are par-

ticularly important. Emission spectra describe how much light is

emitted at each wavelength. They can take arbitrarily large values

and may have sharp peaks. Reflectance spectra are wavelength-

dependent albedos and as such they are bounded between zero and

one. Furthermore, they tend to be fairly smooth [Wandell, 1987].

It is common practice to factor the albedo out of the BRDF and to

texture it. Thus, a compact representation is needed.

Most albedo textures use an RGB color space. A spectral renderer

then needs to recover a dense reflectance spectrum from these

tristimulus values. The simplest approach is to construct a linear

combination of three predefined functions [Glassner, 1989]. Such

linear approaches are compatible with any linear color space [Peercy,

1993, Wandell, 1987]. However, a spectrum that obeys the bounds,

may violate them after the orthogonal projection into the span

of the basis functions (see supplementary document). Smits [1999]

addresses this problemwith a piecewise linear approach using seven

base spectra to cover sRGB.

Meng et al. [2015] strive for smoother spectra by precomputing

them for a dense sampling of the chromaticities

x :=
X

X + Y + Z
and y :=

Y

X + Y + Z
.

They observe that some XYZ triples cannot be realized by reflectance

spectra and propose methods to project them back into the solid of

valid reflectances. MacAdam [1935a, 1935b] observes that binary

spectra with two discontinuities realize maximal brightness for

a given chromaticity and constructs corresponding lookup tables.

Otsu et al. [2018] take a piecewise linear approach subdividing the

xy chromaticity space into eight clusters. Per cluster they use a

principal component analysis of spectra relevant for the scene and

map XYZ triples into this basis. Jakob and Hanika [2019] define a

three-dimensional non-linear space of functions by concatenating a

sigmoid with quadratic polynomials. A look-up table converts XYZ

triples to polynomial coefficients at loading time.

All of these techniques work with incomplete information. Errors

are inevitable and are particularly noticeable under illuminants with

sharp peaks and in indirect illumination.
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Work on higher-dimensional representations of reflectance spec-

tra is less extensive. Peercy [1993] proposes to fix an orthonormal

basis, possibly by using a principal component analysis, and to per-

form all spectral computations in terms of linear combinations of

this basis. Wandell [1987] proposes a first-order Fourier basis. The

issue that projections of valid spectra into the basis may violate

the physical bounds is not addressed. In the supplementary docu-

ment, we prove that the only way to address this issue with linear

least squares is to use basis functions with pairwise disjoint support.

Indeed, it is a common practice to resort to disjoint box functions

covering the range of visible wavelengths although this approach

suffers from high memory requirements. For example, Kravchenko

et al. [2017] found that eleven wavelength samples are needed for

reflectance spectra under certain well-behaved illuminants.

Measured data may be turned into dense spectra using models

learned from reflectance databases. Heikkinen et al. [2008] sur-

vey methods to turn tristimulus measurements under one or more

known illuminants into spectra and propose a way to enforce phys-

ical bounds. Park et al. [2007] propose active imaging with a mul-

tiplexed LED array to capture input for such techniques at video

frame rates. Their reconstruction relies on regularized quadratic

programming. Aeschbacher et al. [2017] learn a dictionary of lin-

ear maps from RGB to dense spectra similar to Otsu et al. [2018]

but with far more clusters. In general, these approaches emphasize

quality over efficiency and are more suitable for content generation

than rendering.

Despite the open problems, spectral rendering received more

attentionwith the advent of elaboratematerial models and rendering

techniques. An accurate capture and modeling of light material

interactions is, for example, required for realistic skin rendering

[Chen et al., 2015], material aging [Kimmel et al., 2013], wave optics

effects from surface microstructures [Yan et al., 2018], thin films

[Belcour and Barla, 2017] or diffraction gratings and holographic

surfaces [Toisoul et al., 2018, Toisoul and Ghosh, 2017a]. Bergner

et al. [2009] design spectra to produce given color impressions for

different combinations of illuminants and surfaces.

Any renderer can be extended to use continuous spectra rather

than tristimulus values but the increased complexity motivated re-

search into efficient integrators. Hero wavelength spectral sampling

[Radziszewski et al., 2009, Wilkie et al., 2014] reduces color noise by

sampling paths based on a chosen herowavelength, plus additionally

evaluating the path for a fixed number of equidistant wavelengths.

Ray differentials [Elek et al., 2014] and gradient sampling [Petitjean

et al., 2018] have been extended to the spectral domain to improve

path sampling. Light transport in spectral participating media has a

large potential for improvements over naive rendering; recent exam-

ples include distance tracking in fluorescent materials [Mojzík et al.,

2018] and spectral tracking [Kutz et al., 2017], a technique to alter

free-path distributions such that the fluctuation of path throughputs

and estimation variance is reduced. In real-time rendering, spectral

rendering is important for faithful reproduction of surface shading

under complex illuminants or for rendering complex materials such

as diffraction gratings [Toisoul and Ghosh, 2017b].

Meanwhile, a branch of graphics research has used the theory of

moments to efficiently reconstruct densities from power moments

or Fourier coefficients. This approach has led to new solutions for

shadow map filtering [Peters and Klein, 2015, Peters et al., 2017],

order-independent transparency [Münstermann et al., 2018, Sharpe,

2018] and transient imaging [Peters et al., 2015]. The work on tran-

sient imaging [Peters et al., 2015] uses the MESE [Burg, 1975], which

reconstructs a smooth density from given Fourier coefficients. The

density is always positive and if the ground truth signal is suffi-

ciently sparse, the reconstructed density has sharp peaks at the

same locations.

3 RECONSTRUCTION OF DENSITIES
In this section, we review the MESE [Burg, 1975, Peters et al., 2015]

and simultaneously develop our novel bounded MESE. The MESE

is a suitable representation for general spectral densities whereas

the bounded MESE is designed for reflectance spectra. We begin

with fundamental definitions (Section 3.1), establish a duality be-

tween bounded and unbounded problems (Sections 3.2 and 3.3) and

then introduce and analyze the two reconstructions (Sections 3.4 to

3.8). Figure 2 gives an overview of how these concepts relate. Our

application to spectral rendering is discussed in Section 4.

3.1 Unbounded and Bounded Moment Problems
Consider 2π -periodic signals d(φ),д(φ) where d(φ) ≥ 0 is a density

and д(φ) ∈ [0, 1] is a bounded density for all phases φ ∈ R. Later,
these signals will represent emission spectra and reflectance spec-

tra, respectively. Methods to turn aperiodic, wavelength-dependent

signals into periodic, phase-dependent signals are discussed in Sec-

tion 4.1.

We represent these signals bym + 1 ∈ N complex Fourier coeffi-

cients. The Fourier basis written as vectorial function is

c(φ) :=
1

2π
(exp(−ijφ))mj=0 ∈ Cm+1.

Then the Fourier coefficients of d and д are

γ :=

∫ π

−π
d(φ)c(φ) dφ ∈ Cm+1, (1)

c :=

∫ π

−π
д(φ)c(φ) dφ ∈ Cm+1. (2)

Since d(φ) ≥ 0 is a density, γ may also be viewed as the vector of

trigonometric moments
1
representing the finite measure d(φ) dφ.

Similarly, c is the vector of trigonometric (0, 1)-moments represent-

ing д [Kreı̆n and Nudel’man, 1977, p. 246].

The theory of moments is concerned with the characterization of

densities that realize given moments. In particular, it offers ways to

reconstruct such densities. While a truncated Fourier series would

exhibit ringing and may take negative values or values exceeding

one, the non-linear reconstructions offered by the theory of mo-

ments are guaranteed to obey the original bounds. Speaking in

terms of Fourier series, these reconstructions do not simply set all

unknown Fourier coefficients to zero. They have energy across the

entire frequency range.

1
Burg [1975] and Peters et al. [2015] define trigonometric moments as 2πγ but we

prefer to align the definition with the definition of Fourier coefficients.
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Unbounded moment
problems (e.g. for

spectra)emission

Bounded moment
problems (e.g. for

spectra)reflectance
Section 3.1 Section 3.2

Density d(φ)

Bounded density д(φ)

Eq. (1)

Eq. (2)
Eqs. (3, 5)

Section 3.3

Bounded moments c

Exponential moments γ
Trigonometric moments γ

Solvability via C(γ )

Eqs. (6, 7)

Section 3.4

MESE f (φ)Eq. (8)

Section 3.5

Bounded MESE h(φ)

Algorithm 1Eqs. (5, 9)

Section 3.6

Eqs. (10, 11)
Bounded MESE

via Lagrange multipliers
h(φ)

Fig. 2. An overview of the derivation of the bounded MESE. Reconstruction of emission spectra uses the MESE directly (yellow arrows) whereas reflectance
spectra are reconstructed through the duality between bounded and unbounded problems giving rise to the bounded MESE (red arrows).

3.2 Reducing Bounded to Unbounded Problems
Solutions to trigonometric moment problems for unbounded den-

sities have been used in graphics and other fields before [Burg,

1975, Peters et al., 2015]. There are closed-form solutions to obtain

a smooth density representing given trigonometric moments γ . No
such method exists for the reconstruction of smooth densities that

are bounded above by one. However, Markov [Markoff, 1896] devel-

oped a duality between bounded and unbounded moment problems

and Kreı̆n and Nudel’man [1977] continued his work. Their duality

allows us to transfer results on unbounded moment problems to the

bounded case.

It is formulated in terms of the Herglotz transform. A density

d(φ) ≥ 0 is transformed into a signal on the open unit disk by

H[d](z) :=
1

2π

∫ π

−π

exp(iφ) + z

exp(iφ) − z
d(φ) dφ ∈ C,

where z ∈ Cwith |z | < 1. Then for any bounded densityд(φ) ∈ [0, 1],

there exists a unique density
2 d(φ) ≥ 0 and a constant α ∈ R such

that

exp

(
πi

2

H[2д − 1](z)

)
= iα + 2πH[d](z) (3)

for all z ∈ C with |z | < 1 [Kreı̆n and Nudel’man, 1977, p. 245 f.].

Thus, a detour to functions in the unit disk gives us a one-to-one

correspondence between bounded and unbounded densities.

We can compute д from moments c by first computing the corre-

sponding d (Sections 3.3 and 3.4) and then solving Equation (3) for

д. In the supplementary document we prove that for all φ ∈ R

lim

z→exp(iφ)
ℜH[д](z) = д(φ), (4)

i.e. the original density can be recovered from the real part of the

Herglotz transform. Hence, we take the limit on both sides in Equa-

tion (3) to recover д fromH[d](z):

H[2д − 1](z) = −
2

π
i log (iα + 2πH[d](z))

Eq. (4)

⇒ (2д − 1)(φ) =
2

π
lim

z→exp(iφ)
ℜ(−i log (iα + 2πH[d](z)))

⇒ д(φ) =
1

π
arg

(
iα + lim

z→exp(iφ)
2πH[d](z)

)
+
1

2

(5)

This formulation reveals how our moment-based approach is able

to guarantee д(φ) ∈ [0, 1]. It computes the argument of a complex

2
Strictly speaking, d (φ) dφ should be replaced by a finite measure that may include

Dirac-δ components. See Section 3.7.

number with non-negative real part (by Equation (4)). This angle in

[− π
2
, π
2
] is then mapped to the interval [0, 1] linearly.

3.3 Solvability
Before we introduce methods to reconstruct densities from their

trigonometric moments, we want to establish when such solutions

exist. In doing so, we encounter important building blocks for our re-

construction algorithms. One of them is the so-called Toeplitz matrix.

Let trigonometric moments for negative indices j ∈ {−m, . . . ,−1}
be given by the complex conjugate γj := γ−j . We denote the Toeplitz

matrix by

C(γ ) :=

(
γj−k

2π

)m
j ,k=0

=
1

2π

©­­­­­­«

γ0 γ1 · · · γm

γ1 γ0
. . .

...
...
. . .

. . . γ1
γm · · · γ1 γ0

ª®®®®®®¬
∈ C(m+1)×(m+1).

Each of the diagonals is filledwith one of the trigonometricmoments.

The Toeplitz matrix makes it easy to decide solvability:

Proposition 1. There exists a density d(φ) > 0 with moments∫ π

−π
d(φ)c(φ) dφ = γ

if and only if C(γ ) is positive definite. There exists a finite measure
utilizing Dirac-δ distributions that represents γ if and only if C(γ ) is
positive semi-definite.

Proof. The proofs for the positive definite case [Peters et al.,

2015, Theorem 1] and the positive semi-definite case [Kreı̆n and

Nudel’man, 1977, p. 65, p. 78] are in the literature. �

This result is powerful but it does not tell us when the vector

of trigonometric (0, 1)-moments c may be represented by a density

д(φ) ∈ [0, 1]. For example, c0 > 1 certainly means that such a repre-

sentation cannot exist. In general, we should not use any method

for unbounded problems with the trigonometric (0, 1)-moments c
directly. We have to use the duality from the previous section to

convert them to trigonometric moments γ :

Proposition 2. Suppose that д(φ) ∈ [0, 1] and d(φ) ≥ 0 are related
by Equation (3) and c and γ are the respective trigonometric moments.
Then

γ0 = 2ℜγ ′
0
, α = 4πℑγ ′

0
with γ ′

0
:=

1

4π
exp

(
πi

(
c0 −

1

2

))
(6)
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and for all l ∈ {1, . . . ,m}

γl =
2πi

l

©­«lγ ′0cl +
l−1∑
j=1

(l − j)γjcl−j
ª®¬ . (7)

Proof. See the supplementary document. The technique em-

ployed here is attributed to Roger Barnard [Gustafsson and Putinar,

2017, p. 12]. �

Equations (6) and (7) define a linear recurrence that allows us

to compute γ from c in time O(m2). Owing to the exponential in

Equation (3), the moments γ computed in this manner are referred

to as exponential moments [Gustafsson and Putinar, 2017, p. 11].

Among other things, they let us decide whether it is possible at

all to reconstruct a density д(φ) ∈ [0, 1] from the trigonometric

(0, 1)-moments c . We simply analyze the Toeplitz matrix for the

exponential moments γ [Kreı̆n and Nudel’man, 1977, p. 246]:

Proposition 3. Given c ∈ Cm+1 with c0 ∈ [0, 1], let γ ∈ Cm+1 as
in Equations (6) and (7). There exists a function д(φ) ∈ [0, 1] with∫ π

−π
д(φ)c(φ) dφ = c

if and only if the Toeplitz matrix C(γ ) is positive semi-definite.

Thus, the question of solvability is settled. We just verify that the

Toeplitz matrix C(γ ) is positive definite. Along the way we have

learned that Equations (6) and (7) map trigonometric (0, 1)-moments

c defining a bounded moment problem to exponential moments γ
defining a dual unbounded moment problem.

3.4 Maximum Entropy Spectral Estimate
We now review the MESE. It was introduced by Burg [1975] and

has been used in graphics before [Peters et al., 2015]. The MESE is a

suitable tool for the reconstruction of emission spectra. Though, we

are primarily interested in its dual, the bounded MESE, which we

develop in the next section. We have already made all the necessary

preparations to define the MESE f (φ):

Theorem 4. Let trigonometric moments γ ∈ Cm+1 with positive
definite C(γ ) be given. Let e0 := (1, 0, . . . , 0)T ∈ Cm+1. Then

f (φ) :=
1

2π

e∗
0
C−1(γ )e0

|e∗
0
C−1(γ )c(φ)|2

(8)

is a positive density satisfying∫ π

−π
f (φ)c(φ) dφ = γ .

Among all such densities, it is the global maximum of the Burg entropy∫ π

−π
log f (φ) dφ.

Proof. See [Burg, 1975, p. 8 ff.] or [Peters et al., 2015, Theorem 1].

�

The simplicity of this result is remarkable. Just like a truncated

Fourier series, the MESE f matches all of the given Fourier coef-

ficients γ exactly. However, it is guaranteed to be positive and by

Proposition 3, it accomplishes this goal whenever it is possible at

- 0
Phase 

0

1

2

- 0
Phase 

0

1

2

- 0
Phase 

0

10

Fig. 3. Examples of the MESE for m = 7. The trigonometric moments
γ1, . . . , γm ∈ C are the same for all three plots but γ0 is set to 1.06, 0.79
and 0.75 to approach a sparse reconstruction.

0 2 4 6
Density d

4

2

0

2

(a) Burg entropy logd
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Bounded density g

4

2

0
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x

0.0

0.5

1.0
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π arctan x + 1

2

Fig. 4. The entropies, which are optimized by the MESE and bounded MESE,
and the scaled arctangent that is used with the Lagrange multipliers.

all. Figure 3 demonstrates how it reconstructs smooth densities as

well as densities that localize mass in just a few points. The Burg

entropy (Figure 4a) punishes small densities heavily and rewards

large densities moderately. Intuitively, the optimal solution in terms

of the Burg entropy is relatively smooth and uses moderately large

densities as much as possible.

The most costly part of the evaluation of the MESE is the solution

of a system of linear equations for C−1(γ )e0. In general, this step

would take time O(m3) but thanks to the special structure of the

Toeplitz matrix, Levinson’s algorithm solves the problem in time

O(m2) [Peters et al., 2015].

3.5 Bounded Maximum Entropy Spectral Estimate
We are now ready to describe the core of our reconstruction for

reflectance spectra: The bounded MESE. Our strategy is to consider

the MESE f for the exponential moments γ . Then we apply the

duality in Equation (5) to transform it into the boundedMESE. As we

combine these concepts, there is a challenging problem. Equation (5)

requires us to compute the Herglotz transform of the MESE

H[f ](z) =
1

2π

∫ π

−π

exp(iφ) + z

exp(iφ) − z
f (φ) dφ.

We solve this problem in the Fourier domain. The infinite se-

quence of Fourier coefficients for the MESE f obeys a linear recur-

rence. The Fourier coefficients of the other factor are given by a

simple closed form. Then the Herglotz transform equals the inner

product of the two Fourier transforms. We solve this infinite series

using a generalization of the geometric series to matrices. For details,

please refer to the supplementary document. The whole procedure

is implemented by Algorithm 1.

Assembling all of the pieces, we obtain the bounded MESE h(φ):

Theorem 5. Algorithm 1 is correct and takes time O(m).
Given trigonometric (0, 1)-moments c ∈ Cm+1 with c0 ∈ [0, 1], let

γ ∈ Cm+1 and γ ′
0
be exponential moments as in Equations (6) and (7).
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Algorithm 1 Herglotz transform of the MESE.

Input: Trigonometric moments γ ∈ Cm+1 such thatC(γ ) is positive
definite, q := C−1(γ )e0 and z ∈ C with |z | ≤ 1.

Output:H[f ](z) ∈ C for f as in Equation (8).

pm := q0
For l =m − 1, . . . , 0:

pl := qm−l + pl+1z
−1

Return γ0 +
2

p0
∑m
k=1 pkγk

Suppose that C(γ ) is positive definite and f is the MESE. Then

h(φ) :=
1

π
arg(2iℑγ ′

0
+H[f ](exp(iφ))) +

1

2

(9)

is a smooth density in [0, 1] satisfying∫ π

−π
h(φ)c(φ) dφ = c .

Among all such densities, it is the global maximum of the log sin

entropy ∫ π

−π
log sin(πh(φ)) dφ.

Proof. Equation (9) arises from Equation (5) through substitution

of α and by exploiting that Algorithm 1 accepts inputs with |z | = 1.

The entire proof is given in the supplementary document. �

Each property of the bounded MESE is dual to a property of the

MESE. It matches all given Fourier coefficients with a smooth den-

sity while obeying the bounds and it accomplishes this whenever it

is possible at all. As shown in Figure 4b, the log sin entropy punishes

densities near zero or one heavily while a density of 0.5 is optimal.

From a physical point of view, this is a desirable behavior. Materials

that absorb or reflect all of the light at some wavelength are rare.

It also benefits the convergence of renderers because spectra with-

out extreme values have lower variance. Nonetheless, the bounded

MESE is able to get arbitrarily close to zero or one if the situation

demands it (Figure 5).

Summary of the Algorithm. Initially, we use the recurrence in

Equations (6) and (7) to transform the trigonometric (0, 1)-moments c
into exponential moments γ (time O(m2)). As for the MESE, we use

Levinson’s algorithm to compute q = C−1(γ )e0 in time O(m2) [Pe-

ters et al., 2015]. Finally, Algorithm 1 and Equation (9) evaluate the

bounded MESE at any phase φ ∈ R in time O(m). The overall cost

of evaluating the bounded MESE is roughly twice as high as for the

MESE.

3.6 Evaluation at Many Phases
When we evaluate the bounded MESE at multiple phases φ ∈ R, we
only need to compute the exponential moments γ and q = C−1(γ )e0
once. Then the time per phase φ is O(m) but with a moderately

large constant. For evaluation at many wavelengths, the following

reformulation provides a more efficient solution:

Proposition 6. Suppose we are in the setting of Theorem 5. Let
q := C−1(γ )e0 and for all j ∈ {1, . . . ,m} let γ ′j := γj . We define

Lagrange multipliers for all l ∈ {0, . . . ,m}:

λl :=
1

πiq0

m−l∑
k=0

γ ′k

m−k−l∑
j=0

qj+k+lqj ∈ C. (10)

Then the bounded MESE as defined in Equation (9) is given by

h(φ) =
1

π
arctan

(
ℜλ0 + 2ℜ

m∑
l=1

λl exp(−ilφ)

)
+
1

2

. (11)

Proof. See the supplementary document. �

All sums involving q in Equation (10) are entries of the autocor-

relation of the sequence q0, . . . ,qm , which is trivially computed in

time O(m2). Computation of the Lagrange multipliers λ0, . . . , λm
takes time O(m2) in total. Once they are available, evaluation of

the bounded MESE is very efficient. We only have to evaluate the

Fourier series in Equation (11) and apply the arctangent. Except for

the arctangent, the cost per phase φ is the same as for a common

truncated Fourier series. However, our solution never violates the

bounds between zero and one through ringing.

This reformulation also offers another way to understand the

behavior of the bounded MESE h. It is a real-valued Fourier series

whose values are subsequently forced into the allowable range by

the arctangent (Figure 4c). If the Fourier series takes moderate val-

ues, h will be smooth and stay away from the bounds. If it has

large magnitudes, h may transition from zero to one almost instan-

taneously. This class of functions resembles those used by Jakob

and Hanika [2019] and Heikkinen et al. [2008] but ours has arbi-

trary dimension and the Lagrange multipliers λ0, . . . , λm ∈ C are

computed efficiently from a linear representation of the spectrum.

Summary of the Algorithm. As in Section 3.5, we first compute

exponential moments γ using Equations (6) and (7) and then use

Levinson’s algorithm to compute q = C−1(γ )e0. Next, we compute

entries of the autocorrelation

∑m−k
j=0 qj+kqj for all k ∈ {0, . . . ,m}.

The results let us compute Lagrange multipliers λ0, . . . , λm ∈ C
with Equation (10). Up until this point, every step took time O(m2).

With the Lagrange multipliers, Equation (11) lets us evaluate the

bounded MESE h(φ) for any φ ∈ R in time O(m).

The supplementary code provides implementations for all vari-

ants of the bounded MESE (algorithms in Sections 3.5 and 3.6) in C,

C++, HLSL and Python.

3.7 Boundary Cases
The MESE is known to be suitable for smooth densities as well as

sparse densities [Peters and Klein, 2015]. Figure 3 gives an example.

The reconstruction to the left is smooth. As we remove a uniform

component from the signal by reducing γ0, it develops more and

more pronounced peaks. In the limit, the peaks approachm Dirac-δ
distributions. This limit case allows a perfect reconstruction be-

cause no other distribution realizes the trigonometric moments γ .
It corresponds to a Toeplitz matrix that is positive semi-definite but

singular (cf. Proposition 1) [Peters et al., 2015, p. 6]. The ability to

reconstruct smooth and sparse densities is valuable for emission

spectra because they may be entirely smooth or may have sharp

peaks (Figure 9).
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0

1
Brightness 100% 150% 188% 200%

- 0
Phase 

0

1
Saturation 100%

- 0
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115%

- 0
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130%

Fig. 5. Examples of the bounded MESE form = 3. In the top row, we use the
moments tc , i.e. we increase brightness. In the bottom row, the moments
are (1 − t )e0 + tc , i.e. we increase saturation. In the limit, we approach the
brightest and most saturated spectra that are theoretically possible.

For the bounded MESE, we get analogue properties which have

a useful interpretation in terms of color representation. MacAdam

[1935a, 1935b] sought reflectance spectra of maximal brightness for

a given chromaticity x,y and learned that such spectra are binary

with only two discontinuities. If we think of the wavelength range as

periodic, these MacAdam spectra take a value of one on an interval

and zero elsewhere. At any fixed brightness, they trace out the

largest gamut that can be covered by reflectance spectra.

The same construction is possible with our trigonometric (0, 1)-

moments c (Figure 5).We consider
c
c0 ∈ Cm+1 as a higher-dimension-

al chromaticity. It is not limited by human perception but provides

a more complete description of the reflectance spectrum. We can

change the overall brightness of the spectrum without changing

the chromaticity by considering tc with t ≥ 1. As we increase t ,
the initial effects are similar to common scaling of the spectrum

(Figure 5 top). However, scaling would quickly violate the bound

one.

Our bounded MESE instead approaches spectra that assign full

brightness tom intervals and no brightness outside these intervals.

We think of these spectra as generalized MacAdam spectra with

m intervals instead of one. In the limit, this reconstruction is the

only one possible and once more the Toeplitz matrix C(γ ) is posi-
tive semi-definite but singular [Kreı̆n and Nudel’man, 1977, p. 78,

246]. Increasing the scaling t beyond this limit case means that the

Toeplitz matrixC(γ ) has a negative eigenvalue and in this case, there
is no matching reflectance spectrum for tc by Proposition 3. Thus,

the bounded MESE gets arbitrarily close to the brightest spectra for

a given chromaticity
c
c0 .

In a similar spirit, we manipulate the saturation of a spectrum

by moving away from the constant white spectrum of maximal

brightness. This spectrum has moments e0 ∈ Cm+1, so we recon-

struct from the moments (1 − t)e0 + tc for t ≥ 1. Once more, the

initial effect is similar to a linear change but as we approach the

boundary case of a singular Toeplitz matrix, the spectra approach

generalized MacAdam spectra (Figure 5 bottom). Still greater val-

ues of t have no interpretation in terms of reflectance spectra. The

bounded MESE gets arbitrarily close to the most saturated version

of an initial spectrum given by moments c .
While generalizedMacAdam spectra, just like commonMacAdam

spectra, are not physically plausible, it is valuable to have a color

- 0
Phase 

0.0

0.3

0.6

0.9

1.2
Poisson kernel P0.7

- 0
Phase 

0

1
Uncertainty bounds
Smoothed ground truth

Fig. 6. An example of uncertainty bounds with r = 0.7 andm = 4. Using
solely the knowledge of the bounds д(φ) ∈ [0, 1] and the moments c , we
are certain that Pr ∗ д lies between the shown uncertainty bounds.

space large enough to include them. As observed byMacAdam [1935a]

bright and saturated colors have artistic value and dye chemists

have been pushing the limits in this regard. Our bounded MESE

provides the first higher-dimensional color space to get arbitrarily

close to these idealized colors in rendered images. Of course, we are

still limited by the gamut of the display device.

3.8 Uncertainty Bounds
There is another interesting result on the MESE that carries over

to the bounded MESE. Using only the knowledge of the stored

trigonometric momentsγ and the fact that the ground truth does not

take negative values, we can compute sharp bounds for a smoothed

version of the signal [Karlsson and Georgiou, 2013, Kovalishina

and Potapov, 1982, Peters and Klein, 2015]. Thus, we get quality

guarantees.

An analogue result holds for the bounded MESE. Smoothing the

signal is necessary because for moments c ∈ Cm+1 with positive

definiteC(γ ), we can always construct a bounded density with value
zero or one at any given phase φ ∈ R [Kreı̆n and Nudel’man, 1977, p.

254 ff.]. By smoothing the signal first, the bounds become robust to

small perturbations and sharp enough to be useful. This smoothing

is done through convolution with a Poisson kernel

Pr (φ) :=
1

2π

1 − |r |2

|1 − r exp(iφ)|2
,

where r ∈ [0, 1) controls the sharpness of the kernel. The Poisson

kernel is closely related to the Herglotz transform and therefore this

particular approach enables computation of the bounds in closed

form. Figure 6 shows an example. For further results and the com-

plete formulation of the uncertainty bounds, please refer to the

supplementary document.

4 SPECTRAL RENDERING
Now that the reconstruction algorithms are available, we investi-

gate their use for the storage and reconstruction of emission and

reflectance spectra. We begin by defining the mapping between

wavelengths λ and phases φ (Section 4.1). Then we analyze the

impact of quantization errors in the trigonometric (0, 1)-moments

c (Section 4.2). To support assets authored using tristimulus color

spaces, we convert such data to our representation (Section 4.3).

Finally, we discuss the integration into renders (Section 4.4).

4.1 Mapping Wavelengths to Phases
Unlike the Fourier basis c, typical emission and reflectance spectra

are aperiodic. This poses a problem because our reconstructions will

ACM Trans. Graph., Vol. 38, No. 4, Article 136. Publication date: July 2019.



136:8 • Christoph Peters, Sebastian Merzbach, Johannes Hanika, and Carsten Dachsbacher

400 500 600 700
Wavelength  / nm

0

1
Bounded MESE
Ground truth

(a) Periodic,m = 1

400 500 600 700
Wavelength  / nm

0

1
Bounded MESE
Ground truth

(b) Mirrored,m = 2

400 500 600 700
Wavelength  / nm

0

1
Bounded MESE
Ground truth

(c) Warped,m = 2

Fig. 7. Reconstructions with the bounded MESE using different methods
to map wavelengths to phases. In all cases, the spectrum is stored by three
real scalars.

be periodic. If we just map wavelengths λ ∈ [λmin, λmax] to phases

linearly by setting

φ = 2π
λ − λmin

λmax − λmin

− π ∈ [−π , π ],

we get strong artifacts at the boundaries and moderate distortions

throughout the entire range of wavelengths (Figure 7a).

We overcome this problem using the same approach as in the

discrete cosine transform. The mapping to phases only uses negative

values

φ = π
λ − λmin

λmax − λmin

− π ∈ [−π , 0]. (12)

Once we havemapped a reflectance spectrum to the phase domain in

this manner, we mirror it by defining д(φ) = д(−φ) for all φ ∈ [0, π ].
The moments c are then computed for this mirrored signal. The

reconstruction will be even and we only use the part for φ ∈ [−π , 0].
Thus, aperiodic spectra can be reconstructed adequately (Figure 7b).

At first sight, this approach may seem wasteful since we drop half

of the reconstruction. However, the moments for the even signal

are real numbers. Thus, storing them takesm + 1 real scalars rather
than the 2m + 1 real scalars needed for complex moments. We need

twice as many moments for signals of similar complexity but the

storage cost is roughly the same. Only the computation becomes

more expensive but remains affordable.

Additionally, we account for the greater perceptual importance of

some wavelength ranges. While slight changes are perceivable near

550 nm, light is hardly visible at 700 nm.When using a small number

of coefficients, we would like to focus accuracy on important regions.

We accomplish this weighting by means of a differentiable, bijective

function φ : [λmin, λmax] → [−π , 0]. The moments for the warped

and mirrored signal д(φ) are

c = 2ℜ

∫
0

−π
д(φ)c(φ) dφ = 2

∫ λmax

λmin

д(φ(λ))ℜc(φ(λ))φ ′(λ) dλ.

In the extreme case m = 2, it would be best if ℜc(φ(λ))φ ′(λ)
resembles the color matching functions x(λ),y(λ), z(λ). Thus, we set
up a non-convex optimization that minimizes the distance between

the function space spanned by x,y, z and the three component func-

tions ofℜc(φ(λ))φ ′(λ). Our objective function is the matrix 2-norm

of the difference between the two orthogonal projectors onto the
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Fig. 8. We optimize the derivative φ′(λ) (left) of the mapping from wave-
lengths to phases φ(λ) (middle). The objective is to make the space spanned
by the three warped and weighted Fourier basis functions ℜc(φ(λ))φ′(λ)
similar to the space spanned by x , y, z . The dotted lines (right) show least-
squares fits to x , y, z in the optimized space.

discretized function spaces [Golub and Van Loan, 2012, p. 82]. Pos-

itivity constraints enforce φ ′(λ) > 0. The optimization procedure

and the resulting warp φ(λ) are part of the supplementary code.

Figure 8 visualizes the optimized warp and how it accomplishes

the goal of approximating the color matching functions with the

Fourier basis. We have discretized this warp using 95 equidistant

samples. Thus, it can be evaluated with a single lookup using linear

interpolation. The reconstruction in Figure 7c shows how the warp

improves reconstruction quality in important wavelength ranges

while diminishing it in others.

We could repeat the optimization outlined above form > 2 but

that would reward solutions where all moments carry the same

information as the XYZ coefficients. Thus, it is preferable to use

the same warp for all values ofm. Form ≥ 5, the moments capture

entire reflectance spectra well without the warp. Results with the

warp or with Equation (12) are similar. For emission spectra, we use

more coefficients and refrain from using the warp.

When computing moments for a sampled spectrum, the sample

locations should be transformed to phases first. It is important to

use an integration scheme that respects the bounds. For reflectance

spectra, the sample locations must not be idealized as Dirac-δ pulses.

Instead the samples should be interpolated with linear interpola-

tion. The supplementary document has formulas to compute the

moments for such interpolated signals. Higher-order integration

schemes must not be used because the underlying polynomial ap-

proximations may violate the bounds. If data is unavailable for part

of the range of phases, the nearest available value should be repeated

or the range should be shortened. Treating parts with unknown

value as zero introduces unnecessary complexity to the signal.

4.2 Quantization
Once we have computed the moments, we need to store them. Since

each texel of a texture may hold one reflectance spectrum, a compact

representation is important and it is worthwhile to investigate the

impact of quantization errors.

The zeroth moment c0 is in [0, 1]. The other moments take a

minimal value when the reflectance spectrum is one wherever the

basis function is negative and zero elsewhere. Solving integrals, we

find that ℜc j ,ℑc j ∈ [− 1

π ,
1

π ] for j ∈ {1, . . . ,m}. There is no good

reason to have greater precision for values of a small magnitude.

Thus, we favor fixed-point quantization over floating-point.
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Table 1. Metrics for the error introduced to the boundedMESEwith warping
by fixed-point quantization of the moments c . For each of the 3076 spectra
to reconstruct, we compute the root-mean-square error (RMSE). Then we
list the arithmetic mean of these RMSEs and their maximum. Additionally,
we report the maximal error encountered at a single wavelength throughout
the experiment.

Mean RMSE Max. RMSE Max. error

m 10 bits 16 bits 10 bits 16 bits 10 bits 16 bits

2 4 · 10−3 7 · 10−5 3 · 10−2 3 · 10−4 5 · 10−2 4 · 10−4

3 5 · 10−3 8 · 10−5 4 · 10−2 3 · 10−4 7 · 10−2 7 · 10−4

5 6 · 10−3 1 · 10−4 2 · 10−2 6 · 10−4 5 · 10−2 1 · 10−3

7 7 · 10−3 1 · 10−4 1 · 10−1 7 · 10−4 3 · 10−1 1 · 10−3

To determine sufficient bit counts for real-world spectra, we have

evaluated our bounded MESE on a database of 3076 measured re-

flectance spectra (see Section 5.1). Table 1 summarizes the results.

The mean errors are on a similar order of magnitude as the error

introduced to the moments. The error grows as more quantized mo-

ments are used. Though, even withm = 7 and 10-bit quantization,

the mean errors are still acceptable.

Near the boundary cases discussed in Section 3.7, errors are

stronger. For example, a small increase in saturation in Figure 5

leads to a substantially different spectrum. When these cases are

of particular interest, 16-bit quantization should be used. In these

cases, rounding errors may even lead to vectors of moments that

make reconstruction impossible in the sense of Proposition 3. Then

the vector of moments c should be biased towards the spectrum of

constant value 0.5, i.e. replaced by (1 − α)c + α0.5e0 [Münstermann

et al., 2018]. A moment bias α > 0 on the order of magnitude of the

rounding error guarantees valid results. Though, this procedure is

not needed for typical reflectance spectra and we do not use it in

our experiments.

In practice, memory alignment is important and thus the storage

per spectrum should be a multiple of 4 bytes. Therefore, we rec-

ommend to use 10-bit quantization if the number of coefficients is

divisible by three and 16-bit quantization otherwise. Then we need

4 bytes for three coefficients, 8 bytes for four or six coefficients and

16 bytes for eight coefficients.

4.3 Conversion of Tristimulus Data
Our main motivation is to provide a compact representation for

spectral reflectance data. Though, the vast majority of production

assets uses tristimulus color spaces. A single representation that

works for spectral data as well as tristimulus data would be useful.

Thus, we strive to convert tristimulus data to three real moments

with 10-bit quantization.

The approach is simple. We use the bounded MESE to reconstruct

reflectance spectra for all 1024
3
triples of moments (discarding the

ones that are invalid according to Proposition 3). For each spectrum,

we integrate the XYZ coefficients. The XYZ coefficients are con-

verted to the perceptually uniform CIELAB color space and entered

into an acceleration structure for nearest-neighbor queries. Next

we sample a three-dimensional grid of the used tristimulus color

space. For example, we take 256
3
samples for sRGB. For each cell,

we look up the nearest neighbor and store the corresponding triple

of moments. Since distances are defined using CIELAB, tristimulus

colors that cannot be realized by a reflectance spectrum are mapped

back into the solid of valid reflectances using the minimal distortion

method of Meng et al. [2015].

Such a lookup table of size 256
3
takes 64 MiB. It would be costly

to deal with such a big lookup table during rendering but we only

use it at loading time. Each asset is converted once and then the

tristimulus data can be discarded. If the tristimulus data is quantized

with more than 8 bits, interpolation in the lookup table is a sensible

operation because the moments are defined linearly.

To enable construction of such lookup tables for arbitrary color

spaces, we provide the C++ code of our construction method.

4.4 Use in Renderers
We have implemented our technique in an offline renderer and a

real-time renderer. The offline renderer is a path tracer with hero

wavelength spectral sampling [Wilkie et al., 2014] using eight wave-

lengths. Reflectance spectra are reconstructed using the bounded

MESE. They are stored in textures and texture sampling uses tri-

linear filtering with mipmapping. This simple linear filtering is

possible thanks to the linear definition of the moments. We only

have to avoid filters with negative filter weights because they may

invalidate vectors of moments.

The real-time renderer uses Direct3D 12 through the Falcor ren-

dering framework [Benty et al., 2018]. It is a deferred renderer

storing three real moments in the G-buffer. Shading supports di-

rect illumination only, albeit with ray traced shadows. To obtain a

low variance with sample counts affordable in real time, we sam-

ple the emission spectrum exactly by precomputing an inverted

CDF. The corresponding lookup table holds the phase at which the

bounded MESE needs to be evaluated and the corresponding values

of x,y, z. In the spirit of Hero wavelength spectral sampling, we

only use one stratified random number per pixel and sample the

other wavelengths using equidistant random numbers.

5 RESULTS
In the following, we evaluate our techniques in comparison to re-

lated work [Jakob and Hanika, 2019, MacAdam, 1935a, Meng et al.,

2015, Otsu et al., 2018, Smits, 1999]. We begin with an overview

of the spectral data that we use for this evaluation (Section 5.1).

Then we briefly analyze the suitability of the MESE for emission

spectra (Section 5.2) and refractive indices (Section 5.3). Further-

more, we present detailed experiments concerning the quality of

the bounded MESE for reconstruction of reflectance spectra (Sec-

tion 5.4). Finally, we demonstrate that real-time rendering with our

approach is feasible (Section 5.5) and analyze run times (Section 5.6).

5.1 Sources of Spectral Data
The Lamp Spectral Power Distribution Database

3
(LSPDD) contains

densely sampled spectra for a diverse selection of 254 commercially

available lamps. We use their data for most of our experiments. The

exception is the spectrum of a sodium vapor lamp. For individual

reflectance spectra, we use the X-Rite color checker and a database

3
http://galileo.graphycs.cegepsherbrooke.qc.ca/app/en/lamps
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of 3052 spectra measured at the University of Eastern Finland
4
. This

database includes matte and glossy color chips manufactured by

Munsell as well as natural spectra from flowers, leaves and other

colorful plants.

Additionally, we have measured spectral svBRDFs using the X-

Rite TAC7-Scanner
5
. This off-the-shelf hardware samples the re-

flectance for each point on the probe using 29 white LEDs and four

cameras. Five LEDs are behind filter wheels with ten narrow-band

filters. The proprietary post-processing pipeline first uses this data

to estimate HDR images for each pair of light and view directions at

31 equidistant wavelengths from 400 nm to 700 nm. Then parame-

ters of the Geisler-Moroder Ward BRDF [Geisler-Moroder and Dür,

2010] with Schlick Fresnel-term are fitted.

The diffuse and specular albedo maps that are output by the pro-

prietary svBRDF fitting currently use an RGB color space. Therefore,

we have trained spectral A+ [Aeschbacher et al., 2017] with pairs of

spectra from the intermediate HDR images and RGB triples from

the albedo maps. The technique learns a mapping from RGB to spec-

tra that is specific to a single measured probe. We use it to obtain

svBRDFs with albedo maps sampled at 31 wavelengths. More de-

tails of this approach will be described in a subsequent publication.

We use these textures in Figure 1. The rendering with tristimulus

textures [Jakob and Hanika, 2019] has substantial error. Errors of

our approach with six moments are hardly perceivable in spite of

the challenging illuminant.

5.2 Reconstruction of Emission Spectra
Our efforts are focused on reflectance spectra because we believe

that compact representations are less important for emission spectra.

Nonetheless, there are instances where emission spectra take note-

worthy amounts of memory, e.g. when dealing with light probes.

Since we have already introduced the MESE, it is interesting to

analyze its capability to represent emission spectra.

To obtain good results with this approach, we need to address one

issue. Many of the LSPDD emission spectra include long stretches

of zero value at both ends. Computing trigonometric moments for

such signals directly may lead to undesirable results. The Burg

entropy punishes densities near zero heavily (Figure 4a). If the

ground truth forces small densities in large regions, the MESE will

resolve this conflict by producing a spectrumwith sharp peaks. Thus,

a spectrum that should resemble the one to the left in Figure 3 may

be more similar to the one in the middle. We address this problem

by choosing λmin, λmax for Equation (12) per spectrum in such a

way that we discard up to 0.2% of the overall energy. Alternatively,

we could regularize by adding a small uniform component to the

trigonometric moment γ0 (Figure 3).
Figure 9 shows results for a diverse selection of LSPDD emission

spectra. We use 16 real Fourier coefficients and additionally store

λmin, λmax. The reconstructed densities for the smooth spectra in

the top row are highly accurate. For the more spiky spectra in the

bottom row, the MESE often merges multiple peaks into a single

broader peak. However, the cumulative distribution functions show

that the overall energy in small intervals is always accurate.

4
http://www.uef.fi/web/spectral/-spectral-database

5
https://www.xrite.com/categories/appearance/total-appearance-capture-

ecosystem/tac7
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Fig. 9. Reconstructions for a selection of emission spectra using the MESE
with mirroring andm = 15 (i.e. 16 real moments). We show the spectral
densities (top) and the cumulative distribution functions (bottom).
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Wavelength / nm

370 830
Wavelength / nm

370 760
Wavelength / nm

390 830
Wavelength / nm

440 840
Wavelength / nm

Ground truth MESE, mirrored, m = 31

Fig. 10. The MESE with mirroring for difficult emission spectra using twice
as many real Fourier coefficients as in Figure 9.

Since most reflectance spectra are smooth, the slight redistribu-

tion of energy between nearby wavelengths should not lead to large

errors in rendered images. Nonetheless, doubling the number of

coefficients yields a far more accurate reconstruction (Figure 10). In

general, the benefits of the MESE over simple sampling of the signal

taper off at large coefficient counts. Besides the O(m2) run time

of the MESE might become problematic. Still, the MESE remains

attractive if the signal of interest is sufficiently sparse.

5.3 Reconstruction of Complex Refractive Indices
Our techniques are applicable to any non-negative, wavelength-

dependent signal. Even the complex refractive indices of conductors

can be represented by handling the extinction as separate real quan-

tity. Figure 11 uses the MESE with six real coefficients per quantity.

The chosen conductors are among the more challenging cases but

still the signals are well-behaved and the MESE is highly accurate.

Simple linear interpolation of six samples already gives a satisfac-

tory result when computing the Fresnel term for the conductors.

Nonetheless, the MESE is far more accurate using the same number

of coefficients. Results with more spiky illuminants are similar.
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Linear interpolation
Error, linear interpolation
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(d) Fresnel term for gold

Fig. 11. The wavelength-dependent, complex refractive indices for two con-
ductors. We compare the MESE with six real coefficients per signal to linear
interpolation of six samples. The Fresnel term for ideal reflection of illumi-
nant D65 in vacuum is shown to the right.
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Ours, XYZ lookup, m=2

Fig. 12. Reconstructions of the reflectance spectra for four patches of the
X-Rite color checker. All techniques only take an XYZ triple as input.

5.4 Reconstruction of Reflectance Spectra
For the remainder of this section, we evaluate our methods for re-

construction of reflectance spectra. We begin by considering plots of

reconstructed reflectance spectra. Figure 12 compares all techniques

that take a single XYZ triple as input. The two oldest techniques

[MacAdam, 1935a, Smits, 1999] deviate from the ground truth sub-

stantially. Our technique with the warp and the work of Meng

et al. [2015] optimize their reconstruction with regard to perceptual

aspects. Therefore, their results are poor in the less important range

between 650 and 700 nm but fairly good otherwise. The reconstruc-

tion of Jakob and Hanika [2019] is quite far off, especially in the

boundary regions. Reconstructions of Otsu et al. [2018] are excellent.

However, the color checker spectra used here are similar in nature

to the Munsell color chips used for the training of this technique.

Figure 13 compares different variants of our technique. Even the

reconstructions from four real moments (i.e. m = 3) are already

0.0

0.5

0.0

0.7

400 500 600 700
Wavelength / nm

0.0

0.9

400 500 600 700
Wavelength / nm

0.0

0.7

Ground truth
Ours, warped, m=3

Ours, warped, m=5
Ours, warped, m=7

Ours, mirrored, m=7

Fig. 13. Reconstructions for four patches of the X-Rite color checker using
four, six or eight real moments computed from the ground truth spectrum.

MacAdam Smits Meng
et al.

Otsu
et al.

Ground
truth

Jakob
and

Hanika

Ours,
warped,

m=2

Ours,
XYZ

lookup,
m=2

Ours,
mirrored,

m=2

400 500 600 700
Wavelength / nm

Illuminant E

400 500 600 700
Wavelength / nm

Metal-halide lamp

Fig. 14. An X-Rite color checker relit using the emission spectra to the right.
Each patch is subdivided into 3 × 3 squares using the techniques indicated
in the legend to reconstruct the spectrum.

close to ground truth in the perceptually important regions. Going

up to six real moments (i.e. m = 5), the reconstructions become

highly accurate. Eight moments (i.e.m = 7) only achieve a minor

improvement over six moments. Using eight moments without the

warp, the reconstruction quality improves in the region between

650 and 700 nm and near 400 nm but degrades everywhere else.

In Figure 14 we use different tristimulus techniques for relighting

of a color checker. Six of the techniques use XYZ as input and are

supposed to provide a perfect result under illuminant E. Indeed,

they do with the exception of Meng et al. [2015] on the yellow

patch where the reconstruction exceeds the value of one and is

clipped. If we compute three real Fourier coefficients directly from

ACM Trans. Graph., Vol. 38, No. 4, Article 136. Publication date: July 2019.



136:12 • Christoph Peters, Sebastian Merzbach, Johannes Hanika, and Carsten Dachsbacher

4 bins 6 bins 8 bins

Ours,
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Ground
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Ours,
complex,

m=3

Ours,
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m=3

Ours,
warped,

m=5

Ours,
warped,

m=7

Metal-halide lamp
(Figure 14)

400 500 600 700
Wavelength / nm

Sodium vapor lamp

Fig. 15. An X-Rite color checker relit using the emission spectra to the right.
The 3× 3 squares in each patch use binning of spectra with equidistant bins
and different variants of our techniques.

the spectrum, our technique produces minor deviations when using

the warp from Section 4.1 but strong deviations without this warp.

For a more spiky emission spectrum, the differences between the

techniques are far greater. The three oldest techniques [MacAdam,

1935a, Meng et al., 2015, Smits, 1999] show major errors on many

patches. Our techniques with warp and Otsu et al. [2018] give the

best results while Jakob and Hanika [2019] is slightly worse. The

drawback of not using our lookup table is less pronounced here but

the variant without warp still performs poorly. We recommend to

always use the warp form < 5.

In Figure 15 we use challenging emission spectra to test tech-

niques with more than three coefficients. Light from the sodium

vapor lamp is almost monochromatic around 590 nm and thus it

probes the spectra at a single wavelength. While our XYZ lookup ta-

ble produces some visible errors, the results with four real moments

(i.e.m = 3) are very close to ground truth. Careful observation re-

veals further quality improvements when going to six real moments

(i.e.m = 5). The improvement going from six to eight real moments

(i.e. m = 7) is miniscule. We also include results for one variant

without mirroring, which stores complex moments with m = 3.

The seven real scalars needed to store its moments yield a quality

comparable to four real moments. Under normal circumstances, we

do not believe that the lower computational overhead justifies the

reduction in quality (see Section 4.1). The use of wavelength bins

is clearly inferior to our approach. Even with eight bins the results

are often worse than the ones from the XYZ lookup table.

Figure 16 attests to the importance of accurate spectra for inter-

reflections. In spite of the simple illuminant, most tristimulus tech-

niques show strong errors on some of the patches. Especially the

method of Jakob and Hanika [2019] performs poorly. Once more,

yInterreflectionsand exposure

Smits
Jakob
and

Hanika
Meng
et al.

Otsu
et al.

Ground
truth

Ours,
XYZ

lookup,
m=2

Ours,
warped,

m=3

Ours,
warped,

m=5

Ours,
mirrored,

m=7

400 500 600 700
Wavelength / nm

Illuminant E

Fig. 16. Reconstructed reflectance for the second row of the X-Rite color
checker raised to powers from one (top) to five (bottom) to simulate inter-
reflections. The exposure increases by 33% per row. Each patch compares
five tristimulus techniques and our techniques with more coefficients.

Table 2. Error metrics for different techniques on the database of 3076
reflectance spectra described in Section 5.1. For each spectrum, we compute
the RMSE of the reconstruction from 400 to 700 nm and report the mean
and maximal RMSE across all spectra. We also list the mean absolute error.

Technique Mean error Mean RMSE Max. RMSE

MacAdam 8.8 · 10−2 1.2 · 10−1 3.6 · 10−1

Smits 2.9 · 10−2 3.9 · 10−2 2.3 · 10−1

Meng et al. 2.2 · 10−2 3.0 · 10−2 4.3 · 10−1

Otsu et al. 1.3 · 10−2 1.8 · 10−2 2.1 · 10−1

Jakob and Hanika 3.8 · 10−2 6.0 · 10−2 2.3 · 10−1

O
u
r
s

XYZ,m = 2 1.8 · 10−2 2.6 · 10−2 2.6 · 10−1

Warped,m = 2 1.8 · 10−2 2.5 · 10−2 2.6 · 10−1

Warped,m = 3 1.2 · 10−2 1.9 · 10−2 2.0 · 10−1

Warped,m = 5 7.6 · 10−3 1.4 · 10−2 1.5 · 10−1

Mirrored,m = 7 5.1 · 10−3 8.2 · 10−3 5.3 · 10−2

Otsu et al. [2018] is the best tristimulus technique, closely followed

by our technique with the XYZ lookup table. Using up to six coeffi-

cients (i.e.m = 5) improves quality clearly, whereas eight coefficients

(i.e.m = 7) have minimal benefit.

Table 2 confirms these findings using the whole reflectance data-

base described in Section 5.1. The technique of Otsu et al. [2018],

which was trained on a subset of our test set, performs on par with

our technique using four coefficients (i.e.m = 3). More coefficients

reduce the error as expected. For up to six coefficients (i.e.m = 5),

the errors compared to ground truth are substantially larger than

the errors introduced by 10-bit quantization (Table 1). In this sense,

the quantization errors are acceptable.

Figure 17 demonstrates how different techniques behave if we

interpolate the coefficients stored in their textures linearly. While

the parameters of MacAdam spectra [1935a] change continuously

with XYZ, the spectrum itself is discontinuous. Combined with the

peaks in the spectrum, discontinuities arise. The technique of Otsu

et al. [2018] produces even stronger discontinuities at the bound-

aries of its clusters. Reconstructions of Jakob and Hanika [2019]
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MacAdam

Smits

Meng et al.

Otsu et al.

Jakob and Hanika

Ours, XYZ lookup,m = 2

Ground truth

Fig. 17. The impact of linear interpolation of input coefficients for different
techniques. In all cases, we perform linear interpolation between the same
two colors and light the reconstruction using the metal-halide lamp in
Figure 14. For Jakob and Hanika we interpolate the polynomial coefficients,
for our technique we interpolate the moments from the lookup table and
for all other techniques we interpolate the XYZ triple.

Fig. 18. A rendering from our real-time renderer. All assets have been con-
verted to three real Fourier coefficients at loading time. The renderer samples
the metal-halide illuminant from Figure 14 using eight samples per pixel.

change continuously but since the stored polynomial coefficients

do not depend upon the spectrum linearly, the change is different

from linear interpolation of spectra. Performing the interpolation

in XYZ resolves this issue but may require costly lookups during

rendering. Interpolation of reconstructed reflectance values is in-

compatible with hardware-accelerated texture filtering on GPUs.

All other techniques, including ours, behave as expected.

5.5 Spectral Real-Time Rendering
Figure 18 shows a rendering of our real-time renderer using con-

verted tristimulus assets for all surfaces. The scene is lit by a chal-

lenging illuminant. Nonetheless, the color noise is moderate at eight

samples per pixel because we sample proportional to the emission

spectrum. Standard temporal and/or spatial reconstruction filters

could easily produce noise-free results from this input.

We rendered this image on an NVIDIA RTX 2080 Ti and the

total frame time was 0.63 ms at a resolution of 1920×1080. Thus,

spectral real-time rendering is entirely feasible with our approach. It

is an excellent match for graphics hardware because no instructions

execute conditionally, most of the instructions are multiply-add and

there are no additional memory reads after reading the moments.

Table 3. Timings for the reconstruction of spectra with different tristimulus
techniques. All techniques evaluate the spectrum at 16 wavelengths.

Technique Time / s

MacAdam 0.48

Smits 0.52

Meng et al. 2.0

Technique Time / s

Otsu et al. 0.94

Jakob (AVX) 0.06

Ours,m = 2, real, Lagr. 0.89

Table 4. Timings for the reconstruction of spectra with different variants of
our bounded MESE.

Ours

Time / s

Algorithm 1 Lagrange

Wavelengths 1 4 8 16 1 4 8 16

m = 2, mirrored 0.2 0.6 0.8 3.7 0.6 0.6 0.8 0.9

m = 3, mirrored 0.3 0.8 1.0 4.1 0.8 0.8 1.0 1.1

m = 5, mirrored 1.8 2.0 2.0 5.5 2.2 2.3 2.3 2.5

m = 7, mirrored 2.8 3.6 7.2 11.8 3.5 3.6 3.6 3.8

m = 2, complex 0.5 0.6 0.8 3.8 0.6 0.7 0.8 0.9

m = 3, complex 1.3 1.4 1.4 4.6 1.3 1.4 1.4 1.5

5.6 Run Times
We compare CPU run times on a system with an Intel Core i7-8700K

having 12 logical cores. To obtain numbers that are not contaminated

by other aspects of the rendering, we define a simple benchmark.

Each technique has to evaluate the spectrum at multiple wave-

lengths for each texel of a texture of resolution 4096
2
. We run this

benchmark on a single thread and report the total run time.

Table 3 shows the results for all tristimulus techniques. The tech-

nique of Jakob and Hanika is by far the fastest. It is designed to be

fast to evaluate and additionally it has been implemented with hand-

written AVX intrinsics. Among the other techniques, our approach

for tristimulus values is in the middle of the field.

Table 4 compares run times of different variants of our technique.

We observe that the cost of increasingm is significant, as expected

for a technique with time complexity O(m2). Still, the cost atm = 5

or evenm = 7 is reasonable. The cost per wavelength is only O(m)

and thus the increase in cost for evaluating each spectrum at more

wavelengths is moderate. To some extent, the compiler successfully

applies vectorization but there are instances where it fails, especially

for 16 wavelengths. Computing Lagrange multipliers is amortized

in the vicinity of eight wavelengths.

Note that performance in our benchmark is limited by compute

capability. Since our technique requires no additional memory reads

during rendering, its cost may be hidden entirely in bandwidth

limited applications.

6 CONCLUSIONS
Our novel representation of spectra offers a practical way to elim-

inate the high memory and bandwidth requirements of accurate

spectral rendering without sacrificing quality. Using only six real

moments stored in 8 bytes, scenes are rendered accurately even

under the most challenging illuminants. Still, the computational
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overhead is low. Among the variants of our technique, there should

be an appropriate tradeoff for almost all applications.

These improvements bring spectral rendering closer to wide-

spread adoption and may spark more research on acquisition of

spectral data. A common problem of this acquisition is that narrow-

band filters lead to long exposure times. In this regard, it could be

interesting to take measurements directly in the Fourier domain.

It would also be interesting to map colors from the widely used

Pantone Matching System to our representation to give countless

product designers access to accurate rendering of their colors.

Finally, the bounded MESE is a novel reconstruction for bounded

densities with properties unlike any existing reconstruction. Al-

though we have focused on spectra, we believe that it can be a

valuable tool within the graphics community and beyond.
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