
Technical Report (20.12.2019)

Brute-force calculation of aperture diffraction in camera lenses

Emanuel Schrade, Johannes Hanika and Carsten Dachsbacher

Institute for Visualization and Data Analysis (IVD)
Karlsruhe Institute of Technology, Germany

Abstract
Sensorrealistic image synthesis requires precise simulation of photographic lenses used in the imaging process. This is well
understood using geometric optics, by tracing rays through the lens system. However, diffraction at the aperture results in in-
teresting though subtle details as well as prominent glare streaks and starry point spread functions. Previous works in graphics
have used analytical approximations for diffraction at the aperture, but these are not well suited for a combination with distor-
tion caused by lens elements between the aperture and the sensor. Instead we propose to directly simulate Huygens’ principle
and track optical path differences, which has been considered infeasible due to the high computational demand as Monte Carlo
simulation exhibits high variance in interference computations due to negative contributions. To this end we present a sim-
ple Monte Carlo technique to compute camera point spread functions including diffraction effects as well as distortion of the
diffracted light fields by lens elements before and after the aperture. The core of our technique is a ray tracing-based Monte
Carlo integration which considers the optical path length to compute interference patterns on a hyperspectral frame buffer.
To speed up computation, we approximate phase-dependent, spectral light field transformations by polynomial expansions. We
cache transmittance and optical path lengths at the aperture plane, and from there trace rays for spherical waves emanating to
the sensor. We show that our results are in accordance with the analytical results both for near and far field.

1. Introduction

In recent years, the field of photorealistic image synthesis has ad-
vanced such that we are now able to compute visually rich imagery
that is almost indistinguishable from real photographic footage. For
seamless integration of computer generated imagery (CGI) into real
world photography, the lens distortions are either corrected out of
the plate or simulated in CGI. To achieve the particular indistin-
guishable look of certain classic lenses, however, the optical sys-
tem needs to be simulated as closely as possible. Consider for in-
stance the characteristic depth of field in Kubrick’s Barry Lyndon,
due to the T0.7 aperture, or the signature lens flares of old movies
like Dirty Harry due to the coated anamorphic lenses. To replicate
these effects in a renderer with high precision, we need to consider
diffraction at the aperture blades. A second important aspect is that
diffraction limits the size of the point spread function and hence the
sharpness of the image.

Computing diffraction patterns is a hard problem. One approach
is to use analytical approximations, which, however, require mak-
ing certain assumptions, e.g. that the incident illumination is con-
stant across the aperture, is a simple orthogonal plane wave, or that
the exitant radiance is only needed in the near field or far field.
None of these assumptions hold in our context where illumination
comes from the scene and is distorted by a few lens elements before
and after it passes through the aperture.

As solution to this problem, we propose a technique based on

simulating the spherical waves in Huygens’ principle directly. Es-
sentially, we stop tracing a light transport path when it passes
through the aperture opening. At this point, we continue by tracing
in a random new direction to sample the spherical wave emanating
from there. We also track the optical path difference while contin-
uing the path up to the sensor. At the sensor a spectral frame buffer
stores the amplitude and phase of an incoming path and accounts
for interference with other paths of the same wavelength.

This approach is typically considered being computationally in-
tractable as the variance of a Monte Carlo estimator easily becomes
unbounded in the presence of interference (due to negative contri-
butions) and due to the large number of samples required for con-
verged results with high-frequency interference patterns.

We describe the following steps which nonetheless make this ap-
proach feasible: first, we collapse the ray tracing through the lens
system by expressing the transformation of the light field with a
polynomial [SHD16]. We extend these polynomials to additionally
compute the optical path length for a path through the lens. Sec-
ond, we observe that changing the direction of the path at the aper-
ture effectively makes the transport encountered after the aperture
independent of that before the aperture. We can thus cache the op-
tical path difference and transmittance values at the aperture and
decorrelate the computation before and after the aperture. Lastly,
we present an efficient GPU implementation.

Altogether, these contributions make it possible to efficiently

c© 20.12.2019 The Author(s)

E. Schrade, J. Hanika, C. Dachsbacher / Lens Diffraction

Figure 1: Spherical wavefronts emitted by the light source on the
right side propagate towards the biconvex lens. Waves are slowed
down when entering the glass. Thanks to the shape and material of
the lens the wavefronts converge towards a point on the sensor. The
same behaviour can be observed in geometric optics by applying
Snell’s law. Note, that the rays are always orthogonal to the wave-
fronts, that is, the rays coincide with the propagation direction of
the wavefronts.

c
a
b
c

a

b

c

a
b

phasors
superposition

Figure 2: An aperture is illuminated by a plane wave. Using Huy-
gens’ principle, points on the aperture can be treated as sources of
elementary waves that interfere with each other on the sensor. The
relative phase of a wave when reaching a pixel on the sensor can
be incorporated into a phasor. By accumulating these phasors we
obtain a new phasor describing the superposition of the incoming
waves. Here the length of a and c is approximately 3λ while b has
a length of approximately 2.8λ

compute a point spread function for sensor-realistic Bokeh. As an
outlook, we also show how to compute lens flares with diffraction
effects, and point out which changes will be necessary in the future
to make this faster.

2. Background and Previous Work

Wave optics In wave optics, light is modeled as light waves emerg-
ing from sources and propagating through the scene (e.g. see Born
et al. [BWB∗99] for an introduction). One source of diffraction pat-
terns on the sensor is the superposition of light waves from the
scene. To calculate the superposition in a point so-called phasors
can be used. A phasor stores the phase and intensity of a light wave

for a specific frequency as a complex number. The resulting inten-
sity of the superposition of waves can be calculated as the ampli-
tude of the phasor describing the superimposed wave which is sim-
ply the sum of the original waves’ phasors. Whether waves interfere
constructively or destructively – resulting in an intensity maximum
or minimum, respectively – depends on the phase of the interfer-
ing waves. In free space the phase can be calculated directly from
the distance travelled. For a light wave emitted in a point l with
wavelength λ and initial phase ϕ(l) = 0 the phase in x is

ϕ(x) = 2π

λ
|x− l|.

Points with an equal phase form a wavefront; for a point light
source the wavefronts form spheres centered at the light source.
In Figure 1 we show an example for such wavefronts propagating
towards the sensor. When propagating through materials we need
to account for their refractive indices η to calculate a wave’s phase
in a point using the optical path length (OPL):

OPL =
∫

path
ηds, and hence ϕ =

2π

λ

∫
path

ηds.

To model diffraction caused by the lens aperture, we use Huy-
gens’ principle which states that each point on a wavefront acts
as a source of a new spherical elementary wave. By tracing these
waves to the sensor and accumulating their phasors we calculate
the diffraction pattern. Figure 2 shows an example where phasors
of elementary waves are accumulated on the sensor to calculate the
diffraction pattern of a single slit.

Approximations Because of the enormous effort in computing
such diffraction effects, various approximations for specific sce-
narios have been proposed. Assuming that the diffracted light
field is only interesting in the far field, there exists the Fraun-
hofer approximation. Conversely, there is a near field approxima-
tion called Fresnel diffraction. If only the most prominent maxima
are needed, diffraction effects can be approximated by geometric
optics [Kel62]. Another approach to combine geometric optics with
diffraction is to analytically describe the diffracted light field by a
Wigner distribution and sample emanating rays from this [Alo11].

Diffraction in lens design Commercial lens design software pack-
ages such as ZEMAX or CODE V support the simulation of ad-
vanced diffraction effects. The methods applied in the latter are ap-
parently based on beamlet tracing, i.e. similar to Harvey and Pfis-
ter [HIP15] or Mout et al. [MWB∗16]. This work also provides
a good background on the state of the art in diffraction simulation,
e.g. based on plane wave decomposition, and the drawbacks of such
approximations. Their work is based on decomposing a wave into
Gaussian beams of a certain width. If the right density of these
primitives is combined, the result can be seamlessly reconstructed.
Our work is much simpler and based on classical ray tracing. Fur-
ther we are interested in calculating diffraction patterns for different
wavelengths and covering large parts of the sensor, not only a small
area around the focus point on the sensor.

Diffraction in graphics In computer graphics diffraction effects
have been simulated for a few special cases only. For instance us-
ing diffraction shaders for snake skin in the far field [Sta99]. More

c© 20.12.2019 The Author(s)

E. Schrade, J. Hanika, C. Dachsbacher / Lens Diffraction

recent works on far field diffraction at surface interactions, such as
microscratches [YHW∗18], still assume uniform incoming light.

More closely related to our work, diffraction at lens apertures has
been approximated using the fractional Fourier transform [PF94] as
continuum between near and far field approximations for realistic
lens flares [HESL11]. Computation of lens diffraction can be accel-
erated by assuming constant incident illumination [SLE18] based
on analytical integration over quads. However, this work assumes
that the diffracted light field is not further distorted by any lens el-
ements. The geometric theory of diffraction has also been explored
to create starry aperture diffraction effects [SDHL11], but is inac-
curate for Bokeh rendering in the near field.

Lens simulation with geometric optics Realistic lens models
have been explored in computer graphics by considering image dis-
tortions due to thick lenses [KMH95], and through ray tracing of
lens descriptions [SDHL11]. To speed up the computation for lens
flares, where the paths through the lens system can get long, ray
tracing has been approximated by polynomials, using a Taylor ex-
pansion of the light field transformation [HHH12]. This has also
been used to synthesize Bokeh in combination with efficient im-
portance sampling for small aperture openings [HD14]. This line of
work has been made more accurate by replacing the Taylor expan-
sion by a fitting process to better match the results far away from
the optical axis [SHD16]. This improves support for aspheric ele-
ments and makes the methods more suitable for wide angle lenses.
To speed up realistic Bokeh computation, the point spread function
(PSF) has also been precomputed into Bokeh textures [JKL∗16].

We do not precompute individual textures, as they vary with in-
cident light direction. As previous work, we employ polynomials
from the light source to the aperture, and from the aperture to the
sensor. However, we change the parametrization and compute ad-
ditional polynomials for transmission and optical path length. As
we split the paths where they pass through the aperture, we do not
require iterative importance sampling techniques to find a specific
point on the opening in contrast to previous work.

3. Algorithm

In the following we describe our new approach to calculate diffrac-
tion effects. First we demonstrate for a simple example that our
algorithm agrees with the analytic approximation that is often used
in physics for this special case. Then we move on to calculating
diffraction patterns caused by a lens aperture.

3.1. Diffraction by a single slit in 1D

For a single one-dimensional slit that is illuminated by a plane
wave, such as in Figure 2, each point on the slit acts as a source of a
new spherical light wave (Huygens’ principle). The assumption of
incoming plane waves simplifies the calculations as each elemen-
tary wave has the same initial phase. The intensity in a point on the
sensor is the sum of the phasors for all elementary waves:

I(s) = 1
λ

∫ r

−r

ei 2π

λ
|s−a|

|s−a| · cos2
α da

Algorithm 1 Slit Diffraction
1: procedure PIXELINTENSITY(y,λ)
2: Input: y: position on sensor, λ: wavelength,
3: d: distance from aperture to sensor
4: Output: Intensity on pixel
5: I← (0,0)
6: for i← 1 . . . N do
7: yap← random_aperture_point()
8: OPL←

√
(y− yap)2 +d2

9: ϕ← 2π

λ
OPL

10: I← I +
√

d2

λOPL3 (cosϕ,sinϕ)

11: return |I|
2

N

where a are points on the slit with half slit width r we integrate
over, s is the point on the sensor, and α is the angle between the
aperture or sensor normal and the direction from the aperture point
to the sensor point. Often it is further assumed that the screen is far
enough from the aperture such that all lines connecting s and a are
parallel; this allows for a closed-form solution for the intensity on
the screen:

I(s)∝ sinc
(

2πr sinα

λ

)
,

for wavelength λ and α being the angle between the optical axis
and the direction of the ray from the aperture point a to the sensor
point s. In preparation for the next step, we evaluate the diffraction
numerically using Monte Carlo integration without the need for fur-
ther assumptions; the approach is summarized in Algorithm 1. Note
that this algorithm can be directly applied for any sensor distance
and for any aperture, e.g. it works directly for calculating inter-
ference in a double slit experiment. In Figure 3 we show that our
integration agrees with analytic approximations. We are also able
to handle incoming waves on the aperture that are not planar by
simply adding their initial phase which is shown in Figure 3 for
converging wavefronts as they occur in lens systems (see Figure 4).

3.2. Diffraction in camera lenses

Since we focus on diffraction caused by the lens aperture in this
work, the light transport in the scene remains unaffected. On the
sensor we accumulate phasors in a complex framebuffer similar
to the one-dimensional example shown before. We first calculate
the transport from the scene to the aperture, then apply Huygens’
principle to account for diffraction effects caused by the aperture,
and afterwards calculate the transport to the sensor.

For accumulating light from the scene on the sensor we com-
pute the transport between the scene point and random points on
the aperture. We calculate the phase at each aperture point using a
polynomial for the OPL. The transmittance is calculated from the
incoming radiance and the transmittance through the lens, which is
again described by a polynomial.

On the aperture we can effectively choose the outgoing direc-
tion to the sensor freely, as in the previous example. We can thus
trace only the parts of the elementary wave that contribute to the

c© 20.12.2019 The Author(s)

E. Schrade, J. Hanika, C. Dachsbacher / Lens Diffraction

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

simulated
analytical

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

simulated
analytical

(b)

0

0.5

1

1.5

2

2.5

3

3.5

4

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

simulated

(c)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

simulated

(d)

Figure 3: For incoming plane-waves integration with our approach
agrees with the analytical solutions generally used in optics for
both the near-field (a) and the far-field (b). For other phase distri-
butions the analytical solution cannot be used directly. In (c) and
(d) we changed the incoming wave on the aperture to be converging
as it is the case in the lens system.

result. Specifically we are interested in the phase and amplitude in
the pixel centers on the sensor where we simply accumulate the
phasors in a complex frame buffer. The final pixel intensity can
be calculated as the squared amplitude of the pixel’s value in the
framebuffer.

The phasors for each contributing wave are defined by the op-
tical path length of the (bent) ray through the lens system and the
radiance arriving at the sensor. The radiance from the scene is atten-
uated by the transmittance through the lens system, by the cosine
of the angle of the ray incident to the aperture plane, and the cosine
of the ray exiting the aperture plane. As the light now propagates
through several lens elements with different refractive indices be-
fore and after passing through the aperture, the optical path length
is more complex than before. In Figure 4 we show the relative phase
and the transmittance over the aperture for rays going through one
point in the scene. The phase and transmittance for a ray passing
through a given point on the aperture can be obtained by simply
evaluating the corresponding polynomials.

The spherical wavefronts emanating at the aperture transport
light in every direction which allows us to splat each sample to
all pixels on the sensor that can be reached by the aperture point.
This observation allows for a decoupling of the light transport be-

phase

0

200

400

600

800

1000

1200

1400

1600

(a)

transmittance

0.1702

0.1703

0.1704

0.1705

0.1706

0.1707

0.1708

0.1709

(b)

phase

0

500

1000

1500

2000

2500

3000

3500

4000

(c)

transmittance

0.1702

0.1703

0.1704

0.1705

0.1706

0.1707

0.1708

0.1709

(d)

Figure 4: Relative phase and transmittance over points on the
aperture for a light source on the optical axis (a), (b) and off-axis
(c), (d). While the transmittance can be considered almost constant,
the phase varies by 1600 and 4000 whole waves between points on
the aperture.

(
xO
yO

)

dO(
xa
ya

)

Figure 5: We parameterize a path by the distance and direction
of the light source, the wavelength and the aperture position. The
polynomial outputs the position on the outer pupil for clipping and
visibility testing, the transmittance and the optical path length.

tween the scene and the aperture on the one hand, and between the
aperture and the sensor on the other hand.

3.3. Light field transformation through polynomials

Polynomials were used before to calculate the transport of rays
through a lens system for rendering [SHD16]. In this context, how-
ever, care needs to be taken to sample a point on the (potentially
small) aperture. This is because both the direction and the position
at the aperture are completely determined by the point in the scene.
While this is still the case for us, we trace into all relevant directions

c© 20.12.2019 The Author(s)

E. Schrade, J. Hanika, C. Dachsbacher / Lens Diffraction

of the spherical wave after passing the aperture. Hence, instead
of performing Newton iterations to obtain a ray passing through
a sampled point on the aperture or in the scene, we notice that the
phase and transmittance for one point in the scene change smoothly
over the area of the aperture (see Figure 4). When moving the point
in the scene, the change is also smooth. This observation leads us to
a new parametrization for the polynomial: We fit polynomials that
describe the phase and transmittance for the transport between a
point on the aperture and one in the scene. We also use the orthog-
onal matching pursuit algorithm from previous work [SHD16, Alg.
1] to reduce the number of terms in the polynomials. To determine
visibility in the scene and clipping by the outer pupil of the lens
we further fit polynomials to calculate the ray position on the outer
pupil. The following 6× 4 polynomial system describes the trans-
port between the aperture and scene:

Po(O) : (xO,yO,dO,xa,ya,λ) 7→ (xo,yo,τo,ϕo), (1)

where dO = |L| is the distance from the scene point in camera coor-
dinates to the center of the outer pupil, xO = xL/dO and yO = yL/dO
are the position projected onto the unit hemisphere (see Figure 5),
λ is the wavelength, and xa, ya are the coordinates of the aperture
point. Additionally to visibility calculation, we use the position on
the outer pupil xo, yo to clip rays on the outer pupil.

This polynomial system allows us to transport light from the
scene to the aperture and we use the same approach for transporting
it to the sensor. Note again that we use the fact that due to diffrac-
tion, we can change the direction on the aperture arbitrarily, hence
this approach is not applicable in a general path tracing framework.
For the transport to the sensor we have

Ps(S) : (xS,yS,zS,xa,ya,λ) 7→ (xi,yi,τi,ϕi), (2)

where xS, yS define the point on the sensor, and zS can be used
as a sensor offset for focusing. Here xi, yi are points on the inner
pupil for clipping. The need for clipping rays at the inner and outer
pupil can be seen in Figure 4 especially for the case of an off-axis
light source. In the results section we show rendered point spread
functions also for the case where it is clipped by the outer pupil.

The point spread function for a fixed point in the scene and a
fixed wavelength can be calculated for each pixel by simply inte-
grating over the aperture:

I =
∫

xa∈A
τo(xa)τi(xa)

ei 2π

λ
(ϕo(xa)+ϕi(xa))

ϕo(xa)+ϕi(xa)
da,

which we perform by standard Monte Carlo integration, sampling
xa on the aperture and accumulating phasors in a spectral frame-
buffer.

3.4. Extension for lens flares

The polynomials can as well be fitted and used for rendering lens
flares. However, we noticed artifacts due to unclipped rays that
would not pass the lens such as in Figure 6. As a consequence the
flares are generally too large and too much light reaches the sensor
due to the description of the transformation through polynomials.
To alleviate this problem we added two more polynomials for clip-
ping lens flares

Pclip : (xO,yO,dO,xa,ya,λ) 7→ (xclip,yclip). (3)

outer pupil

aperturesensor
inner pupil

Figure 6: Lens flare in an anamorphic lens (tessar-anamorphic).
Some rays at the upper part of the ray bundle would not be clipped
at the inner pupil, aperture, or outer pupil. Additional clipping at
the reflection at the outer pupil is necessary for a correct result.

xclip and yclip define the maximum distance to the lens center rela-
tive to the housing radius. For the above example (see Figure 6) the
distance is maximized at the reflection at the outer pupil which is
where rays have to be clipped, additionally to clipping at the inner
pupil, aperture, and outer pupil. We take the distance relative to the
lens housing radius so that no additional radius has to be stored.
Simply checking if √

x2
clip + y2

clip ≤ 1

is sufficient to decide if the ray needs to be clipped.

4. Implementation Details

We obtain polynomials for describing the light transport in the
lens system by fitting the coefficients of general polynomials us-
ing the orthogonal matching pursuit algorithm akin to Schrade et
al. [SHD16, Alg. 1]. We use a ray tracer to generate random rays
through the lens system for fitting the polynomials. The camera
lens is described by a sequence of surfaces each with a radius of
curvature, thickness, and a material definition. Surfaces can also be
aspheric to reduce aberrations, or cylindrical to build anamorphic
lenses (often used in the film industry for a wider aspect ratio).

We trace rays from the sensor through the lens system to calcu-
late the position on the aperture and the outer pupil. Additionally
we accumulate the optical path length during ray tracing and calcu-
late the transmittance through the Fresnel equations. The data rel-
evant for Eqs. (1), (2) and (3) is gathered from ray tracing random
rays and then fed to the fitter as in previous work.

Lens Flares. For lens flares we added the clipping polynomial de-
scribed above to the fitter. The maximal relative distance to the opti-
cal axis is tracked by the ray tracer. Additionally reflections at spec-
ified lens surfaces were added and the reflectance is accounted for.
We also added anti-reflection coatings as they are generally used
when building lenses and add colors to the flares. As the material
and the exact thickness of coatings on the different lens surfaces
is usually not made public by lens manufacturers, we approximate
them through a λ/4 coating of magnesium fluoride – a material
which is often used for such coatings.

c© 20.12.2019 The Author(s)

E. Schrade, J. Hanika, C. Dachsbacher / Lens Diffraction

Polynomial evaluation. We chose the polynomial parametrization
such that an efficient evaluation is possible. For the polynomial de-
scribing the transport between the scene and the aperture, only a
bivariate polynomial remains after inserting the wavelength and the
point in the scene. Then the phase and transmittance as well as the
information for clipping rays can be evaluated directly from the
aperture position, where points on the aperture can be sampled ran-
domly. Furthermore the transport between sensor and aperture is
independent from the transport to the scene, so each aperture sam-
ple can be splatted to the whole sensor, except for rays that are
clipped.

We found that single-precision floating-point numbers are not
sufficient for the optical path length. These values can be in the or-
der of meters, mainly bound by the size of the scene, while we need
a precision in the order of nanometres to be able to calculate the in-
terference of waves. Hence, we use doubles for the calculation of
the optical path length, and single-precision otherwise. Instead of
calculating the phasors directly from the optical path length, we
first calculate the relative phase 0 ≤ ϕrel ≤ 2π by subtracting mul-
tiples of the wavelength from the optical path length.

For rendering the point spread function for one point light and
N samples per pixel, the outer polynomial needs to be evaluated
N times, and the sensor polynomial N times per pixel. When con-
sidering more than a single light source, the different scene points
can be accumulated on the aperture, resulting in N evaluations per
scene point to calculate the phasors on the aperture; note that the
transport to the sensor is unchanged and still requires N evaluations
per pixel.

Phasors of different wavelengths cannot be added, hence we
need a framebuffer for accumulating phasors for each wavelength.
We use 16 discrete uniformly distributed wavelengths however, the
number of wavelengths can be arbitrarily changed when keeping in
mind that more storage and potentially more samples are needed.

We calculate the superposition of waves only at the pixel cen-
ters, as integrating over the pixel surface would mean that waves at
different positions can interfere with each other, which is obviously
not correct.

GPU implementation. We implemented our method on a GPU us-
ing OpenGL. It consists of two compute shaders: The first one eval-
uates the polynomial from the scene to sampled aperture points and
stores the result in a texture. The second compute shader transports
light from the aperture points to each pixel on the sensor. Samples
on the aperture are generated on the CPU using the C++ Mersenne
Twister pseudo random number generator.

The run time is independent of the position of the point light
source or the complexity of the diffraction pattern on the sensor.
Only the number of samples required for a converged image differs.
In general we noticed that larger apertures require more samples to
converge. The f/2 aperture in Figure 7 is rendered with 32 million
samples per pixel, whereas the aperture in Figure 9 was rendered
with less than 6 million samples per pixel. Our implementation is
capable of calculating 2.65 million aperture samples per pixel per
hour on an AMD Radeon R9 390 graphics card. For each sample
the first polynomial is evaluated once and the sample is afterwards
splatted to all 1440×1080 pixels in the frame buffer. The samples

are distributed equally among 16 wavelengths and we have a two-
channel floating point texture array for accumulating the phasors
with one layer per wavelength.

5. Evaluation

We have seen that our numerical approach agrees with the analytic
solutions, which are available for certain settings such as the one-
dimensional slit as shown in Figure 3. Two-dimensional images
of aperture diffraction in a camera lens can be calculated analo-
gously through accumulating the optical path lengths of all incom-
ing waves on the sensor, accelerated using our polynomials. Fig-
ure 7 shows the point spread function of a point light source where
rays pass the lens close to the border. Even for wide opened aper-
tures diffraction effects are visible as ringing at the aperture blades.
For smaller apertures diffraction streaks occur.

In previous work diffraction was approximated through the frac-
tional Fourier transform of the aperture shape. In Figure 8 we show
the results for different values of α ∈ [0,1] (α defines the frac-
tional degree of transformation) that approximately correspond to
the apertures in Figure 7. Apart from only being gray-scale, the im-
ages from fractional Fourier transform miss the aberrations caused
by the lens system. This becomes even more obvious when taking
the different out-of-focus behaviour in front of and beyond the fo-
cused distance into consideration. The aperture shape in Figure 9 is
horizontally compressed compared to the one in Figure 7 which is
due to the lens.

Our approach can further be directly used to render lens flares
by fitting the polynomials to ray traced samples that are reflected in
the lens. The flare resulting from the lens shown in Figure 6 with a
reflection at a cylindrical element is shown in the rendered image
in Figure 10.

6. Limitations and Future Work

The obvious limitation of our work is that the high computation
time remains relatively high as compared to simple analytical ap-
proximations. The high cost is due to the slow convergence of the
Monte Carlo method in the presence of interference causing nega-
tive values in the estimator. Nevertheless, we believe that our easy
to use approach resulted in a tractable algorithm.

Our technique so far does not consider correlation length. We as-
sume that all paths stay perfectly coherent no matter how far apart
they are. When tracing zero-width rays, it seems difficult to con-
sider correlation lengths. But doing so may lead to a more efficient
estimator which has fewer negative contributions. We conducted
some experiments with rendering lens flare and full 3D scenes in-
stead of just point spread functions. Rendering a few point light
sources already has much higher variance than rendering a sin-
gle point light. This leads us to the conclusion that the source of
variance is mostly the negative contributions of interference, which
may make rendering point light sources one by one more efficient
than rendering all at the same time. Thus, introducing a correla-
tion length may be a generic way of gaining a lot of efficiency by
discarding interference effects and cutting off many negative con-
tributions.

c© 20.12.2019 The Author(s)

E. Schrade, J. Hanika, C. Dachsbacher / Lens Diffraction

(a) f/2 Aperture 35×35 mm sensor

(b) f/32 Aperture (zoomed in)

(c) f/8 Aperture (zoomed in)

(d) f/2 Aperture (zoomed in)

Figure 7: Point spread function of an off-axis point light source
rendered at different apertures. Wavelength dependent clipping at
the outer pupil occurs due to rays passing the lens peripheral.

(a) α = 0.15 (b) α = 0.9 (c) α = 0.99

Figure 8: Fractional Fourier transform can be used to approximate
diffraction by a lens aperture. Lacking aberrations by the lens sys-
tem, results look generally very clean and miss distortions.

Figure 9: The image can be focused for example through adding
a sensor shift. This shift is an input of the polynomial. The above
rendering shows the point spread function of an anamorphic lens.
Due to cylindrical elements, the horizontal and vertical focal length
differ and the image is blurred either horizontally or vertically. This
depends on whether the scene point is in front or beyond the focused
distance.

In designing more efficient estimators, an open question is
how to importance sample the phase space. We cannot know the
full magnitude of the contribution of a path until we know all
other interfering paths. One approach could be to partially replace
the Monte Carlo integration by analytical approaches for special
cases [SLE18]. Since this introduces a lot of assumptions (such as
constant illumination), ideally this would be done in a very generic
manner [Olv08].

A starting point to introduce approximations is presented by the
smoothness of the phase and transmittance when plotted over aper-
ture position. This may mean that these values would be amenable
to interpolation. In the spirit of previous work [SML∗12,HESL11],
it may be possible to trace fewer rays and interpolate the values in
between or replace the integration by piecewise analytic integration
schemes.

c© 20.12.2019 The Author(s)

E. Schrade, J. Hanika, C. Dachsbacher / Lens Diffraction

1.4×1.4×

with coatingwith coating

1.4×1.4×

without coatingwithout coating

Figure 10: Lens flares are caused by reflections inside the lens sys-
tem. Our approach also works for polynomials fitted to lens flares.
Here we rendered the lens flare from Figure 6, that includes a re-
flection at the cylindrical outer pupil. The blue color of the flare
in the bottom half is caused by the anti-reflection coatings used in
lenses. In the top half we removed the anti-reflection coating before
fitting polynomials.

7. Conclusion

In this work we showed that diffraction effects by a lens aperture
can be simulated for point light sources even in the presence of
lenses causing aberrations. Using Huygens’ principle directly to in-
tegrate waves with arbitrary phase and transmittance distributions
over the area of the aperture becomes viable through splitting the
lens system at the aperture and approximating both parts by poly-
nomials. Our GPU implementation is capable of accumulating 2.65
million samples per pixel per hour for a 1440× 1080 frame buffer
on a mid-range GPU allowing for the calculation of converged
point spread functions in a few hours. We verified that Monte Carlo
integration with our approach agrees with analytic approximations
for special cases.

Acknowledgements

This work has been funded by the Deutsche Forschungsgemein-
schaft, grant DFG 1200/4-1.

References

[Alo11] ALONSO M. A.: Wigner functions in optics: describing beams
as ray bundles and pulses as particle ensembles. Advances in Optics and
Photonics 3, 4 (Dec 2011), 272–365. 2

[BWB∗99] BORN M., WOLF E., BHATIA A. B., CLEMMOW P. C., GA-
BOR D., STOKES A. R., TAYLOR A. M., WAYMAN P. A., WILCOCK
W. L.: Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light, 7 ed. Cambridge University Press,
1999. 2

[HD14] HANIKA J., DACHSBACHER C.: Efficient monte carlo rendering
with realistic lenses. In Computer Graphics Forum (Proc. of Eurograph-
ics) (2014), vol. 33, pp. 323–332. 3

[HESL11] HULLIN M., EISEMANN E., SEIDEL H.-P., LEE S.:
Physically-based real-time lens flare rendering. ACM Transactions on
Graphics (Proc. SIGGRAPH) 30, 4 (2011), 108. 3, 7

[HHH12] HULLIN M., HANIKA J., HEIDRICH W.: Polynomial optics:
A construction kit for efficient ray-tracing of lens systems. In Computer
Graphics Forum (Proc. Eurographics Symposium on Rendering) (2012),
vol. 31, pp. 1375–1383. 3

[HIP15] HARVEY J. E., IRVIN R. G., PFISTERER R. N.: Modeling phys-
ical optics phenomena by complex ray tracing. Optical Engineering 54,
3 (2015), 1–12. 2

[JKL∗16] JOO H., KWON S., LEE S., EISEMANN E., LEE S.: Efficient
ray tracing through aspheric lenses and imperfect bokeh synthesis. In
Computer Graphics Forum (Proc. Eurographics Symposium on Render-
ing) (2016), vol. 35, pp. 99–105. 3

[Kel62] KELLER J. B.: Geometrical theory of diffraction. Journal of the
Optical Society of America 52, 2 (Feb 1962), 116–130. 2

[KMH95] KOLB C., MITCHELL D., HANRAHAN P.: A realistic camera
model for computer graphics. In Proc. SIGGRAPH (1995), pp. 317–324.
3

[MWB∗16] MOUT M., WICK M., BOCIORT F., PETSCHULAT J., UR-
BACH P.: Simulating multiple diffraction in imaging systems using a
path integration method. Applied optics 55, 14 (2016), 3847–3853. 2

[Olv08] OLVER S.: Numerical approximation of highly oscillatory inte-
grals. PhD thesis, University of Cambridge, 2008. 7

[PF94] PELLAT-FINET P.: Fresnel diffraction and the fractional-order
fourier transform. Optics Letters 19, 18 (Sep 1994), 1388–1390. 3

[SDHL11] STEINERT B., DAMMERTZ H., HANIKA J., LENSCH H.:
General spectral camera lens simulation. Computer Graphics Forum 30,
6 (2011), 1643–1654. 3

[SHD16] SCHRADE E., HANIKA J., DACHSBACHER C.: Sparse high-
degree polynomials for wide-angle lenses. In Computer Graphics Forum
(Proc. Eurographics Symposium on Rendering) (2016), vol. 35, pp. 89–
97. 1, 3, 4, 5

[SLE18] SCANDOLO L., LEE S., EISEMANN E.: Quad-based fourier
transform for efficient diffraction synthesis. In Computer Graphics Fo-
rum (2018), vol. 37, pp. 167–176. 3, 7

[SML∗12] SADEGHI I., MUNOZ A., LAVEN P., JAROSZ W., SERON F.,
GUTIERREZ D., JENSEN H. W.: Physically-based simulation of rain-
bows. ACM Transactions on Graphics 31, 1 (2012), 3. 7

[Sta99] STAM J.: Diffraction shaders. In Proc. SIGGRAPH (1999),
pp. 101–110. 2

[YHW∗18] YAN L.-Q., HAŠAN M., WALTER B., MARSCHNER S., RA-
MAMOORTHI R.: Rendering specular microgeometry with wave optics.
ACM Transactions on Graphics 37, 4 (2018), 75. 3

c© 20.12.2019 The Author(s)

