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Abstract
The wide adoption of path-tracing algorithms in high-end realistic rendering has stimulated many diverse research initiatives. In
this paper we present a coherent survey of methods that utilize Monte Carlo integration for estimating light transport in scenes
containing participating media. Our work complements the volume-rendering state-of-the-art report by Cerezo et al. [CPP∗05];
we review publications accumulated since its publication over a decade ago, and include earlier methods that are key for
building light transport paths in a stochastic manner. We begin by describing analog and non-analog procedures for free-
path sampling and discuss various expected-value, collision, and track-length estimators for computing transmittance. We then
review the various rendering algorithms that employ these as building blocks for path sampling. Special attention is devoted to
null-collision methods that utilize fictitious matter to handle spatially varying densities; we import two “next-flight” estimators
originally developed in nuclear sciences. Whenever possible, we draw connections between image-synthesis techniques and
methods from particle physics and neutron transport to provide the reader with a broader context.

CCS Concepts
•Computing methodologies → Computer graphics; Rendering; Ray tracing;

1. Introduction

Since their inception in the Los Alamos National Laboratory,
computer-accelerated Monte Carlo (MC) methods have gained
popularity in many fields. Their relevance to computer graphics—
image synthesis in particular—is indisputable and underscored by
the many production renderers, such as Arnold, Hyperion, Manuka,
or RenderMan, all based on stochastic sampling of light transport
paths connecting light sources and camera sensors [CJ16,FHF∗17].
The high dimensionality of transport problems, complexity of mod-
ern scenes, and demand for physical accuracy make MC the current
method of choice in production rendering.

The quest for realism in visual effects and physical plausibility
across the film and animation industry demands virtual scenes to be
modeled with a high amount of detail and physical accuracy. Nearly
every scene nowadays contains some volumetric elements that par-
ticipate in light transport by absorbing, scattering, or emitting visi-
ble light. Participating media play an important role when modeling
realistic materials that produce effects such as the subtle softening
of illumination on human skin, characteristic translucency of fruits,
volumetric caustics on aeration under water, or atmospheric scatter-
ing in fog, clouds, or planetary nebulae.

Much work has gone into simulating light propagation in media,
and much has changed since the survey of Cerezo et al. [CPP∗05]

† Author names appear in alphabetical order except for the first.

from over a decade ago. More computational power enables holis-
tic approaches that tie volumetric effects and surface scattering to-
gether and yield simpler authoring workflows. Methods that were
previously assumed to be incompatible have been unified to allow
renderers to benefit from each method’s respective strengths. Gen-
erally, investigations have shifted away from specialized solutions,
e.g. for single- or multiple-scattering approximations or analytical
methods such as diffusion.

A lot more focus is nowadays devoted to MC integration over
the complete space of all light-transport paths. In this report we re-
view these methods and provide a coherent summary of the current
state of the art in MC rendering of scenes containing participating
media. We focus on physically based approaches and draw connec-
tions to work in neutron transport to paint a more complete picture
of how these algorithms have been developed. For the most part, we
treat the media as isotropic (but with potentially anisotropic phase
functions) and place emphasis on heterogeneous volumes (i.e. with
spatially varying density). We leave out approximations based on
diffusion, discrete ordinates, and methods for scientific volume vi-
sualization, and keep the report focused on MC methods for realis-
tic rendering. We hope this report can provide guidance for practi-
tioners implementing path-tracing based algorithms and also serve
as a reference for researchers interested in applications of radiative
transfer to image synthesis.

The remainder of this report is structured as follows: We first
summarize the optical properties (Section 2) of volumetric mat-
ter, and then introduce the theoretical foundations (Section 3) that
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most MC methods rely upon, such as the radiative transfer equa-
tion, the volume rendering equation, and the path integral formula-
tion of light transport. The following two sections describe the two
fundamental building blocks of MC light-transport algorithms for
volumes: methods for free-path sampling and the general concept
of sampling a distance along a ray in a medium (Section 4), and
methods for estimating the medium transmittance along a finite ray
segment (Section 5). We also import two new transmittance estima-
tors to the computer graphics community from the field of neutron
transport. Next, we show how such distance- and transmittance-
sampling techniques are used to construct entire light transport
paths (Section 6) and review advanced algorithms based on such
strategies (Section 7). We also briefly touch upon emissive media
such as fire, explosions, or bioluminescence. Finally, we discuss
different data structures (Section 8) for accelerating distance sam-
pling and transmittance estimation, and conclude (Section 9) by
listing a number of remaining challenges and open problems.

2. Optical properties

Before diving into the theory and practice of rendering scenes with
participating media, we first discuss the relevant optical properties
of matter.

Collision coefficients. We consider a participating medium to
consist of a collection of microscopic particles which either scat-
ter or absorb photons. Instead of modeling these particles explic-
itly, we describe them statistically by specifying their total density
per unit volume ρ [m−3] and their cross-sectional areas, σs and
σa [m2] for scattering and absorbing particles, respectively. By as-
suming that particle positions are statistically independent, we can
multiply the individual cross-sections by the density to yield the ab-
sorption coefficient µa and scattering coefficient µs, each quantify-
ing the local probability density [m−1] of a photon undergoing the
respective interaction per unit distance traveled. The extinction co-
efficient µt = µa +µs indicates the probability density of either type
of event happening per unit distance. The ratio α = µs/µt quantifies
the fraction of photons that undergo a scattering (vs. absorption)
event at a collision, and it is commonly referred to as the single-
scattering albedo.

Phase function. The directional density of light scattered at a
point in a medium is given by the phase function fp and generally
depends on the incident and outgoing directions, with an optional
spatial variation. If the medium scatters light uniformly, the phase
function is isotropic, fp = 1/(4π), and otherwise it is classified as
anisotropic. Some phase functions model the scattering density as
axially symmetric, i.e. they parameterize fp using only the angle
(or its cosine) between the two directions. Examples of popular
models are the Henyey-Greenstein [HG41], Rayleigh [Ray71], and
Lorenz-Mie [Lor90, Mie08] phase functions; see Pegoraro [Peg16]
for details and other scattering profiles.

Spatial dependence. If all of these medium properties are spa-
tially invariant, the medium is said to be homogeneous. Otherwise,
the medium is inhomogeneous or heterogeneous.

dz

L(x,ω)

(a) Absorption (b) Out-scattering (c) In-scattering (d) Emission

Figure 1: Losses and gains of radiance due to absorption (a), scat-
tering (b, c), and emission (d) within a differential volume element.

Directional dependence. When the collision coefficients µa and
µs do not depend on the direction of light propagation and the phase
function can be parameterized only by the angle between incident
and scattered light, then the medium is said to be isotropic. Note
that the phase function can still be anisotropic. If the collision co-
efficients or the phase function depend on the direction of incident
or scattered light, i.e. the response of the material varies with the
direction of propagation, the medium is referred to as anisotropic.

Assumptions. In the following, we describe mathematical foun-
dations and algorithms for simulating light transport under a num-
ber of assumptions. As mentioned previously, we assume statistical
independence of particle positions, which will give rise to the clas-
sical transport equations with exponential falloff of light. We fur-
ther assume isotropic media. Most methods, however, can be anal-
ogously applied to anisotropic media by adjusting the definition of
the collision coefficients and phase function to factor in the direc-
tional dependence [JAM∗10]. We also assume that the refractive
index only changes at medium/surface boundaries, which means
that light travels along straight lines between interactions, ignoring
effects like mirages. We further limit this survey to methods that
simulate elastic scattering, where only a photon’s direction, and
not its energy (wavelength), may change at scattering events. This
ignores effects like fluorescence and phosphorescence, and means
that the transport at one wavelength can be simulated independently
of other wavelengths. It is possible to incorporate all of these ef-
fects using anisotropic [JAM∗10], refractive [ABW14], and multi-
energy or vector [JA18] forms of the resulting transport equations.
We encourage the interested reader to consult these works to fully
comprehend the mathematics of light transport under these more
general conditions.

3. Mathematical foundations for radiative transport

We now discuss mathematical formalizations of light-matter inter-
actions and review the equations that form the basis of the MC
algorithms presented later. We write points with boldface (e.g. x),
distances italicized (e.g. y), and sometimes use the same letter for a
point and its distance from another point to emphasize the relation
(e.g. y = x+ yω, where ω is a direction vector).

3.1. Radiative transfer equation

The absorption and scattering interactions lead to three pro-
cesses that occur as light propagates along a ray: absorption, out-
scattering, and in-scattering, which are illustrated in Figure 1. Also
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accounting for medium emission, the change in radiance traveling
along direction ω through a differential volume element at point x
is described by the radiative transfer equation (RTE) [Cha60]:

(ω ·∇)L(x,ω) =−µa(x)L(x,ω) − µs(x)L(x,ω)
+µs(x)Ls(x,ω)+ µa(x)Le(x,ω), (1)

where the term

Ls(x,ω) =
∫
S2

fp(ω, ω̄)Li(x, ω̄)dω̄ (2)

is commonly referred to as in-scattered radiance, which collects the
incident radiance Li from all directions on the unit sphere S2. The
first two terms in Equation (1) correspond to losses due to absorp-
tion and out-scattering, and the third and the fourth term represent
gains due to in-scattering and volumetric emission, respectively.

Integrating both sides of the differential RTE (1) along the direc-
tion ω yields the integral form:

L(x,ω) =
∫ ∞

0
T (x,y)

[
µa(y)Le(y,ω)+µs(y)Ls(y,ω)

]
dy, (3)

which integrates emitted and in-scattered light along the ray
(x,−ω); here y = x− yω. The transmittance T (x,y) is obtained
by folding the loss of light along a line due to absorption and out-
scattering into a single differential process and integrating it along
ω, yielding

T (x,y) = e−
∫ y

0 µt(x−sω)ds. (4)

This formula is also known as the Beer-Lambert law [Lam60], and
the integral in the exponent is called the optical thickness τ. While
transmittance is a function of two points, we will often simplify
the notation and denote it as a function of just a scalar distance t:
T (t) = e−τ(t) = e−

∫ t
0 µt(x−sω)ds.

In Equation (1), we adopt the convention of modulating the self-
emitted radiance Le by the absorption coefficient. This is motivated
by the mere ease of succinctly formalizing certain concepts intro-
duced later. It is worth noting that some literature uses a dedicated
coefficient for emission or removes the coefficient altogether. Drop-
ping the coefficient, however, requires Le to have different units
than L. We thus recommend either using the absorption (or emis-
sion) coefficient to force all radiance functions be in W/m2/sr, or
defining a source term that cannot be confused with emitted radi-
ance. Lastly, the use of the absorption coefficient reinforces the no-
tion of incandescence and luminescence: light can only be emitted
where energy is first absorbed.

3.2. Volume rendering equation

Typical scenes contain not only participating media but also ob-
jects with hard boundaries. Equation (3) then needs to be extended
to accommodate for light interactions with object surfaces. The ra-
diative equilibrium at a surface point z is described by the surface
rendering equation [Kaj86]:

L(z,ω) = Le(z,ω)+
∫
S2

fr(z,ω, ω̄)Li(z, ω̄) |n(z) · ω̄|dω̄, (5)

where Le(z,ω) represents the radiance emitted by the surface,
fr(z,ω, ω̄) is the bidirectional scattering distribution function
(BSDF) which relates the differential outgoing radiance dL(z,ω)

to the incident radiance Li(z, ω̄), and |n(z) · ω̄| is a foreshortening
term due to the angle between the incident radiance direction ω̄ and
the surface normal n(z).

Equation (5) provides the boundary condition for truncating the
integration bounds of Equation (3) to the nearest surface at dis-
tance z. For the surface point z = x− zω, the resulting volume ren-
dering equation (VRE) reads

L(x,ω) =
∫ z

0
T (x,y)

[
µa(y)Le(y,ω)+µs(y)Ls(y,ω)

]
dy

+T (x,z)L(z,ω). (6)

xω zy1 y2

L(x,ω) µa(y1)Le(y1,ω) µs(y2)Ls(y2,ω) L(z,ω)

emissive
medium

scattering
medium surface

The integral represents light emitted and in-scattered along the line
between point x and the surface point z. The second term amounts
to the medium-attenuated exitant radiance from the surface given
by Equation (5). Equation (6) is also called the equation of transfer
in some literature.

3.3. Path integral formulation

Most existing MC methods for light-transport simulation operate
by sampling random light-transport trajectories, or light paths, in
the scene and evaluating the amount of energy they bring from
the light sources all the way to the camera. Veach formalized this
concept in his path integral formulation of light transport [Vea97],
which arises from the expansion of the recursive Equation (6) us-
ing the Neumann series [Vea97, PKK00] and formalizing the flux
measurement on a camera sensor.

In the path integral formulation, the value of pixel j in the ren-
dered image I can be described as a conceptually simple integral:

I j =
∫
P

f j(x)dx. (7)

Here, x = (x0,x1, ...,xk) ∈ P is a transport path of length k (seg-
ments) and P is the space of all such possible paths in the scene.
The integral is to be understood as summing up contributions of
all path lengths k ∈ [1,∞). The measurement contribution func-
tion f j(x) (defined below) gives the pixel response to the differen-
tial flux carried by the given path. The differential path measure
dx = ∏

k
i=0 dxi is the product of measures at individual vertices,

each being either the differential-volume or the differential-area
measure depending on whether xi is in a medium or on a surface.

...
x0

W j(x0,x1)

G(x0,x1)

T (x0,x1)

µs(x1) fp(· · ·)
fr(· · ·)

xk

Le(xk,xk−1)

xk−1

x1
medium

surface

The measurement contribution for length-k paths is defined as

f j(x) =W j(x0,x1)Le(xk,xk−1)G(x0,x1)T (x0,x1)

·
k−1

∏
i=1

fs(xi−1,xi,xi+1)G(xi,xi+1)T (xi,xi+1),
(8)
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where W j(x0,x1) is the response of pixel j, and

G(x,y) = D(x,y)D(y,x)
‖x−y‖2 , where (9)

D(x,y) =

{
|n(x) ·ωx→y| if x is on a surface,
1 if x is in a medium.

(10)

Le(x,y) =

{
Le(x,ωx→y) if x is on a surface,
µa(x)Le(x,ωx→y) if x is in a medium.

(11)

fs(x,y,z) =

{
fr(ωy→x,y,ωy→z) if y is on a surface,
µs(y) fp(ωy→x,y,ωy→z) if y is in a medium.

(12)

Most of these terms may have an implicit dependency on the wave-
length of light, and the integral over the measurement contribution
function may be evaluated for each wavelength separately to yield
color images. Note that these equations do not account for cross-
talk between wavelengths, i.e. fluorescence [JA18].

3.4. Monte Carlo integration

Virtually all modern high-quality physically based rendering en-
gines estimate the aforementioned transport integrals via MC inte-
gration. We use angle brackets 〈·〉 to denote an MC estimator of
some quantity and write primary, i.e. one-sample, estimators for
brevity: 〈F〉 = f (x)/p(x), where f (x) is the integrand of F and
p(x) is the probability density function (PDF) for sampling points
x. By averaging N independent realizations of a primary estimator,
one can obtain a secondary (i.e. multi-sample) estimator.

Some algorithms discussed later (e.g. unidirectional volumetric
path tracing) adopt a local view of the transport and estimate the
amount of radiance arriving at point x on a sensor from direction ω

by applying MC estimation to the volume rendering equation (6):

〈L(x,ω)〉= T (x,y)
p(y)

[
µa(y)Le(y,ω)+µs(y)Ls(y,ω)

]
+

T (x,z)
P(z)

L(z,ω), (13)

where p(y) is the PDF of sampling point y, which is y units away
from x, and where the nearest-surface radiance can be optionally
evaluated with probability P(z). This estimator requires two main
routines: one for sampling distances along the ray, and one for eval-
uating the transmittance T between two given points; we discuss
these in Section 4 and Section 5 respectively.

The recursive nature of Estimator (13) promotes a somewhat lo-
calized view on the light-transport simulation—we consider one
path segment at a time. In contrast, the path integral framework pro-
vides a more holistic, global view on the transport problem, high-
lighting the existence of multiple ways of constructing the same
path. An estimator of Equation (7) has the following general form:〈

I j
〉
=

f j(x)
p(x)

, (14)

where x is a randomly sampled path with probability density p(x)
given by the procedure, or technique, used to construct its vertices.
For a path x of some length k ≥ 1, the contribution f j(x) is well-
defined and given by Equation (8).

In the path-integral framework, unbiased simulation methods
thus differ only in the path-sampling techniques they employ and
their corresponding path PDFs p(x). This “flat” view of light trans-
port enables the use of global sampling techniques that coordinate
the sampling of entire sequences of vertices, in contrast to the lo-
cal techniques that sample one vertex at a time. Examples of such
techniques are joint importance sampling and Metropolis sampling
discussed in Section 6, and some of the bidirectional algorithms re-
viewed in Section 7. Such algorithms often make use of multiple
importance sampling (MIS) [Vea97], which is a way of optimally
weighting estimators based on their PDF to reduce variance.

Regardless of the individual sampling strategy, all techniques re-
quire two basic building blocks. The first one is to sample a distance
and is covered in Section 4. This is essential in the common case
where a path is constructed incrementally by successively extend-
ing it from the sensor to the lights. More abstract MC techniques,
which do not perform analog random walks, need to evaluate the
measurement-contribution function and thus the transmittance be-
tween two points. This is sometimes possible in closed form, and
sometimes using a stochastic estimate (cf. Section 5).

4. Distance sampling

In this and the following section, we discuss techniques for sam-
pling distances and estimating transmittance along a ray. To classify
distance-sampling methods, we borrow the terminology of analog
and non-analog estimators from the field of neutron transport, and
categorize the algorithms according to whether they strictly adhere
to the physical process of light propagation or not, respectively.

Analog methods sample the distance to the next light-medium
collision along the line of flight analogously to how photons in-
teract with materials in the real world. The sampling procedure is
in such cases commonly referred to as free-path sampling or free-
flight-distance sampling. The distance distribution strictly adheres
to the Beer-Lambert law, i.e. it has a PDF proportional to the trans-
mittance along the given ray. Sampling can be explicit, via an inver-
sion of the corresponding cumulative distribution function (CDF),
or implicit, through probabilistic reasoning as in null-collision al-
gorithms (discussed below). Since the distribution of particles in-
side the medium is assumed to be random, the free-flight distance
is a random variable.

Non-analog methods have been developed to improve sampling
efficiency over analog methods. They use sampling distributions
that deviate from the true distribution of free paths, which is “cor-
rected” by appropriately weighting the samples.

Both analog and non-analog methods share the common theme
of sampling distances according to a certain PDF. In the follow-
ing, we first review analytic and semi-analytic analog methods for
media that permit free-path sampling in closed form or through a
simple iterative process. Next, we discuss rejection-based analog
estimators that rely on so-called null collisions, and review their
non-analog variants that lift certain constraints and further extend
the class of supported media. Lastly, we describe non-analog ap-
proaches that draw distances from carefully designed PDFs to re-
duce the variance in specific scenarios.
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Table 1: Various expressions used for closed-form sampling of free paths in homogeneous and exponentially-varying media [BM01].

Medium µt(t) T (t) p(t) F(t) F−1(ξ)

Homogeneous (infinite) c e−ct ce−ct 1− e−ct − ln(1−ξ)/c

Homogeneous (bounded) c : t < b e−ct cec(b−t)/
(

ecb−1
) (

ecb− ec(b−t)
)
/
(

ecb−1
)
− ln

(
1−ξ

(
1− e−cb

))
/c

Exp. decreasing (infinite) ce−at , a > 0 exp
(
− c

a
(
1− e−at)) µt(t)exp

(
− c

a
(
1− e−at)) 1− exp

(
− c

a
(
1− e−at)) − ln(1−a/c ln(ξ))/a

4.1. Analytic and semi-analytic free-path sampling

For estimators of the form in Equation (13), a sensible importance
sampling strategy is to use a distance PDF that is proportional to
transmittance. The corresponding sampling procedure can be de-
rived from the Beer-Lambert law (Equation (4)). The law gives the
fraction of particles—the transmittance T (t)—that will, in expec-
tation, travel beyond a certain distance t without colliding with the
medium. Denoting X a random free-path variable, we thus demand
P(X > t) = T (t). Note that the CDF of sampled distances F(t) is
defined as the complementary probability, P(X ≤ t), hence

F(t) = 1−T (t). (15)

The recipe for sampling free paths can be obtained by inverting the
CDF. Algorithmically, the procedure amounts to generating a ran-
dom number ξ and finding the position along the ray where 1−T (t)
equals ξ. In the remainder of this subsection we discuss finding this
location in closed form and via an iterative search. In both cases,
the probability density (PDF) of each sample can be computed by
differentiating the CDF:

p(t) =
dF(t)

dt
=

d
dt

(
1− e−τ(t)

)
=

dτ(t)
dt

e−τ(t)= µt(t)e−τ(t). (16)

4.1.1. Closed-form methods

In homogeneous media, where the extinction µt is spatially invari-
ant, optical thickness is linearly proportional to the distance t along
the ray: τ(t) = tµt. The free-path sampling CDF thus simplifies to

F(t) = 1− e−µtt , (17)

which can be easily solved for t, yielding an analytic formula for
sampling free paths using uniform random numbers ξ ∈ [0,1),

t(ξ) =− ln(1−ξ)

µt
, (18)

with PDF

p(t) = µte−µtt . (19)

An alternative approach for deriving the same sampling routine
is to first define a PDF that is proportional to transmittance. The µt
factor in the PDF expression comes from normalizing the transmit-
tance function, i.e. dividing it by its zeroth moment—the mean free
path 1/µt. The CDF is then expressed by integrating the PDF, and
its inversion yields the same closed-form solution for t(ξ).

The former approach of defining the distance-sampling CDF via
the transmittance function was first applied in the context of parti-
cle transport by Stanislaw Ulam in a letter to John von Neumann,
laying down one of the cornerstones of solving transport problems

using MC integration. A similar derivation can be carried out for in-
homogeneous media as well, the only requirement—albeit a strong
one—is the existence of a differentiable and invertible CDF; a few
examples are listed in Table 1. Brown and Martin [BM03] propose
to use the iterative Newton-Raphson method to find the solution
t(ξ) numerically when closed-form inversion is not possible.

The above procedure assumes the medium is infinite. In the pres-
ence of solid objects, one option is to clamp the PDF to zero for
distances beyond the nearest surface and re-derive the CDF (see
Table 1). Alternatively, we can handle the interactions with the sur-
face. The probability of hitting the surface located at distance s is
equal to the probability of sampling a random distance t beyond s.
This is simply the integral of the PDF from s to infinity, which by
definition equals to the transmittance at s; for homogeneous media

P(t > s) =
∫ ∞

s
p(t)dt = 1−F(s) = e−µts. (20)

4.1.2. Regular tracking

Certain scenes can be well described as collections of “simple”
volumes for which closed-form free-path sampling routines exist.
Examples of such scenes are pebble-bed reactors with gas-cooled
graphite pebbles, layered materials such as human skin, or anything
that can be approximated well by a piecewise-constant spatial sub-
division. Since each volume element allows for analytic sampling,
all we need is a way to carry samples across its boundaries in case
the sampled distance exceeds them. This method is known as reg-
ular tracking [SBB∗99] or surface tracking [Lep10] and works as
follows.

Given a ray and a sampled value of transmittance ξ ∈ (0,1],
we sweep along the ray and iterate over individual partitions until
the accumulated optical thickness first exceeds the value that cor-
responds to the sampled transmittance. The exact location within
the last partition is found analytically such that the total optical
thickness τ up to this point yields the exact transmittance value, i.e.
e−τ = ξ. Figure 2 provides an illustration of this algorithm.

The main strength of regular tracking is its correctness, i.e. the
distribution of free paths is exactly proportional to transmittance:
p(t) = µt(t)T (t). Its main drawback is the need to “discover” all
boundaries along the free-path sample. This can be expensive when
free paths cross many boundaries, unless the crossings can be found
quickly, such as with uniform grids [AW87], octrees [HTAT∗06], or
other regular spatial-subdivision structures.

4.1.3. Ray marching

In order to reduce the cost of regular tracking, one can simply
ignore the boundaries and march along the ray with fixed-size
steps [PH89]. This significantly simplifies the implementation. At
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Figure 2: Illustration of free-path sampling in a medium composed
of several homogeneous regions; blue and pink particles represent
real and fictitious matter, respectively. Regular tracking finds all
boundary crossings and solves for the position analytically. Ray
marching steps with a constant stride until it accumulates the sam-
pled optical thickness. Delta tracking first homogenizes the volume
using fictitious matter and then compensates for that by explicitly
handling the resulting null collisions with that matter.

each step, the algorithm queries the local medium extinction and
then moves forward by a fixed distance (see Figure 2). The opti-
cal thickness is accumulated assuming the extinction is constant or
linear between the marching steps. Once the marching exceeds the
desired value of optical thickness, the algorithm retracts and solves
for the sampled location between the last two steps, again assuming
constant or linear extinction.

Approximating the actual extinction with a piecewise con-
stant/linear function causes the distance distribution to deviate from
the true, free-path distribution. The bias persists even if the step-
ping is randomly jittered [RSK08] and can become particularly
objectionable when the medium contains thin features, which the
stepping is likely to miss. In cases where the frequency spectrum
of the extinction function is band-limited, one should conform to
the Shannon sampling theorem and increase the stepping to 2× the
Nyquist frequency. This can, however, quickly become expensive
if the extinction changes rapidly along the ray. The cost can be re-
duced by adapting the step size locally or by employing nested and
high-order ray-marching schemes [Muñ14].

4.2. Null-collision methods

The first null-collision methods were developed in the field of neu-
tron transport and plasma physics to address the challenge of sam-
pling free paths in heterogeneous media. These methods are based
on von Neumann’s idea of generating arbitrary sample distributions
via rejection sampling [vN51] and can handle arbitrary, e.g. pro-
cedurally generated, heterogeneity. They are applicable to a wider
class of volumes than regular tracking and do not bias the free-path
distribution like ray marching. The most limiting drawback of these
methods is their inability to quantify the PDF of individual samples.

The main idea of null-collision methods is to introduce fictitious
matter that has no impact on the light transport but enables the use
of the (semi-) analytic distance sampling routines we discussed in
Section 4.1. The fictitious matter exhibits so-called null collisions
upon which light continues traveling forward with unchanged en-
ergy. We can vary the amount of fictitious matter spatially—for in-

stance to homogenize the total (real + fictitious) density—to enable
sampling collisions in closed form. This idea of adding fictitious
matter is common to all null-collision algorithms. Individual meth-
ods vary in the amount of fictitious matter added and the procedure
for sampling collisions with the altered medium.

4.2.1. Delta tracking

To best of our knowledge, the first description of delta tracking
was provided by Butcher and Messel [BM58, BM60] and Zerby et
al. [ZCB61] in an application of Monte Carlo methods to electron-
photon cascades. The technique was later detailed in the doctoral
thesis of Bertini [Ber63] and independently mentioned by Wood-
cock et al. [WMHL65] introducing the term fictitious collision.
Skullerud [Sku68] developed an analogous technique for applica-
tions in plasma physics. Due to the many origins and applications,
the method is known under several names, the most popular be-
ing delta tracking, Woodcock tracking, pseudo scattering, and the
null-collision algorithm. Despite being very intuitive, it took sev-
eral years until the correctness of the algorithms was proved rigor-
ously [Mil67, Col68]. Recently, Galtier et al. [GBC∗13] presented
a derivation of the algorithm directly from the RTE, demonstrating
not only the correctness, but also providing a convenient framework
for postulating new variants of the algorithm.

Delta tracking achieves the correct free-path distribution by arti-
ficially increasing the collision rate and rejecting some of the colli-
sions in the spirit of a zero-sum game. The impact of the fictitious
matter can be formalized with the following differential equation:

−µn(x)L(x,ω)+µn(x)
∫
S2

δ(ω− ω̄)L(x, ω̄)dω̄ = 0, (21)

which states that the losses and gains due to null-collisions per-
fectly cancel out leaving the radiation field intact. Adding the left-
hand side of Equation (21) to the right-hand side of Equation (1),
integrating the resulting differential equation spatially, and solving
the Dirac delta integral of null collisions yields:

L(x,ω)=
∫ ∞

0
Tµ̄(x,y)

(
µa(y)Le(y,ω)︸ ︷︷ ︸

emission

+µs(y)Ls(y,ω)︸ ︷︷ ︸
scattering

+µn(y)L(y,ω)︸ ︷︷ ︸
null-collisions

)
dy,

(22)

where Tµ̄(x,y) = e−
∫ y

0 µa(z)+µs(z)+µn(z)dz; we refer to the sum
µa(x)+µs(x)+µn(x) as the total collision coefficient µ̄(x). We can
then turn Equation (22) into an MC estimator,

〈L(x,ω)〉= Tµ̄(x,y)
pµ̄(y)

[
µa(y)Le(y,ω)+µs(y)Ls(y,ω)+µn(y)L(y,ω)

]
,

(23)

where pµ̄ denotes the PDF for sampling collisions in the combined
medium. Since the fictitious matter does not impact light transport,
we can freely modulate its density to ensure the collision sampling
can be done in closed form, e.g. by making the total collision coef-
ficient constant and sampling from pµ̄ by using Equation (18) with
µ̄ instead of µt. In the remainder of this section, we will focus on
volumes assuming the scene contains no surfaces and use Estima-
tor (23) as a simplified version of Estimator (13); see the work by
Eymet et al. [EPG∗13] for a treatment of scenes with surfaces.

Having sampled a tentative collision at y, we now have three
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radiance components to evaluate in Equation (23). Delta tracking
randomly chooses one of them with probabilities proportional to
the corresponding coefficient:

Pa(y) =
µa(y)
µ̄(y)

, Ps(y) =
µs(y)
µ̄(y)

, Pn(y) =
µn(y)
µ̄(y)

, (24)

classifying the collision as either absorptive, scattering, or null, re-
spectively. The absorptive and scattering events represent real col-
lisions and yield valid free-path samples in the original medium.
The null collision, on the other hand, requires estimating L by re-
cursively invoking the estimator from y. Delta tracking thus steps
forward along the line by sampling tentative collisions until one
is probabilistically classified as real. The sampled free-flight dis-
tance y is then the one from the ray origin to the first real collision.

Table 2 summarizes the properties of up-to-now described meth-
ods for sampling free paths. Below, we discuss the main drawbacks
and challenges of delta tracking in detail.

Unknown PDF value. Delta tracking casts the problem of find-
ing a collision in the original medium as a problem of finding a real
collision in the combined medium. The distribution of distances to
the first real collision in the combined medium corresponds to free-
path distribution in the original medium, i.e. the PDF of free-path
samples produced by delta tracking is µt(y)T (x,y) [Col68, Mil67].
However, the main drawback of delta tracking is that, because
of the exponentiated heterogeneous integral in T (x,y), we can-
not compute the actual value of the PDF. Looking back at Equa-
tion (13), this does not seem to be a problem since the T (x,y) in the
PDF is conveniently canceled out by the transmittance term in the
numerator. However, the inaccessibility of the PDF value prevents
us from combining delta tracking with other distance-sampling
techniques via multiple importance sampling [Vea97], unless we
base the MIS weight on an approximation of the PDF obtained us-
ing e.g. ray marching. The difficulty of calculating the PDF stems
from the fact that the real collision can follow after an arbitrarily
long chain of null collisions. The (marginal) PDF of the real colli-
sion can thus be calculated only by integrating over an infinite set
of null-collision chains, which is practically infeasible.

Stratification and quasi-random numbers. Using stratified ran-
dom numbers for sampling, such as quasi-Monte Carlo sequences
or blue-noise patterns, requires a fixed mapping from random-
number dimensions to sampling techniques that use them. Because
methods like delta tracking require a variable number of random
numbers, such a mapping is hard to derive. One strategy to employ
some stratification is to map two stratified dimensions to sampling
of the first tentative collision (distance and probabilistic classifica-
tion), and construct the remaining collisions (if any) with indepen-
dent uniform random numbers [RSK08].

Overhead of null collisions. Each tentative collision requires an
evaluation of spatially varying coefficients that often depend on
costly procedurals or slow memory access. To maximize the per-
formance, one should therefore add no more fictitious matter than
absolutely necessary to enable closed-form sampling. This amounts
to finding a tight majorant bound of the extinction function that per-
mits analytic collision sampling, which has been addressed using
various spatial-subdivision schemes that we discuss in Section 8.

4.2.2. Weighted delta tracking

In this section, we discuss a generalization of delta tracking for
postulating non-analog variants of the algorithm, which sample dis-
tances with PDFs not necessarily proportional to transmittance. To
counteract the deviation from the analog process, non-analog meth-
ods weight each sample producing a weighted distance distribution
that still corresponds to the distribution of true free paths. Beside
other applications, the weighting provides means to handle media
with negative extinction coefficients as well as cases where µ̄(x) is
not a majorant of µt(x), i.e. µn(x)< 0 for some x. Lastly, weighted
tracking allows for a more efficient estimation of transmittance (c.f.
Section 5) and handling of multiple wavelengths (c.f. Section 6.5).

For notation brevity, we rewrite the estimator in Equation (23) as

〈L(x,ω)〉= Tµ̄(x,y)
pµ̄(y) ∑

C
µ?(y)L?(y,ω), (25)

where C = {(µa,Le),(µs,Ls),(µn,L)}, and (µ?,L?) represents one
entry in C.

In order to formalize the probabilistic evaluation of individual
radiance components (akin to Russian roulette), we can use the fol-
lowing notation:

〈 f (x)〉=H[P−ξ]
f (x)
P

, (26)

where ξ ∈ (0,1] is a uniform random number, P is the probability
of evaluating f (x), and H is the Heaviside function. The estimator
can then be rewritten as

〈L(x,ω)〉= Tµ̄(x,y)
pµ̄(y) ∑

C
H[P?(y)−ξ?]

µ?(y)
P?(y)

L?(y,ω), (27)

where ? again marks quantities associated with a specific collision
type. The values of individual ξ? are typically anti-correlated to en-
sure that only one component gets evaluated. For clarity, we rewrite
Estimator (27) by concatenating the two fractions into a single local
collision weight w?(x):

〈L(x,ω)〉= ∑
C
H[P?(y)−ξ?]w?(x)L?(y,ω), (28)

w?(x) =
Tµ̄(x,y)

pµ̄(y)
µ?(x)
P?(x)

. (29)

In standard delta tracking, the probabilities P?(x) are propor-
tional to the respective collision coefficient as in Equations (24),
and the distance sampling PDF is pµ̄(y) = µ̄(y)Tµ̄(x,y). Taking
these into account, we can verify that the collision weight w? is al-
ways 1 because the transmittance Tµ̄ cancels out with the tentative-
collision PDF pµ̄ up to the factor 1/µ̄, which together with µ? can-
cel out the probability P?. This confirms that probabilities that are
proportional to the collision coefficients yield an analog estimator.

Several works [Cra78, GBC∗13, EPG∗13, NSJ14, SKGM∗17,
KHLN17] made the observation that probabilities P? do not in fact
need to be proportional to the respective collision coefficients µ?.
As long as they are valid probabilities permitting probabilistic eval-
uation, i.e. P? ∈ (0,1], they can be set arbitrarily. While it may be
difficult to interpret the physical process in such case, the mathe-
matics still hold and tailoring the probabilities to the problem at
hand can often improve sampling efficiency.
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Table 2: Overview of the properties of different analog methods for sampling free paths.

Closed-form tracking Regular tracking Ray marching Delta tracking

simple media such as homoge-
neous, linear, or exponential

piecewise “simple” media any media any media with bounded µt(x)

efficient but highly limited iterative, inefficient if free paths
cross many boundaries

iterative, inefficient for media
with high frequencies

iterative, inefficient if too much
fictitious matter is added

unbiased unbiased biased unbiased

known PDF known PDF known (approximate) PDF unknown PDF

Since deviations from the analog distribution are corrected by
weighting the samples, it is illustrative to write out the weights ap-
plied to real collisions. Assuming a real collision i occurs at xi after
(i−1) null collisions, the weight induced by the chain of null col-
lisions reads:

w(x1 · · ·xi−1) =
i−1

∏
j=1

Tµ̄(x j−1,x j)

pµ̄(x j)

µn(x j)

Pn(x j)
=

i−1

∏
j=1

µn(x j)

µ̄(x j)Pn(x j)
. (30)

This provides us with a recipe for weighting real collisions to obtain
a weighted distribution that is equivalent to that of free paths in the
original volume.

Weighted variants of delta tracking have been proposed to ad-
dress various transport problems. Early research in neutron trans-
port focused on increasing collision rates in measurement re-
gions [Ste66, SG69] or artificially stretching the free-path dis-
tribution in deep-penetration problems [Cra78, MK15]. Specific
schemes were also developed for handling negative values of (null-)
collision coefficients [CCT72, Cra78, GBD∗16, SKGM∗17]. These
variants allow violating the assumption that µ̄(x) is a majorant of
µt(x), which can be sometimes desirable. For instance, when the
volume contains a small region with high extinction, a bounding µ̄
will lead to many null collisions everywhere else. Decreasing µ̄ re-
duces the number of null collisions at the cost of negative weights.
The ability to handle µ̄ < µt(x) is very practical also for precom-
puting acceleration data structures in situations when the maximum
value of extinction in a finite region cannot be found exactly. Un-
fortunately, negative weights will rapidly increase variance, so one
should allow µ̄ < µt(x) only when absolutely necessary.

Non-bounding µ̄(x) leading to negative µn(x) can be handled e.g.
by setting the collision probabilities to

Pa(x) =
µa(x)

µt(x)+ |µn(x)|
, (31)

Ps(x) =
µs(x)

µt(x)+ |µn(x)|
, (32)

Pn(x) =
|µn(x)|

µt(x)+ |µn(x)|
. (33)

Notice that the probabilities are identical to those in standard delta
tracking from Equations (24) if µn(x) is non-negative, in which case
w?(x) = 1. As soon as one of the tentative collisions occurs in a
region where µn(x) is negative, the terms in the weight no longer
cancel out perfectly and the sample weight will deviate from 1.

Another practical application of weighting was proposed by

Eymet et al. [EPG∗13] who combined weighted tracking and en-
ergy partitioning [SSH73], also known as sample splitting. The
double-particle model of Szirmay-Kalos et al. [SKGM∗17] effec-
tively amounts to sample splitting as well.

Discussion. The above formalization of weighted delta track-
ing was inspired by the integral formulation of null-collision al-
gorithms developed in particle-transport physics by Galtier et
al. [GBC∗13] and recently adopted in computer graphics by Kutz
et al. [KHLN17]. Since the integral formulation is derived from the
RTE, it directly demonstrates the correctness of null collision algo-
rithms without relying on constraining physical interpretations or
involved mathematical proofs [Col68, Mil67]. To that end, Galtier
et al. first apply a number of identities to the RTE to obtain a formu-
lation that can be trivially turned into a Monte Carlo estimator. We
took a slightly different approach here of first defining an estimator
and then reasoning about the probabilistic evaluation. Our approach
should feel more familiar to computer-graphics audience; never-
theless, we encourage the interested reader to consult the works of
Galtier at al. [GBC∗13] and Eymet et al. [EPG∗13] for a slightly
different perspective and additional insights for handling surfaces.

4.2.3. Decomposition tracking

The performance of (weighted) delta tracking is in practice pro-
portional to the cost of querying spatially-varying medium col-
lision coefficients. Kutz et al. [KHLN17] propose to reduce the
number of these evaluations by a technique called decomposition
tracking. The idea is to decompose the volume into two compo-
nents: a (piecewise) homogeneous component µc

t , which can be
sampled cheaply, and a residual heterogeneous component µr

t (x) =
µt(x)− µc

t , which should be queried as little as possible to reduce
the cost. Given two distance samples, xc representing a free path in
the homogeneous component, and xr obtained using delta tracking
of the residual component, a valid free path in the composite vol-
ume can be obtained by taking the minimum of the two sampled
distances, i.e. x = min(xc,xr). Figure 3 provides an illustration.

Creating two distance samples is clearly not faster than sampling
the composite volume, unless—and this is the key observation of
Kutz and colleagues—the sample in the residual component is con-
structed lazily. The authors first sample the homogeneous compo-
nent and then perform delta tracking of the heterogeneous compo-
nent, but as soon as a tentative collision exceeds xc, the tracking is
terminated. Some free paths are thus created without ever evaluat-
ing µr

t (x) and the number of spatially varying queries is generally
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ray

(a) Original medium (b) Homogeneous part (c) Residual part

Figure 3: Decomposition tracking splits a heterogeneous medium
into a homogeneous component and a residual heterogeneous com-
ponent. The method then (lazily) samples free paths independently
in each component and takes the shorter as the free path in the
original medium. Figure reproduced from [KHLN17].

reduced. With a careful implementation, this approach can produce
identical free-path samples to delta tracking without any decompo-
sition if the same random numbers are used.

A desired property of the decomposition is to represent most of
the volume using the homogeneous component—this will lead to
greater savings. The goal is thus to find a tight minorant bound µc

t
that permits closed-form sampling. Since delta tracking is used for
the residual component, we also need to define an ideally tight ma-
jorant for the residual component. Various acceleration structures
can be used to that end (see Section 8). Kutz et al. [KHLN17] also
propose a weighted variant of decomposition tracking to gracefully
handle situations when exact (local) minima and maxima cannot be
calculated easily, such as in some procedural volumes.

4.3. Tabulation-based sampling

As already demonstrated in the sections on null-collision methods
above, distances can be sampled arbitrarily as long as the samples
are weighted by T (x,y)/p(y). In this section, we briefly discuss
tabulation approaches designed to importance sample more terms
instead of just the transmittance. Later in Section 6, when we dis-
cuss the construction of entire light transport paths, we will also ex-
amine the distance sampling PDFs used by other techniques, such
as equiangular [KF12] and joint-importance sampling [GKH∗13].

Since analytic sampling techniques can be employed only for a
rather small class of problems, numerical recipes based on tabu-
lation are often used in cases when the sampling CDF cannot be
easily defined or inverted. In such cases, one typically builds a
piecewise-polynomial PDF along the ray and finds the sampled lo-
cation using a binary search over the segments, followed by solving
the polynomial to find the exact location.

Kulla and Fajardo [KF12] precompute a piecewise-constant
PDF proportional to the product of transmittance and scatter-
ing coefficient along the given ray using ray marching. This can
be further improved by including a spatially-varying estimate of
fluence [NSJ14]. Novák et al. [NNDJ12b, NNDJ12a] employed
piecewise-linear PDFs to importance sample the contributions of
virtual linear lights to camera rays according to the product of the
two phase-functions along the lines. The proposed approach con-
structs the PDF on the fly, allowing only about ten evaluations of
the product to keep the overhead small. This constraint was lifted

ti ∝ T (t) ti ∝ T (t)

t− < ti < t+ t < ti

T (t)
t t t

t− t+

T T

t

t

(a) Expected-value est. (b) Collision est. (c) Track-length est.

Figure 4: Expected-value estimators (a) calculate the transmit-
tance value exactly. Collision (b) and track-length (c) estimators
utilize free-path sampling techniques and check if the sample falls
within an interval centered at t, or past t, respectively. Figure re-
produced from [BJ17].

by Georgiev et al. [GKH∗13] who re-parameterized the geometric
setting to precompute a single table for all configurations of two
(infinite) lines. The precomputed PDF can be sampled much more
densely, providing more accurate importance sampling.

Many of the aforementioned algorithms weight distance samples
to ensure unbiased results. In the next section, we detail the vari-
ous approaches developed for estimating transmittance, which is
needed for computing the sample weight, and for the general task
of estimating transport along a given path segment.

5. Transmittance estimation

Transmittance quantifies the expected fraction of photons that
travel between two points x and y without undergoing absorp-
tion or out-scattering. When sampling free paths, we account for
transmittance implicitly through the distribution of distances. If
other distance PDFs are used, or when calculating attenuation along
given rays (e.g. shadow rays in a path tracer), we need to estimate
transmittance explicitly. There are many different ways to estimate
transmittance, and in the subsections below we broadly classify
these according to how they approach the problem; Figure 4 illus-
trates some of these approaches.

5.1. Estimators integrating optical thickness

One broad class of techniques estimates transmittance by comput-
ing the optical-thickness integral τ(t) =

∫ t
0 µt(z)dz and exponentiate

its negative to obtain the transmittance.

5.1.1. Expected-value estimator

When the extinction coefficient along the ray permits estimating
optical thickness analytically, the transmittance can be calculated
exactly (with zero variance and no bias). Such estimators are re-
ferred to as expected-value estimators [Spa66]. For homogeneous
media, the expected-value estimator involves evaluating the expo-
nential at distance t:

〈T (t)〉EV = e−µtt . (34)

Some simple forms of heterogeneous media also accept analytic
computation of optical thickness. We list a few examples in Table 1.
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5.1.2. Regular tracking

Regular tracking, introduced in Section 4.1.2, can be adapted for
calculating transmittance in piecewise-simple media. We sweep
along the straight line from 0 to t finding all boundary crossings
and for each penetrated volume i, we compute optical thickness τi
of the overlapping ray segment. The negated total optical thickness
of all k segments is then exponentiated to calculate the transmit-
tance: T (t) =−e−∑

k
i τi .

If the volumes/voxels are homogeneous, then we simply have
τi = µt,i ·∆i, where ∆i is the distance the ray travels through voxel
i and µt,i is its extinction coefficient. It is also possible to compute
the transmittance in this way for higher-order voxel reconstructions
such as trilinear interpolation, though the expression for τi becomes
more complex. Since the optical thickness is computed exactly, reg-
ular tracking can be classified as an expected-value estimator.

5.1.3. Ray marching & quadrature rules

As in the case of sampling free paths, one can avoid the burden of
finding all boundary crossings by using ray marching. The basic
idea is to approximate the optical thickness integral by a numerical
quadrature:

〈T (t)〉RM = e−〈τ(t)〉 . (35)

The most straightforward approach uses a Riemann summation,
which approximates τ by assuming that the extinction function is
constant along each equal-sized step. This corresponds to using
Equation (35) with:

〈τ(t)〉RS =
k

∑
i=1

µt(ti)∆t , with: ti = (i−1+ t0)∆t , (36)

where ∆t = t/k, and t0 = 0,1/2,1 results in the left-, central-, and
right-Riemann sum, respectively. Higher-order quadrature tech-
niques like the trapezoid rule and Simpson’s rule (which assume
linear and quadratic variation of µt, respectively) are also possible.
In addition, the step size ∆t can be adapted to the local variation of
the medium density.

Ray marching can be applied to any media with potentially spa-
tially varying extinction; however, the assumption of constant, lin-
ear, quadratic, etc. variation of extinction leads to a systematic over-
estimation of the transmittance as formally described by Jensen’s
inequality [Jen06]. Ray marching can therefore be viewed as a bi-
ased expected-value estimator.

5.1.4. Monte Carlo integration of optical thickness

An alternative to integrating the optical thickness using quadrature
is to employ a MC estimator, which takes the general form

〈τ(t)〉MC =
1
k

k

∑
i=1

µt(ti)
p(ti)

, with ti ∈ [0, t] and ti ∝ p(ti). (37)

Note that if we use a uniform PDF and interpret ∆ = 1
kp(ti)

, then this
is equivalent to that of the Riemann sum above, though evaluated
using stochastic samples.

Since MC integration has relatively poor convergence for such

low-dimensional integrals, Pauly et al. [PKK00] suggested a strat-
ified MC approach which jitters an entire sequence of regularly
spaced samples using a single uniform random offset ξ ∈ [0,1).
Plugging this sequence into Equation (37) and assuming a uniform
PDF yields:

〈τ(t)〉SMC =
k

∑
i=1

µt(ti)∆t , with: ti = (i+ξ)∆t . (38)

This brings this approach even closer to the Riemann sum, but the
random jitter decorrelates the error between different evaluations
and replaces structured (banding) artifacts with noise. This gen-
eral idea of randomly offsetting entire regular sample patterns has
also more recently been used for other MC integration problems in
graphics under the name “uniform jittered sampling” [RAMN12].

Even though Equations (37) and (38) are unbiased estimators of
optical thickness, once the estimate is inserted into the transmit-
tance exponential, the final transmittance estimate will be biased,
overestimating the true transmittance on average. As with numeri-
cal quadrature, this can also be proven using Jensen’s inequality.

5.2. Estimators using free-path sampling

It is also possible to stochastically estimate transmittance by trans-
forming the free-path sampling techniques from the previous sec-
tion into transmittance estimators.

5.2.1. Collision estimator

Collision estimators approximate the transmittance at a given dis-
tance t by relating it to the collision density at that distance. In the
neutron transport literature [Spa66, SG69, LK91] these estimators
are typically described as “scoring” the reciprocal of the extinction
coefficient if a sample falls within some designated region. We will
instead derive the collision estimator directly as a MC estimator of
(potentially blurred) transmittance.

We start by noting that the convolution of any function with the
delta distribution δ gives back the original function. Hence, we can
write the transmittance as

T (t) =
∫ ∞

0
T (s)δ(s− t) ds. (39)

Given the above integral, we could imagine approximating it
with a simple MC estimator that draws random distances ti. Unfor-
tunately, due to the delta function, such an approach would always
return zero since the probability of a sample ti falling exactly at t
is zero. To avoid this problem, we can replace the delta distribution
with some normalized kernel K with finite support:

T (t)≈
∫ ∞

0
T (s)K(s− t) ds≈ T (ti)K(ti− t)

p(ti)
. (40)

While this step introduces bias—blurring of transmittance by K—
the one-sample MC estimator on the RHS provides a usable result.

It could seem that Equation (40) has not helped to solve our prob-
lem, since the RHS still requires evaluating the transmittance at ti.
If we sample the distances ti using free-flight sampling with PDF
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p(ti) = µt(ti)T (ti), we get

〈T (t)〉C =��T (ti)K(|ti− t|)
µt(ti)��T (ti)

=
K(ti− t)

µt(ti)
. (41)

For the case where K is a normalized box kernel that returns
1/w whenever ti− t ∈

[
−w

2 ,
w
2
]

and zero otherwise, Equation (41)
would return 1

w
1

µt(ti)
iff the sample ti falls within the kernel support.

In general, any normalized kernel is admissible, and as the width
of the kernel approaches the delta distribution, the estimator ap-
proaches the correct expected value. Note that in neutron transport,
“collision” estimators are typically used to estimate the integral of
transmittance within a region, instead of the average transmittance.
This simply corresponds to using an un-normalized kernel for K.

The collision estimator is typically used in methods such as vol-
umetric photon mapping [Jen96,JC98], where it is often derived as
a density estimator.

5.2.2. Track-length estimator

While collision estimators approximate transmittance by consider-
ing the density of photon collisions occurring at a specific loca-
tion/distance, track-length estimators interpret the transmittance as
the probability that a photon will reach at least some distance. This
technique was first developed in neutron transport [Spa66, SG69,
Cra78], and then independently reinvented in graphics by Jarosz et
al. [JNT∗11].

To obtain this estimator, let us consider the following simple
modification:

〈T (t)〉RR =

{
T (t)

P(accept) if accept

0 otherwise.
(42)

The above expression evaluates the transmittances only some of the
time, i.e. with probability P(accept), and the remaining times it just
returns zero. This is an instance of Russian roulette [AK90], and it
is easy to show that this estimator is unbiased:

E
[
〈T (t)〉RR

]
= P(accept) · T (t)

P(accept)
+P(reject) ·0 = T (t), (43)

as long as P(accept)> 0 for all t where T (t)> 0.

Much as in the collision Estimator (40), the benefits of such
a formulation are not immediately obvious however, since Equa-
tion (42) still requires computing T (t). The trick is to design the
acceptance probability P(accept) so that it exactly equals the trans-
mittance T (t), in which case the terms will cancel out, and we can
return 1 and avoid the need to evaluate transmittance at all.

We can accomplish this by defining accept as the condition
that we have generated a free-flight distance ti > t. If the free-
flight distances are distributed according to the transmittance, i.e.
p(ti) = µt(ti)T (ti), using the techniques described in the last sec-
tion, the probability that a photon has traveled at least as far as t is:

P(ti > t) =
∫ ∞

t
p(s) ds =

∫ ∞
t

µt(s)T (s) ds = T (t). (44)

Note that the above relationship is a generalization of Equation (20)
and is true whether the medium is homogeneous or heterogeneous.

By using P(ti > t) as the acceptance probability in Equation (42),
we obtain the so-called track-length estimator:

〈T (t)〉TL =

{
T (t)

P(ti>t) = 1 if ti > t

0 otherwise,
(45)

which returns 1 if the sampled photon reaches t, and zero otherwise.

Bias. As shown in Equation (43), this is an unbiased estimate of
transmittance if P(ti > t) = T (t), which is true for all unbiased
transmittance-based free-flight sampling approaches discussed in
the previous section. We could also use a biased approach like ray
marching to compute free-flight distances ti. If we do so, however,
the free-flight PDF is only approximately equal, p(ti)≈ µt(ti)T (ti),
and the resulting track-length estimator becomes biased.

Discussion. In the neutron transport literature, the track-length es-
timator gets its name because it scores the “track-length” or dis-
tance that a photon travels within a region of interest. In our defi-
nition we return 1 instead of the length since we are estimating the
transmittance at some distance, instead of the integral of the trans-
mittance through some region. Křivánek et al. [KGH∗14] were the
first to establish a firm mathematical link between track-length es-
timators used in neutron transport, and the short photon beam es-
timators independently developed in graphics [JNT∗11]. In fact,
the track-length estimator of transmittance is used extensively in
graphics beyond just photon beams: it arises whenever we perform
Russian roulette to evaluate the transmittance for the reduced radi-
ance to a surface.

5.2.3. Weighted track-length estimator

We can generalize the track-length estimator by starting with Equa-
tion (42), and defining:

〈T (t)〉WTL =

{
T (t)

P(ti>t) if ti > t

0 otherwise,
(46)

where the acceptance probability in the denominator is computed
by integrating some sampling PDF as in Equation (44), but one
which does not necessarily cancel out exactly with T (t).

Residual tracking. Novák et al. [NSJ14] applied this idea in the
form of the so-called residual-tracking estimator. The technique
utilizes a decomposition of the volume into two parts, much like
the aforementioned decomposition tracking [KHLN17], and bears
similarities with the “separation of the main part” used by Szirmay-
Kalos et al. [SKTM11] for the estimation of optical thickness.

The goal of residual tracking is to account for a portion of the
medium analytically, and only use the track-length estimator for the
remaining portion of the medium’s extinction function. We can ac-
complish this by decomposing the heterogeneous extinction func-
tion µt(t) into a control µc

t (t) and a residual µr
t (t) extinction func-

tion, such that µt(t) = µc
t (t)+µr

t (t) and hence T (t) = T c(t)T r(t).

The residual-tracking estimator samples distances proportional
to the residual transmittance function, i.e. pr(ti) = µr

t (ti)T
r(ti), and

evaluates Equation (46) using this sampling PDF to compute the
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probability in the denominator:

P(ti > t) =
∫ ∞

t
pr(s) ds = T r(t). (47)

Hence, we have:

〈T (t)〉Res =
〈
T c(t)

〉
EV

〈
T r(t)

〉
TL = T c(t)

{
��T r(t)

��T r(t)
= 1 if ti > t

0 otherwise.
(48)

Note that this estimator simply returns the control transmittance—
which we assume we can compute using an expected-value
estimator—whenever the sample reaches t. Residual tracking can
be seen as a hybrid between an expected-value and a track-length
estimator. If the control component matches the actual extinction
function exactly, the residual extinction is zero and Equation (48)
simplifies to the expected-value estimator. Conversely, if the con-
trol component is zero and the residual matches the actual extinc-
tion exactly, then Equation (48) simplifies to the track-length esti-
mator (45).

5.3. Estimators utilizing null collisions

Null-collision based free-flight routines, such as delta-tracking, can
be used to estimate transmittance using the collision, track-length,
and weighted track-length estimators described in Section 5.2.
However, the concept of adding null collisions opens up the pos-
sibility for other classes of transmittance estimators, which we de-
scribe below.

5.3.1. Ratio tracking

When delta tracking is used to form a track-length transmittance
estimator, i−1≥ 0 null collisions are generated in the medium
prior to obtaining the first real collision at ti; here i indexes the ten-
tative collisions. The algorithm probabilistically chooses whether
each tentative collision is real or null by drawing a random num-
ber and terminating the procedure if a real collision is chosen (with
probability Pa+s(t j) =

µt(t j)
µ̄(t j)

for j = 1, . . . , i−1). The transmittance
estimate thus starts at 1, where it remains during all null collisions
t j, but immediately drops to 0 upon the first real collision at ti. This
probabilistic termination can be seen as a form of Russian roulette
and introduces variance.

The application of delta tracking as a track-length transmittance
estimator was described by Cramer [Cra78], who proposed also a
weighted version for reducing variance of deep penetration esti-
mates in nuclear physics. The weighted version was independently
developed in the field of computer graphics by Novák et al. [NSJ14]
under the name ratio tracking; we use this name to distinguish the
method from other weighted approaches.

The goal of the ratio-tracking estimator is—as in the track-length
estimator—to estimate the expected percentage of photons that
make it beyond distance t. The main idea is to remove the prob-
abilistic termination and instead weight the samples by the prob-
ability of continuing the walk; this concept is known as “implicit
capture” [AK90] or “Rao-blackwellization” [SKGM∗17].

In contrast to a track-length estimator, which returns a binary re-
sult depending on whether the real collision occurs at ti < t, ratio

tracking allows all distance samples to reach t scoring a fractional
weight. The tracking never terminates before t and weights the
transmittance estimate at each tentative collision t j by the “prob-
ability” of continuing forward, µn(t j)/µ̄(t j) = 1− µt(t j)/µ̄(t j), thereby
maintaining the correct expected value. We used the term proba-
bility here to emphasize the relation to delta tracking, but the term
is simply a weight that can become negative when µ̄(t) does not
bound µt(t).

The estimator can also be derived directly from the weighted
delta tracker, see Equation (25), by enabling only null collisions
before reaching t, i.e. Pa(s) = Ps(s) = 0, Pn(s) = 1 for s < t, and
forcing the walk to terminate as soon as t has been reached. The
weight Equation (30) then forms the following estimator:

〈T (t)〉RT =
i−1

∏
j=1

µn(t j)

µ̄(t j)
. (49)

5.3.2. Residual ratio tracking

Novák and colleagues [NSJ14] proposed to combine ratio tracking
with the concept of residual estimation. The residual-ratio-tracking
estimator extracts a control extinction function µc

t (t) and computes
the control transmittance T c(t) in closed form using an expected-
value estimator. The residual transmittance T r(t) is approximated
by ratio tracking. The final transmittance estimator is:

〈T (t)〉ResRT = T c(t)
i−1

∏
j=1

µr
n(t j)

µ̄r(t j)
. (50)

5.3.3. Next-flight estimators

As concluded by Cramer [Cra78] and Novák et al. [NSJ14],
both track-length and weighted estimators have certain drawbacks.
While the first approach suffers from higher variance due to bi-
nary scores, the second can be computationally inefficient if many
steps are needed to reach t, during which the weight becomes in-
significant. To that end, Cramer [Cra78] proposed to equip track-
length and ratio-tracking estimators with a form of next-flight esti-
mation (a.k.a. next-event estimation) drawn from the starting point
and from each tentative collision to the (end) point at distance t.

Each next-flight connection represents the uncollided transport
through the real + fictitious medium along the remainder of the
ray. We start with the uncollided contribution through the entire
distance Tµ̄(0, t). Due to the presence of null collisions, this clearly
underestimates the true transmittance. We thus track forward and
analogously add another (weighted) uncollided contribution at each
tentative collision. Cramer proposed and proved correctness of two
variants of such estimation.

The first variant utilizes a probabilistic termination (analogous
to delta tracking) and scores a weighted free-flight estimate at each
tentative collision up to the first real collision (inclusive) or up to
distance t. Such next-flight-delta-tracking estimator reads:

〈T (t)〉NFDT = Tµ̄(0, t)+
n

∑
j=1

µn(t j)

µ̄(t j)
Tµ̄(t j, t) (51)

where n is the index of the first collision classified as real, or the
last tentative collision before reaching t, whichever occurs first.
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Figure 5: An analysis of four different transmittance estimators, each using roughly the same number of µt evaluations for rendering column
(b). The test scene (a) consists of a volume with varying optical thickness (horizontal axis) such that the transmittance increases linearly. To
study the impact of null collisions, we vary the amount of fictitious matter vertically such that the relative amount of real matter, which defines
the collision-sampling efficiency, changes linearly from 0.05 (bottom) to 0.95 (top). False-coloring in each column uses the same scale.

The second variant relies on ratio tracking. The algorithm pro-
ceeds all the way until t with all next-flight estimates being
weighted by the product of local null-collision weights encoun-
tered up to and including that point. The next-flight-ratio-tracking
estimator reads:

〈T (t)〉NFRT = Tµ̄(0, t)+
m

∑
j=1

j

∏
k=1

µn(tk)
µ̄(tk)

Tµ̄(t j, t) (52)

where m is the index of the last tentative collision before reaching t.

While it may be difficult to justify these estimators using intu-
ition, Kutz et al. [KHLN17] demonstrate that the next-flight-ratio-
tracking estimator can be derived directly from the RTE using the
integral framework of Galtier et al. [GBC∗13].

In Figure 5, we compare the four aforementioned estimators in
a canonical setting [NSJ14] that allows identifying configurations
that lead to good or poor performance with each estimator. The
scene consists of an axis-aligned unit cube filled with an absorbing
medium. The extinction coefficient increases exponentially along
the x axis so that the transmittance (and thus the brightness of pix-
els) decreases linearly as we move from left to right across the ren-
dered image. The density of the medium is kept constant vertically
and also along the camera rays. We then add fictitious matter, and
increase its density vertically from top to bottom to study the cost
and variance of individual methods. The analysis suggests to use

ratio tracking for media with large proportions of fictitious parti-
cles, e.g. around boundaries of the volume. Next-flight estimators
improve the efficiency in the opposite case.

The next-flight estimators can be further improved by apply-
ing the decomposition concept and performing e.g. “residual next-
flight ratio tracking”; this application remains to be investigated.

6. Sampling light transport paths

In this section, we discuss unidirectional path tracing that utilizes
distance samplers from Section 4 for building individual segments.
We also describe methods for performing various forms of next-
event estimation, namely standard shadow rays (Section 6.2), two-
segment shadow rays (Section 6.3), and three-segment shadow rays
(Section 6.4), each of which draws distances from a different distri-
bution and leverages one of the transmittance estimators described
in Section 5. Lastly, we discuss approaches for handling spectrally
varying collision coefficients (Section 6.5).

6.1. Unidirectional sampling

The best-known and most commonly used path-sampling technique
is the one that starts from the camera or a light source and extends
the path incrementally segment by segment. To determine the lo-
cation of the next path vertex xi+1, a ray direction is first sam-
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Figure 6: Equiangular sampling places points proportional to
1/d2, here limited to segment (a,b).

pled with a distribution p(ωi+1), typically given by the medium
phase function or by the surface BSDF at the location of that ver-
tex. Then a propagation distance along the ray is sampled with
p(ti+1), e.g. using one of the sampling methods described in Sec-
tion 4. The PDF of a path vertex is then conditioned on the previous
path vertex and direction: p(xi+1 | xi,ωi) = p(ωi+1 | xi,ωi) p(ti+1 |
xi,ωi+1)G(xi+1,xi), where the geometry term is needed to con-
vert from solid angle× distance measure to volume or surface area
measure. The PDF of the entire path p(x) is obtained by multiply-
ing the sequence of conditional PDFs from the start of the path,
with indices reversed if starting at the light source.

When computing a path-integral estimate of the form in Equa-
tion (14), the ratio f j(x)/p(x) is typically computed incrementally as
consecutive vertices are sampled. This strategy is well-suited for
the stochastic tracking-based distance sampling methods from Sec-
tion 4.2, whose PDFs generally cannot be evaluated explicitly but
cancel out (up to a weighting factor) with the transmittance term
along the segment in the path contribution.

6.2. Luminaire sampling

A purely unidirectional sampling process can yield a non-zero con-
tribution only when a light source (respectively the camera) is ran-
domly hit. To increase the efficiency, the last vertex on the path
can be “placed” on the a light source (camera) explicitly by sam-
pling its area/volume. This technique is called next-event estima-
tion [CCY67] and requires choosing a point on the light source
(camera), casting a shadow ray, and computing the fractional visi-
bility, e.g. using one of the methods described in Section 5.

In cases of light sources with finite extent, the sampling den-
sity of the point to which we cast the shadow ray can greatly im-
pact the efficiency of the estimator. The naive approach of uni-
formly sampling the emissive area can significantly increase es-
timation variance. Several techniques have thus been developed for
uniformly sampling solid angles of e.g. triangular [Arv95], rectan-
gular [UFK13], disk and cylindrical [Gam16], elliptical [GUK∗17],
or polygonal [Arv01] luminaires.

While such importance sampling can greatly reduce variance, it
may still remain high, especially with small light sources. In fact,
for point lights the variance is unbounded as individual contribu-
tions tend to infinity when the last free vertex in the medium ap-
proaches (by random chance) the point light—the geometry term
along the shadow ray tends to infinity in such cases. One way to
ameliorate the high variance is to sample at least part of the path by
taking into account the (sampled) position on the light source; we
describe two such sampling recipes in the next two sections.

6.3. Equiangular sampling

Equiangular sampling is a technique for reducing variance of esti-
mating directly in-scattered illumination along a ray. The technique
chooses xk on the light first and then samples the second-last vertex
xk−1 along the ray with direction ωxk−2→xk−1 with a PDF propor-
tional to the inverse squared distance d = ‖xk−1 − xk‖, as illus-
trated in Figure 6. The first step is to parameterize distance d as a
function of the ray parameter t:

d2(t) = h2 +(t− th)
2, (53)

The PDF is then

p(t) =
h(

h2 +(t− th)2
)(

tan−1
(

b−th
h

)
− tan−1

( a−th
h
)) (54)

whose inverse CDF is

t(ξ) = th +h tan
(
(1−ξ) tan−1

(a− th
h

)
+ξ tan−1

(
b− th

h

))
,

(55)

allowing us to sample points along the ray proportionally to 1/d2

with t ∈ [a,b].

This technique was originally developed in neutron transport un-
der the name once-more-collided-flux estimator [KC77] and. It was
later independently published in computer graphics by Kulla and
Fajardo [KF12] who called it equiangular sampling because the an-
gular distribution of directions from xk toward the sampled points
is uniform.

6.4. Joint importance sampling

The generic pixel estimator in Equation (14) suggests that light
transport paths should ideally be sampled from a joint vertex dis-
tribution that is proportional to the their measurement contribution.
The practical difficulty in sampling from a prescribed joint distri-
bution is that deriving the (conditional) distributions for the indi-
vidual sampling decisions requires the successive marginalization
of the corresponding variables one by one out of the joint PDF.
This marginalization involves integration, which often cannot be
performed analytically.

Most existing path-sampling techniques, including unidirec-
tional sampling (Section 6.1), generate path vertices by instead
prescribing the distributions for the individual sampling decisions.
While these typically importance sample the local scattering and
propagation events, there is no explicit control over the form of
the final joint path distribution with this approach. The result is in-
creased variance in the pixel estimator, especially in anisotropically
scattering media and with light sources placed inside volumes.

For the special case of double scattering in media, Georgiev
et al. [GKH∗13] have found a way to sample from a prescribed
joint distribution proportional to the product of geometry and phase
function terms along a sequence of four path vertices—three seg-
ments. Given a point a with an (optional) incident direction ωla as
well as a ray (d,ωdc), they derive the conditional PDFs and corre-
sponding techniques for sampling two intermediate connection ver-
tices b and c. Figure 7 illustrates one factorization of the prescribed
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a) distance sampling b) direction sampling c) distance sampling

sampled distance/vertex/direction

(double scattering) (single scattering)

Figure 7: Given a point with an incident direction, (a,ωla), and a
ray (d,ωdc), joint importance sampling constructs a 2-vertex con-
nection with a prescribed joint distribution which can be factorized
into a series of distance, direction and distance sampling decisions.
Figure reproduced from [GKH∗13].

joint into a series of three sampling decisions, starting with a dis-
tance sampling along the ray. For the case of isotropically scattering
media, where the medium phase function is constant, closed-form
expressions for the sampling PDFs exist:

p(tcb) =
tca sinθcb
π−θcb

1
h2

ca⊥+(tca⊥− tcb)2 , (56)

p(ωcb | tdc) =
π−θcb

π3 sinθcb
, (57)

p(tdc | ωcb, tdc) =
Cdc√

h2
da⊥+(tda⊥− tdc)2

, (58)

where Cdc is a normalization constant. We list the PDFs in the order
they are derived via successive marginalization, which is the oppo-
site of the sampling order. Note that the PDF of tcb is equivalent
to the equiangular PDF from Section 6.3 with upper bound set to
infinity. Also note that the PDF of tdc is proportional to the inverse
distance to a, whereas the equiangular PDF of tcb is proportional
to the inverse squared distance to a. Sampling from these PDFs is
done using the inverses of their corresponding CDFs:

tcb = tca⊥ +hca⊥ tan
(

ξ(π−θcb)+θcb−
π

2

)
, (59)

θcb = π(1−
√

ξ1), φcb = 2πξ2, (60)

tdc = tda sinh(ξCdc)+ tda⊥(1− cosh(ξCdc)). (61)

For the case of anisotropically scattering media, with a non-
constant phase function, no closed-form expressions for the sam-
pling PDFs exist. To handle this case, Georgiev et al. [GKH∗13]
derive compact tabulations of these PDFs by exploiting various
symmetries in their individual geometric configurations. Figure 8
demonstrates the benefit of using this technique for light-source
connections in unidirectional path tracing.

6.5. Spectral tracking

So far, we ignored any wavelength dependency of all quantities.
However, in the case of chromatic media, i.e. when the extinction
varies with wavelength, there exist a few interesting variants of im-
portance sampling. The straightforward way to handle such situa-
tions is to just trace a single wavelength (or one channel of a color

Isotropic Medium Anisotropic Medium (g = 0.9)
traditionaltraditional

0.300.30

equiangularequiangular

0.070.07

JISJIS

0.020.02

traditionaltraditional

1.191.19

equiangularequiangular

0.190.19

JISJIS

0.030.03

Figure 8: Single and double scattering in isotropic (left, 15 min.)
and anisotropic (right, 30 min.) media rendered with unidirec-
tional path tracing. Compared are light-source connections done
via traditional transmittance-based distance sampling, equiangu-
lar distance sampling, and 3-random-decision joint importance
sampling (JIS). RMS error is shown at the bottom. Figure repro-
duced from [GKH∗13].

space in RGB rendering). Doing so, however, introduces chromatic
noise and is wasteful because there is usually a large amount of cor-
relation of the path contribution between different wavelengths. We
could potentially save cost by calculating more wavelength contri-
butions for every generated path.

6.5.1. Hero wavelength sampling

The hero wavelength sampling scheme [WND∗14] (also see
Radziszewski et al. [RBA09]) constructs a path with a single ran-
domly sampled wavelength λ. To add color information, the spec-
tral measurement contribution function f (x,λ) of the resulting path
is also evaluated for a stratified set of other wavelengths λi. The ini-
tial wavelength is called the hero wavelength because it determines
the importance sampling. To arrive at an unbiased estimator for the
pixel color I j, the contribution of the path is accumulated for all
wavelengths λi and weighted by the MIS weight using the balance
heuristic:

〈I j〉=
f (x,λi)

p(x|λi)
· p(x|λi)

∑l p(x|λl)
=

f (x,λi)

∑l p(x|λl)
. (62)

In this formula, we assume that f (x,λ) already converts the spec-
tral quantity to a linear tristimulus value ready to be accumulated
in the frame buffer. This scheme is very general and not special-
ized for participating media in any way. The strength of this tech-
nique is that it will transparently perform optimal importance sam-
pling for one wavelength and combine the estimators for the other
wavelengths in a weighted way to reduce variance. Since it uses
the MIS framework, it can be readily combined with a multitude of
other estimators, as long as the PDF of hypothetically sampling
x with a different wavelength λ can be computed. The need to
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compute these PDFs makes hero wavelength sampling relatively
heavy weight (although SIMD instructions ameliorate some of this
cost). In the context of participating media, this requirement is also
the biggest limitation as null-collision algorithms cannot provide a
noise-free estimate of the PDF, making the approach work best in
conjunction with regular tracking.

6.5.2. Spectral tracking with null-collision methods

There are two main challenges of using standard delta tracking with
spectrally-resolved extinction functions. First, we cannot use the
hero-wavelength scheme since the free-path PDF cannot be eval-
uated. Second, (unweighted) delta tracking can simulate only one
analog process at a time forcing us to estimate transport in each
wavelength independently [EPG∗13]. The cost of rendering chro-
matic media thus grows linearly with the number of wavelengths.

Weighted tracking, on the other hand, provides means to re-
weight samples in case their distribution does not correspond to
the analog process. As such, we can sample tentative collisions ac-
cording to one wavelength while correctly estimating the transport
in others via maintaining spectrally-resolved collision weights.

The main challenge of applying weighted tracking to spectrally-
resolved media is balancing the cost and the variance. One could
employ the hero-wavelength idea of choosing one wavelength to
sample tentative collisions, but as soon as the extinction values in
other wavelengths exceed the hero wavelength, the weights may
grow uncontrollably and MIS cannot be used here to prevent that.
Kutz et al. [KHLN17] thus propose to sample tentative collisions
using µ̄ that ideally bounds all wavelengths. The authors also dis-
cuss several means for setting the collision probabilities; these are
also shared across all wavelengths and directly impact the variance.
Among the most practical are two schemes that incorporate the
throughput (history) of the path and set the probabilities as:

P?(x j) = reduce(|w(x,λ)µ?(x,λ)|)c (63)

where ? represents absorption, scattering, or null-collision quanti-
ties, w(x,λ) is the product of collision weights up to vertex x j, and
c is a normalization constant ensuring Pa, Ps, and Pn sum up to 1.
The reduce(·) is to be substituted with max(·) or avg(·) to reduce
the spectrally-resolved vectors to a single value. Taking the max
produces images with less overall variance but leads to occasional
fireflies. Using the avg prevents fireflies by ensuring that the path
throughput w(x,λ) does not exceed a fixed value (the number of
wavelengths) for any λ; Kutz et al. [KHLN17] provide a proof in
the supplementary material. The authors also show how to combine
spectral and decomposition tracking.

7. Advanced methods

In this section, we review advanced methods, namely bidirectional
path tracing (BDPT), many-light algorithms, density-estimation
techniques and their unification with BDPT, radiance caching,
most-probable-path approaches, Markov-chain techniques, zero-
variance and stratification schemes, and we conclude by discussing
sampling of emissive volumes.

7.1. Bidirectional path tracing

Bidirectional path tracing starts random walks to form transport
paths both at the sensor and the light sources. In the presence of
participating media, this proceeds just the same as in the vacuum
case, only that propagation distances need to be sampled to simu-
late interactions with the medium and transmittance must be evalu-
ated along deterministic connections.

Note that evaluating transmittance is symmetric as it does not de-
pend on the tracing direction (from sensor or from light). The free-
flight PDF derived from transmittance, however, is not symmetric:
the normalization depends on the extinction coefficient at the tar-
get point µt(t). Thus, some care has to be taken when computing
the probability density of complete paths for multiple importance
sampling (MIS).

In the same context, MIS requires explicitly computing PDFs
of individual samples and the hypothetical PDF of computing the
same path by any other active technique. The value of the PDF
p(t) = µt(t) ·T (x,y) thus needs to be known and cannot be stochas-
tically estimated, be it with an unbiased transmittance estimator.
This is because the MIS weight—the PDF of the current sample di-
vided by the sum of the PDFs of all possible techniques—contains
division, which is not (in contrast to expectation) a linear operator.

It is possible to directly estimate the reciprocal of an integral in-
stead [Boo07], which however is prone to high variance. Since MIS
only needs weights that sum up to one to be correct, it is possible
to instead use crude approximations of the free-flight PDF. This
may however deteriorate the variance of the combined estimator,
so one may prefer to use deterministic transmittance estimators in
scenarios where an algorithm depends heavily on MIS.

7.2. Many-light methods

Many-light algorithms are a subset of bidirectional path tracing,
where light subpaths are typically reused across multiple, rather
short camera subpaths. The first instance of many-light rendering—
instant radiosity [Kel97]—was developed to allow fast indirect-
illumination computation on graphics hardware. The method and
its derivatives precompute a shadow volume or a shadow map for
each light-path vertex—referred to as a virtual point light (VPL)—
utilizing it to quickly calculate visibility queries between the VPL
and points seen by the camera. In a nutshell, many-light rendering
reinterprets the problem of estimating global illumination as com-
puting direct illumination (or single-scattering) from many virtual
lights, which are generated via light tracing prior to actual render-
ing. Many extensions to the original algorithm were developed in
the last two decades, most of which were surveyed by Dachsbacher
et al. [DKH∗13]. Here we focus only on those that address render-
ing in the presence of participating media.

7.2.1. Virtual point lights

One of the first applications of many-light rendering to scenes
with volumes appeared in multidimensional lightcuts by Wal-
ter et al. [WABG06]. Raab et al. [RSK08] and Engelhardt et
al. [ENSD12] then discuss, analyze, and propose solutions address-
ing the main issue of VPL methods: the splotchy artifacts due to a
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(a) Volume VPLs (b) VRLs (c) Surface VPLs & VRLs (d) Surface VSLs & VBLs

Figure 9: The two left columns demonstrate the conceptual and visual differences between virtual point lights (VPLs) and virtual ray
lights (VRLs), used here to render multiple scattering inside orange juice. The right two columns compare complete solutions for rendering
scenes with volumes and surfaces, one based on VPLs and VRLs and another based on virtual sphere lights (VSLs) and virtual beam
lights (VBLs); only indirect illumination is shown to emphasize differences. Images reproduced from [NNDJ12b, NNDJ12a].

1/d2 singularity that models the quadratic falloff of radiance emit-
ted from a point light. While the impact of the singularity can be
reduced by combining multiple path-construction strategies using
MIS, as in BDPT, or avoided for shadow paths with multiple seg-
ments [GKH∗13], illuminating a set of camera rays by a number
of VPLs will always suffer from this problem manifesting itself as
bright splotches in the image.

Raab et al. [RSK08] proposed to clamp the singularity and re-
cover the lost transport via a path-tracing-based bias compensa-
tion [KK06] adapted to participating media. For volumes with
rather isotropic profiles, Engelhardt et al. [ENSD12] observe that
most energy lost due to clamping can be recovered by simulating
two bounces of residual transport. The authors describe an approx-
imate solution that is amenable to GPU acceleration yielding inter-
active frame rates.

Since many-light methods require repeatedly evaluating vis-
ibility to a finite collection of lights, shadow mapping tech-
niques [Wil78] can provide substantial performance gains and
hardware acceleration. In the context of participating media, sev-
eral variants of deep shadow mapping [LV00] can be used to evalu-
ate the fractional visibility. Salvi et al. [SVLL10] propose to adapt
the number and placement of transmittance samples in each texel
of the shadow map. Fourier opacity maps [JB10], transmittance
function maps [DGMF11], and boundary-aware extinction map-
ping [GDML13] express the transmittance in the Fourier domain
storing Fourier coefficients instead of the transmittance samples.

7.2.2. Virtual ray and beam lights

One approach to reduce the degree of the singularity, and thereby
suppress the splotchy artifacts, is to distribute the energy continu-
ously along the light path. Novák et al. [NNDJ12b] propose to turn
each ray of the light path into a linear light—the so-called virtual
ray light (VRL). The emission at any point along the VRL is de-
fined by the radiance reaching the point along the light path, which
is scaled by the scattering coefficient and directionally modulated
by the phase function. Computing the in-scattered radiance along a
camera ray involves numerically estimating a line-to-line integra-
tion problem. The authors propose to importance sample the double

integral using a PDF that is tabulated on the fly from the product of
phase functions and the 1/d2 term. The integration can be further
optimized by utilizing fully precomputed PDFs [GKH∗13].

While the singularity is reduced, it is not removed completely.
For surface rendering, Hašan et al. [HKWB09] proposed to “in-
flate” each virtual point light into a virtual sphere light (VSL),
spreading its power over a disc that approximates the surfaces
within the sphere. Novák et al. [NNDJ12a] proposed to apply this
concept to ray lights, turning each path segment into a virtual beam
light (VBL) with finite thickness. This avoids the singularity at the
cost of introducing additional blurring. The transport is estimated
by first sampling a location on the axis of the beam and then inte-
grating over the surrounding spherical volume. While spreading the
energy over a beam avoids the singularity, it may lead to overblur-
ring of fine visual features. To that end, the authors propose to pro-
gressively shrink the beam radius as in progressive volumetric pho-
ton mapping [KZ11] to ensure the bias diminishes in the limit. The
main concept and characteristic artifacts of a number of many-light
primitives are illustrated in Figure 9.

7.2.3. Clustering of virtual lights

In order to address scalability, Walter et al. [WFA∗05, WABG06,
WKB12] proposed to organize VPLs into a tree hierarchy and find
a suitable cut for each shading location. This reduces the number
of evaluated contributions while still accounting for the energy of
all VPLs. Recently, Yuksel and Yuksel [YY17] described a method
where contributions of point lights are splatted onto a hierarchical
grid yielding a scalable algorithm with better temporal coherence.

Frederickx et al. [FBD15] proposed to adapt the light-
slice [OP11] method for clustering virtual ray lights. Another ap-
proach for clustering VRLs was described by Huo et al. [HWH∗16]
who cast the problem of estimating contributions as a matrix sam-
pling and reconstruction task. Their adaptive scheme can efficiently
reconstruct the matrix from a rather small number of sampled ele-
ments. All the aforementioned clustering methods significantly im-
prove the scalability of many-light rendering.
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(a) Point-point 3D (c) Beam-beam 1D(b) Point-beam 2D

Figure 10: Different volumetric photon density estimators and their
corresponding kernel (i.e. blur) dimensionalities.

7.3. Photon density estimation methods

Photon density estimation is another popular two-pass bidirectional
rendering approach, where—just like in many-light methods—the
cached light subpaths are reused across multiple camera subpaths.
In contrast to many-light methods though, the energy carried by
the vertices of those light subpaths (the so-called photons) is used
to estimate the density of inscattered flux (i.e. the outgoing radi-
ance) around points seen from the camera. The basic approach
was first proposed by Arvo [Arv86], but was made practical for
rendering of complex surfaces by Jensen [Jen96] who proposed
storing all photons in a search-efficient kd-tree data structure and
coined the term photon mapping. Hachisuka et al. [HOJ08] showed
a photon-mapping formulation that allows for reducing the bias by
progressively accumulating more photons in the radiance estimate
and shrinking the reconstruction kernel.

This approach has proved very useful in practice thanks to a key
property of density estimation: it regularizes, i.e. blurs, the light
path space around the estimation location. While the blurring in-
troduces bias, it also makes it easier to capture lighting effects that
would otherwize be difficult or even impossible to sample using
unbiased techniques such as BDPT. Prime examples of such effects
are caustics seen directly or through reflection or refraction.

7.3.1. Photon points

Jensen and Christensen first demonstrated the use of photon
maps [JC98] to render volumetric light-transport effects. Their al-
gorithm steps along every camera ray in a medium and collects
the photons around each ray-marching location. This “point-point”
query is illustrated in Figure 10a. It is particularly well suited for
rendering volumetric caustics, but its main disadvantage is that it is
difficult to find a good ray-marching step size. A too large step size
yields a noisy result, and a too small step size induces many photon
queries along the ray, which can slow down rendering significantly.

To address the deficiency of ray marching, Jarosz et al. [JZJ08a]
proposed a volumetric radiance estimate that gathers photons along
the entire camera ray and computes their contributions without
point sampling. This so-called beam radiance estimate can ren-
der scenes with participating media with significantly less noise
than conventional photon mapping. The “point-beam” query is il-
lustrated in Figure 10b. This work revealed that the approach of us-
ing point samples in participating media is an unnecessary legacy
from surface rendering.

Jakob et al. [JRJ11] investigated the use of parametric density
estimation to represent and reconstruct the spatial distribution of ra-
diance in a medium. They still shoot photons from the light sources

UPBP (full transport)

UPBP (volumetric transport)

Point-point 3D

Point-beam 2D

Beam-beam 1D

Bidirectional path tracing

Figure 11: Equal-time comparison of UPBP against BDPT and
the individual density estimators illustrated in Figure 10, showing
that the combined algorithm can be significantly more efficient than
each of its components alone. Images reproduced from [KGH∗14].

but only use them to fit the parameters of a hierarchical Gaussian
mixture model and then immediately discard them. The Gaussian
model allows for anisotropic reconstruction and a level-of-detail
representation that can be about three orders of magnitude more
compact than a photon map of the same quality. The Gaussian pa-
rameters can be fit progressively as photons are shot and discarded
and in a way that maintain temporal coherence in animations.

7.3.2. Photon beams

Recognizing the potential of beam gathering, Jarosz et al. [JNSJ11]
devised a generalized theory of volumetric density estimation using
beams along camera rays, light rays, or both. Sun et al. [SZLG10]
concurrently proposed a specialized method for rendering caustics
and single scattering that corresponds to one such estimator. Photon
beams supersede points as fundamental entities in volumetric light
transport and provide a more efficient intermediate representation
of lighting. They can significantly improve quality over standard
volumetric photon mapping and are also amenable to artistic ma-
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Figure 12: A comparison between photon points, beams, planes, and volumes. Bitterli and Jarosz [BJ17] form the higher-dimensional
estimators by computing the limit process of “marching” photons along preceding light path segments, which allows to progressively reduce
variance and bias. The canonical renderings in the bottom row use these successive estimators (with two sample counts, split vertically) on a
searchlight problem setup, confirming that higher-order samples can significantly improve quality. Figure reproduced from [BJ17].

nipulation [NJS∗11]. Photon beams reduce both the variance and
the bias (blur), enabling the rendering of extremely sharp details
such as volumetric caustics using much less photon data than pre-
vious point-based methods. The least amount of blur is achieved
by a “beam-beam” estimator that uses a 1D reconstruction ker-
nel [JNSJ11], as illustrated in Figure 10c.

To make photon beams converge to the correct solution with a
bounded memory footprint, Jarosz et al. [JNT∗11] devised a pro-
gressive formulation akin to progressive photon mapping for sur-
faces [HOJ08, KZ11]. They also proposed an efficient way to es-
timate the transmittance along beams in heterogeneous media at
multiple locations, each corresponding to a different radiance esti-
mation query. Along each beam they store several free-flight dis-
tances sampled using delta tracking (see Section 4.2.1). The frac-
tion of distances that are beyond a given location provides an un-
biased multi-sample track-length estimate of the transmittance up
to that location (see Section 5.2.2). The longest of these distances
effectively determines the length of such a “short” beam. Belcour
et al. [BBS14] improved visual convergence of progressive photon
beams by analyzing absorption and scattering in the Fourier domain
and identifying situations in which the radius can stop decreasing.

Gathering multi-scattered contributions from photon beams was
also accomplished using the diffusion approximation. Habel et
al. [HCJ13] sample points on a beam entering a translucent mate-
rial and used the dipole model [JMLH01] to approximate the sub-
surface transport to surface points. d’Eon [d’E14] extended their
approach by using the dipole model to connect to refracted camera
paths, making the BSSRDF model reciprocal and more accurate.

7.4. Combining density estimation and path tracing

Bidirectional path tracing (Section 7.1) is a more robust method
than unidirectional path tracing thanks to its effective combination
of the strengths of various path-sampling techniques into one uni-
fied algorithm via MIS. Similarly, the various volumetric density

estimators based on points and beams have their respective pros and
cons. Recently, Křivánek et al. [KGH∗14] analyzed the relative effi-
ciency of these estimators and showed that density estimation based
on point primitives yields lower variance in dense media, while
sparse media are better handled by estimators based on beams.
They also reformulated beam-based radiance estimators [JNSJ11]
as path-integral estimators, which enables their MIS combination
also with unbiased path-sampling techniques from bidirectional
path tracing. The resulting algorithm, unified points, beams, and
paths (UPBP), provides a more robust solution that is able to render
scenes with different kinds of media, where the individual estima-
tors may each fail in complementary ways (see Figure 11).

7.4.1. Photon planes, volumes, and beyond

The 1D photon beam sampling primitive can bring a significant
improvement over 0D photon points by reducing variance as well
as bias, though not eliminating it completely. Most recently, Bitterli
and Jarosz [BJ17] presented a general theory of volumetric light-
transport simulation using higher-dimensional samples, including
2D photon “planes” and 3D photon “volumes”; see Figure 12. They
extended Křivánek et al.’s [KGH∗14] efficiency analysis to reveal
that when photon beams already improve over points, the higher-
dimensional samples provide even greater benefits.

Bitterli and Jarosz [BJ17] also show that already the 2D photon
planes allow for a fully unbiased formulation of volumetric den-
sity estimation, though in practice adding a small amount of blur
helps reduce variance. The intuition why blur is no longer strictly
required is that the probability of an infinitely thin camera ray inter-
secting an infinitely thin random photon plane is non-zero. In con-
trast, the probability of two infinitely thin rays (beams) to intersect
is zero, so some form of blur is required for a non-zero contribution.

7.5. Volumetric radiance caching

Both many-light algorithms and density-estimation approaches
reuse light subpaths to increase efficiency. Jarosz et al. [JDZJ08]
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(a) Path tracing

(b) Rad. caching

Figure 13: A scene with a fog rendered using 175K cache
points and 27M cache queries with volumetric radiance
caching [JDZJ08]. The insets provide an equal-time comparison
to path tracing. Images reproduced from [JDZJ08].

propose a different method for caching and reusing computation
inspired by irradiance and radiance caching for surfaces [WRC88,
KGPB05]. Their method sparsely samples and caches radiance es-
timates in an octree. The estimates are then extrapolated using gra-
dients and reused for nearby locations visited by camera paths. The
key to the approach is accurately computing gradients of the ra-
diance (for high-quality extrapolation) and estimating the induced
extrapolation error (to know when to stop extrapolating). Jarosz et
al. [JDZJ08] first derived gradients (and the corresponding error)
while ignoring changes in occlusion, and later [JZJ08b] showed
how to account for occlusion gradients at surfaces in the presence
of media. Most recently, Marco et al. [MJJG18] derived a second-
order, occlusion-aware approach inspired by recent Hessian-based
irradiance caching approaches for surfaces [JSKJ12, SJJ12]. Be-
ing a view-driven method, such volumetric radiance caching ap-
proaches can handle large scenes well, outperforming path tracing
and also some of the density estimation methods. Figure 13 pro-
vides a comparison to a vanilla unidirectional path tracer.

7.6. Most-probable-path methods

For dense and highly forward-scattering media, transport paths can
be characterized by many collision events and low deviation of
the outgoing direction from the incoming. Ignoring backward scat-
tering, the resulting paths are similar to continuous curves with
low curvature. These observations motivate a family of methods
based on so-called most-probable paths. These techniques were
introduced to graphics by Premoze et al. [PAS03, PAT∗04] based
on theory initially developed by Tessendorf in a string of publica-
tions [Tes87, Tes09]. Frederickx and Dutré [FD17] provide an ex-
cellent summary of the derivation of these methods in their supple-
mental material. Note that in this context, path integral refers to the
Feynman integral [FH65], not to what we describe in Equation (7).

While these approaches are mostly used as a closed-form ap-
proximation in the sense of a dipole model, they can be used to
construct transport paths. Weber et al. [WHD17] presented a sim-
plified multi-vertex next-event estimation scheme based on these
ideas. They use a straight line as the point of the expansion instead
of the most-probable path. This approach is motivated by the ob-
servation that for Henyey-Greenstein phase functions the penalty in
path-measurement contribution incurred by one single kink is much
lower than the penalty for uniform curvature spread out over many

scattering events. That is, the phase function has a much sharper
falloff near cosθ = 1 than in the rest of the distribution.

This is also analyzed in appendix L.1 in [FD17] and is even more
true for multi-lobe approximations of phase functions predicted by
Lorenz-Mie theory, which include more back-scattering contribu-
tion. In that sense the most-probable-path theory is an approxima-
tion that neglects the back scattering effects present in scattering
regimes governed by Mie theory.

7.7. Markov-chain methods

Metropolis light transport (MLT) [Vea97] can be used to render par-
ticipating media [PKK00]. In general, to compute the Metropolis-
Hastings acceptance probability the measurement-contribution
function needs to be evaluated exactly. This means that stochastic
approximations utilizing null collisions to evaluate transmittance
can be problematic. The Metropolis-Hastings scheme can still be
used if the additional random variates needed to trace through the
volume are explicitly added to the state of the Markov chain. This
is similar to what has been shown by Schüssler et al. [SHHD17]
for stochastic multiple scattering inside microfacet surfaces in their
supplemental materials. There are approaches to analyze the con-
vergence property of the Markov chain in this case [KBSU15]. As
pointed out by Raab et al. [RSK08], running the Markov chain in
primary sample space [KSKAC02], i.e. on the random numbers,
circumvents this problem: the contribution of a sample given all
the random numbers is deterministic and can be evaluated. This for-
mulation, however, may require an unbounded number of random
numbers for every path segment that passes through a medium, and
can lead to rippling effects inhibiting the efficiency of local explo-
ration. This latter issue has recently been investigated for the case
of surface transport [Pan17, BJNJ17].

7.8. Zero-variance random walks

Zero-variance random-walk theory is an intriguing concept: it ana-
lyzes the possibility to create random walks without variance. This
means that at every scattering point, an outgoing direction as well
as a distance to the next scattering event has to be perfectly impor-
tance sampled by all terms of the measurement equation: the prod-
uct of phase function, transmittance, and incoming importance (or
radiance, depending on the direction of the random walk). This has
been explored by Dwivedi [Dwi82b, Dwi82a] and Booth [Boo87].
Hoogenboom [Hoo08] provides a good overview.

In practice, it is hard to obtain a good estimate of the incoming-
radiance field, but in simple canonical cases a closed-form approx-
imation can be used to guide importance sampling and reduce vari-
ance. This has been explored for dense, isotropic, highly scatter-
ing media: Křivánek and d’Eon [Kd14] locally fitted a slab to the
bounding geometry (see Figure 14, left). They demonstrated that
this can substantially improve the variance of path traced subsur-
face scattering such as in skin, by quickly guiding random walks
back to the surface where light contribution can be picked up.

Meng et al. [MHD16] later extended this idea for cases where
quickly escaping back through the entered surface is not a good
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Figure 14: Illustration of random-walk-biasing schemes inspired
by Dwivedi. Left: fitting a local slab to escape the volume close
to the point of entry works well for thick volumes. Center: finding
the closest surface point at every internal scattering point and bi-
asing towards the surface point can help escaping thin geometric
features. Right: explicitly biasing towards a light source improves
backlit scenarios. Figure reproduced from [MHD16].

ClassicalClassical

C + CPC + CP

C + PoEC + PoE

C + CP + IIC + CP + II

Figure 15: Classical random walks (top left inset) can be noisy for
dense media like candle wax. Biasing the random walk towards the
point of entry (PoE) [Kd14] increases variance even more in this
case, since most of the light comes from the inside. The closest point
heuristic (CP) does not improve matters much as the geometry is
not thin enough. Illumination biasing (II, bottom right inset) has
been designed for such cases. Images reproduced from [MHD16].

idea. This is the case for thin features of geometry such as ears, es-
pecially in backlit scenarios. They devised two more biasing meth-
ods to take geometric features into account: one method searches
for the closest point to the boundary at every scattering vertex (cf.
Figure 14, center). This increases the chances to escape thin geom-
etry. The second method explicitly takes incident illumination into
account, specifically improving the variance of the random walk
for backlit cases (cf. Figure 14, right). This last case would actually
suffer from increased variance when using the biasing method by
Křivánek and d’Eon [Kd14], as can be seen in Figure 15.

7.9. Emissive media

Lighting setups including emissive media that subtend a very small
solid angle from most shading points, such as candle lights, can
cause high variance. A small solid angle means that the chances
to intersect these light sources accidentally are very low. It is thus
necessary to include some kind of next-event estimation, explicitly
sampling locations inside potentially small and thin flames. This
has been done for voxel grids [VH13]. Problems also arise when
distances are sampled proportional to transmittance as it is very un-
likely to create a collision in extremely thin media such as candle
flames. This is true even for null-collision methods that generate
additional tentative collisions. Simon et al. [SHZD17] propose to

x y
z

Figure 16: A difficulty with BDPT and emissive media. Accounting
for the emission at the interior path vertex z requires evaluating
a marginal PDF, which involves integration over all possible light
subpaths arriving at z (colored in orange).

use an estimator that performs line integration: they utilize regu-
lar tracking to deterministically pick up all emission between two
path vertices. The authors observe that combining such an estimator
with next-event estimation deteriorates performance and address
the issues by modifying the next-event estimation accordingly: they
start by sampling a path vertex inside an emissive volume, but then
use only the direction to this point and independently sample a free-
flight distance. Then, an estimator is constructed which picks up
emission along all of the resulting path segment. For this, the PDF
needs to be evaluated as a marginal integral over the half-open line
segment. This is sped up by using a coarse voxelization. Next-event
estimation performed this way is able to construct paths with end
points outside the emissive medium, for instance on non-emissive
surface geometry. This crucial property makes sure an MIS combi-
nation with BSDF or phase function sampling stays effective.

When using bidirectional path tracing (BDPT), accounting for
emission along the interior of a path is even more difficult. Fig-
ure 16 illustrates the problem, where a light transport path con-
necting the light source and the camera passes through an emissive
participating medium. Accounting for the emission at vertex z re-
quires constructing an estimator for the path x = (x,y,z), which in
turn involves computing its PDF. This can be difficult because that
PDF includes a marginalization: we need to account for all possi-
ble ways to sample z from a light source, i.e. to integrate the PDFs
for sampling light subpaths of any length connecting a light source
and z. The figure shows two such light subpaths. This is not an issue
when emission is only considered at the end points of paths.

8. Acceleration data structures

Since data access usually dominates the overall render time, ac-
celeration data structures are key for achieving good performance
when rendering heterogeneous volumes. An L2 cache reference is
14–25× faster than a DDR memory reference [Lev09]. This fac-
tor can almost directly be observed as total render time difference
when comparing algorithms with good caching behaviour to ones
with poor access patterns. As volume data can quickly grow into
the hundreds of gigabytes for production scenarios, this problem is
aggravated by out of core memory accesses to disk.

In order to store spatially-varying optical properties, two open-
source libraries—Field3D [WZC∗10] and OpenVDB [Mus13]—
have gained popularity in the movie industry. Adapting the reso-
lution, or using a coarser representation of the field, can further
improve performance when the voxel detail is below the image res-
olution, or when tracing high-order bounces.
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Accelerators for null-collision methods. The performance of
stochastic trackers depends heavily on how tightly majorants (and
minorants) bound the extinction function. The majorants directly
impact the expected number of null collisions and they are typi-
cally precomputed and stored in a separate data structure, e.g. su-
per voxels [SKTM11, NSJ14], at a resolution coarser than the ac-
tual volume. Adaptive variants such as kd-trees [YIC∗10, YIC∗11]
or octrees [KHLN17] allow one to adjust the memory cost locally
and can yield substantial performance benefits. Yue et al. [YIC∗11]
provide guidance for optimally subdividing space to minimize the
number of null collisions.

In order to sample tentative collisions, the tracking algorithm
steps through the structure that stores the majorants until it reaches
a sampled value of (majorant) optical thickness [SKTM11], or
samples a tentative collision in each voxel independently proceed-
ing to the next one if the collision occurs outside of the current
voxel [YIC∗10]. Once the tentative collision is found, the algorithm
potentially starts traversing another hierarchical data structure—the
one that holds extinction values—at the root node. This can incur a
large memory-access overhead. One may thus prefer to use a single
hierarchical accelerator, e.g. an octree, storing the fine optical prop-
erties in leaves and filtered values and majorants in interior nodes.

Accelerators for regular tracking. Regular tracking may be
a viable alternative to stochastic samplers in certain situations,
especially when adaptive memory structures, such as nested
grids [SHZD17], are used. The structure should allow predictable
memory accesses of consecutive voxels, which in turn enables the
cache to amortize the memory-access cost over many extinction
lookups. Another important aspect to consider is whether an in-
terpolation scheme is required. Nested grids typically provide a
fast access to immediate neighbors due to their rigid structure. If
high-quality (high-order) interpolation schemes are desired, regu-
lar tracking at coarse levels may become infeasible and it may be
more efficient to track through the finer resolution instead.

The performance of individual trackers depends heavily on the
characteristics of the medium and the used storage. In general, null
collision-based trackers are fast if the majorant is tight for a long
distance along the ray, and many fine-detail voxels can thus be
skipped. A well-designed adaptive data structure is key for achiev-
ing good performance with regular tracking in such scenarios, and
its noise-free nature may provide a competitive advantage.

Motion blur. To simulate motion blur in case of time-varying vol-
umes, the particle density may be transported on the fly to match the
current time by employing Eulerian motion blur [KK07]. This can
be combined with stochastic trackers or ray marching since these
only require a point query. Regular tracking works better when the
data is stored in a 4D grid (space and time) [Wre16]. Majorants for
stochastic tracking will need to be stored either conservatively over
the whole shutter interval, or in a time-resolved manner, too.

9. Remaining challenges and open problems

Simulating light transport in participating media efficiently is
a challenging problem. Individual methods surveyed in this re-
port are typically well-suited for particular classes of problems,

and while some effort has been made in unifying different ap-
proaches [KGH∗14], having a solution that handles vastly differ-
ent scenarios without significant computational overhead is still an
open problem. Currently, combinations that employ MIS typically
induce an extra cost, and an intimate technical knowledge of all ex-
isting techniques is required to efficiently render a specific scene.

Null-collision methods and MIS. The integration of null-
collision methods into MIS-based estimators, in particular, is cur-
rently very difficult. The rejection-sampling nature of these meth-
ods makes it currently impossible to evaluate the free-path PDF ex-
actly, and one needs to compute the MIS weight using deterministic
approximations that incur suboptimal weighting and computational
overhead. Another open question, specific to null-collision trans-
mittance estimators, is how to choose the optimal tracker, or when
to switch from one to the other. Figure 5 studies the performance of
these estimators in a canonical setting only, and devising a robust
switching criterion for general use remains an open problem.

Machine learning. Machine learning, in general, has a great po-
tential of accelerating light-transport simulations. The vast cost
of accessing voxelized data and the high-albedo nature of cer-
tain volumetrics (e.g. clouds) make it challenging for MC meth-
ods to deliver the results at tractable costs. Importance sam-
pling such high-dimensional spaces is hard, especially when peaky
forward-scattering phase functions are used. The high expense
can be mitigated by incorporating various aggregators [MWM07,
MPH∗15, MPG∗16], diffusion approximations [JMLH01, dI11,
HCJ13, FHK14, KPS∗14], or deep learning [KMM∗17], but this
always comes at the cost of sacrificing unbiasedness. Applying ma-
chine learning at the level of distance and directional samples, as
has been proposed for surface rendering [VKv∗14,VK16,HEV∗16,
MGN17], or other forms of path guiding could potentially provide
significant practical benefits.

Joint handling of surfaces and volumes. Producing a final ren-
der usually means including volumes and surfaces in the same
scene. This is already challenging from an asset creation stand-
point, since often volume data sets come from simulations while
surfaces are created in a different workflow. The same separation
can be observed in specialized algorithms tailored either for vol-
umes or for surfaces. This can go as far as using completely differ-
ent renderers for the two tasks, leading to problems when the two
results are to be combined. Thus, a unified scene representation in-
corporating both surfaces and volumes in the same context might
lend itself better towards adaptive level of detail.

Generalizations. Generalizing some of the aforementioned meth-
ods to anisotropic media still remains to be investigated, and very
little research (in graphics) has so far been devoted to discrete ran-
dom media [MWM07,MPH∗15,MPG∗16] or media where the po-
sitions of scatterers are not independent, but correlated. Handling
such scenarios will require a generalized form of the classical RTE.
Transient rendering is another area of transport simulation that re-
quires resolving light paths in time. Methods for constructing paths
that attain a specific total length (duration) currently exist only for
two-segment paths [JMM∗14]. Building a time-constrained light
trajectory with multiple bounces remains to be developed.
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Towards automatic algorithms. While the adoption of Monte
Carlo methods for (volume) rendering has improved artistic work-
flow, physical accuracy, and usability, we are still far from the goal
of a fully automatic rendering process. In a way, the state of the
art in this field is much like that of photography in the early 1900s.
Then, a photographer had to be a master technician with knowledge
of physics, chemistry and engineering to adjust camera parameters
based on the particulars of each captured scene. Consumer smart-
phone cameras now make these decisions automatically for the typ-
ical photographer, but we are a long way from that goal for Monte
Carlo rendering.

10. Conclusion

We have reviewed and summarized components and complete algo-
rithms for physically-based rendering of scenes containing partic-
ipating media. We focused on methods that employ various forms
of Monte Carlo integration. These provide practical solutions to
transport problems that arise in visual effects, feature animation,
architectural design, and product visualization, and are currently
heavily employed for rendering images in the corresponding in-
dustries. Our report can serve as a starting point for practitioners to
get quickly oriented in the field. It also provides a reference for re-
searchers and links for those interested in developments in nuclear
sciences, neutron transport, and particle physics. Further connec-
tions can be found in the book by d’Eon [d’E16], which covers
closed-form solutions and complements the overview of numerical
recipes provided here.
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