
Manuka: A batch-shading architecture for spectral path tracing in

movie production

LUCA FASCIONE, JOHANNES HANIKA, MARK LEONE, MARC DROSKE, JORGE SCHWARZHAUPT,

TOMÁŠ DAVIDOVIČ, ANDREA WEIDLICH, and JOHANNES MENG, Weta Digital

Fig. 1: A frame from theWar for the Planet of the Apes movie, rendered in Manuka.

Image courtesy of Weta Digital, ©2017 Twentieth Century Fox Film Corporation. All rights reserved.

The Manuka rendering architecture has been designed in the spirit of the
classic reyes rendering architecture: to enable the creation of visually rich
computer generated imagery for visual effects in movie production. Follow-
ing in the footsteps of reyes over the past thirty years, this means supporting
extremely complex geometry, texturing and shading. In the current genera-
tion of renderers, it is essential to support very accurate global illumination
as a means to naturally tie together different assets in a picture.

This is commonly achieved with Monte Carlo path tracing, using a para-
digm often called shade on hit, in which the renderer alternates tracing rays
with running shaders on the various ray hits. The shaders take the role of
generating the inputs of the local material structure which is then used by
path sampling logic to evaluate contributions and to inform what further
rays to cast through the scene. We propose a shade before hit paradigm in-
stead and minimise I/O strain on the system, leveraging locality of reference
by running pattern generation shaders before we execute light transport
simulation by path sampling.

We describe a full architecture built around this approach, featuring
spectral light transport and a flexible implementation of multiple importance
sampling, resulting in a system able to support a comparable amount of
extensibility to what made the reyes rendering architecture successful over
many decades.

CCS Concepts: • Computing methodologies → Ray tracing;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
0730-0301/2018/2-ART1
https://doi.org/0000001.0000001_2

Additional KeyWords and Phrases: production rendering, spectral rendering,
batch shading, movie production, global illumination

ACM Reference format:
Luca Fascione, Johannes Hanika, Mark Leone, Marc Droske, Jorge Schwarz-
haupt, TomášDavidovič, AndreaWeidlich, and JohannesMeng. 2018.Manuka:
A batch-shading architecture for spectral path tracing in movie production.
ACM Trans. Graph. 37, 1, Article 1 (February 2018), 18 pages.
https://doi.org/0000001.0000001_2

1 INTRODUCTION

Computer generated imagery for movie production has always had
very particular requirements concerning image quality and feature
set of the employed rendering system. Since cinematicmovie footage
is often shot at characteristic frame rates (traditionally 24 FPS) with
wide-open apertures, it is crucial for such a rendering system to sup-
port depth of field and motion blur, for instance. The most successful
approach to this has been the reyes pipeline [Cook et al. 1987]. In
its core, reyes is based on stochastic rasterisation of micropolygons,
facilitating depth of field, motion blur, high geometric complexity,
and programmable shading.

Over the years, however, the expectations have risen substantially
when it comes to image quality. Computing pictures which are
indistinguishable from real footage requires accurate simulation of
light transport, which is most often performed using some variant
of Monte Carlo path tracing. Unfortunately this paradigm requires

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

https://doi.org/0000001.0000001_2
https://doi.org/0000001.0000001_2

1:2 • L. Fascione, J. Hanika, M. Leone, M. Droske, J. Schwarzhaupt, T. Davidovič, A. Weidlich, and J. Meng

random memory accesses to the whole scene and does not lend
itself well to a rasterisation approach at all.
That not withstanding, the main challenges in producing the

highest quality VFX work today have stayed very much the same as
those stated in the original reyes paper [Cook et al. 1987]. Because
of that continuity and because of the tremendous success that the
original reyes rendering system has had throughout the past thirty
years, we want to make some comments about how our experience
of these requirements and assumptions [Cook et al. 1987, Sec. 1]
has and hasn’t changed through the years. Following the order in
the original paper:

• Model complexity. The observations about visually rich
imagery hold up essentially unchanged.

• Model diversity. Like the original reyes architecture, we
support points, lines, triangles, quads, subdivision surfaces,
volumetrics and implicit surfaces. The importance of input
from simulation and special geometry such as procedurals,
hair, particles and volumes has risen somewhat since the
days of the original reyes.

• Shading complexity. Programmable shading and lavish
use of texturing are still an integral part of movie produc-
tions. Today this carries over to using complex, layered
bsdfs, potentially featuring spectral dependencies.

• Path tracing. Path tracing is now ubiquitous in production
rendering, this has also been discussed in [Christensen and
Jarosz 2016; Fascione et al. 2017a,b; Keller et al. 2015]. Due
to unified handling of all lighting effects and the resulting
simplification in workflows, nearly all of the industry has
moved over to physically-based global illumination using
some variant of path tracing. Given this, it is clear that the
assumption that ray tracing has to be kept to a minimum
has had the most significant change since 1987.

• Speed. While computers have become much faster and
symmetric multiprocessing systems with processor counts
in the many tens are now ubiquitous, this item still applies
largely unchanged. At the same time, scene complexity and
detail levels have grown possibly even more than compute
capability has, in the face of image resolutions and frame
rates having stayed largely the same1.

• Image quality. While focusing more on a new artifact,
namely Monte Carlo noise, this requirement is essentially
the same today.

• Flexibility. In the original reyes paper [Cook et al. 1987]
flexibility was rightfully framed as an all-around require-
ment: many aspects of graphics, from scene representa-
tion to image generation were still being invented, discov-
ered and implemented, and it was crucial to allow users to
contribute to experimentation and innovation in all these

1At the time of writing in 2017, the majority of movie delivery packages consists of
frames that are roughly two thousand pixels across (colloquially called 2K) and are
meant to be displayed at 24 frames per second. While higher resolution and frame rates
for delivery certainly do exist, they are still considered more as specialty materials. A
few years ago it seemed that a higher frame rate might be coming, but the reception
from movie going audiences was cold at best. Higher image resolution, roughly four
thousand pixels across (called 4K) seems to be a closer possibility at this point in time,
with home video having taken a lead in adoption.

aspects. It is our experience that today it is most impor-
tant to be able to efficiently implement new path sampling
strategies, as these can often have a far larger impact on
performance than low-level optimisations.

The analysis of the requirements and many of the main concepts
of the original reyes architecture still hold up very well. It is, for
instance, largely undisputed that pixel-based micropolygons con-
tribute crucially to the visually rich diversity that is essential for
vfx work.

The largest difference between then and now is the essentially
ubiquitous application of some variant of path tracing. The advan-
tages are much improved image quality due to global illumination,
transparently binding together assets in the scene, as well as sim-
plified workflows due to a reduced number of render passes and
intermediate caches (see Fig. 5). While path tracing is comparatively
simple to implement correctly, it is notorious for its fundamental
lack of intrinsic locality of reference, making it challenging to realise
into a system capable of achieving good performance in the dimen-
sions of execution time or space usage. This is in sharp contrast to
what was possible with the reyes pipeline, where high performance
was achieved via the very means in use today for any high perfor-
mance computing application: careful leveraging of intrinsic locality,
vectorisation and simd execution, parallelism, and pipelining.

A number of methods to apply this to path tracing have been
devised (see for instance [Eisenacher et al. 2013; Fascione et al.
2017a; Keller et al. 2017]). Our architecture follows a different pattern
which allows for more flexibility when it comes to the choice of path
sampling algorithm, while still exploiting vectorisation and texture
locality during shading. As mentioned above, increased flexibility
has proven to be useful for us to achieve fast response times when
reacting to new production requirements.

1.1 Main aspects of the Manuka architecture

While there are many detailed aspects about Manuka2 which de-
viate substantially from typical approaches, we want to focus on
three main structural aspects here. These are to be understood as
architectural design principles and the implementation of the ren-
derer mostly follows them, but allows back doors and special cases
to support specific production workflows.

As a result of the experience we gathered with our pipeline based
on RenderMan and PantaRay (cf. Sec. 2.2), we prioritised the follow-
ing design goals:

• Cater to extremely complex shading (the übershader used
on Avatar had approximately 22,000 lines of code).

• Compute pictures of the highest quality, matching live ac-
tion footage as closely as possible.

• Quickly react to evolving production needs and advances
in research.

2We called our systemManuka, as a respectful nod to reyes: we had heard a story from
a former ILM employee about how reyes got its name from how fond the early Pixar

people were of their lunches at Point Reyes, and decided to name our system after our
surrounding natural environment, too. Manuka is a kind of tea tree very common in
New Zealand which has very many very small leaves, in analogy to micropolygons in
a tree structure for ray tracing. It also happens to be the case that Weta Digital’s main
site is on Manuka Street.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

Manuka: A batch-shading architecture for spectral path tracing in movie production • 1:3

These points are implemented in the following architectural corner
stones: shade before hit, spectral rendering, and deferred splatting.

Scene API / Parser

ProcExpand
Tessellation
Instancing

Shading

Path Sampling
Imaging

Front Scheduler

Back Scheduler

BVH builder

Output driver

Fig. 2. Coarse overview of our shade before hit architecture. The Front
Scheduler orchestrates collecting shapes from the input, including proce-

dural expansion, instancing management and tessellating and shading the

micropolygon grids. At the end of shading, a bvh is built on these, and

the Back Scheduler orchestrates light transport sampling the various paths,

imaging and communication to the output drivers.

Shade before hit. We use the RenderMan Shading Language (rsl)
for programmable shading [Pixar Animation Studios 2015], but we
do not invoke rsl shaders when intersecting a ray with a surface
(often called shade on hit). Instead, we pre-tessellate and pre-shade
all the input geometry in the frontend of the renderer (see Fig. 2).
This way, we can efficiently order shading computations to sup-
port near-optimal texture locality, vectorisation, and parallelism.
The output of these prelighting shaders are the inputs to the light
transport stage: per-vertex bsdf inputs. This system avoids repeated
evaluation of shaders at the same surface point, and presents a min-
imal amount of memory to be accessed during light transport time.
An added benefit is that the acceleration structure for ray tracing (a
bounding volume hierarchy, bvh) is built once on the final tessel-
lated geometry, which allows us to ray trace more efficiently than
multi-level bvhs and avoids costly caching of on-demand tessellated
micropolygons and the associated scheduling issues.

× =
©«

R
G
B

ª®¬
Fig. 3. Spectral rendering forms an image by multiplying the incoming

spectral power distribution (shown in yellow) by the spectral camera respon-

sivity curves. As opposed to rgb rendering or using the xyz colour matching

functions, this ensures the rendered images exhibit the same degree of

observer metamerism as the camera footage they are intended to match.

Spectral rendering. The light transport stage is fully spectral, us-
ing a continuously sampled wavelength which is traced with each
path and used to apply the spectral camera sensitivity of the sensor
(see Fig. 3). This enables us to faithfully support complex materials

which require wavelength dependent phenomena such as diffrac-
tion, dispersion, interference, iridescence, or chromatic extinction
and Rayleigh scattering in participating media. Also, importance
sampling for a specific wavelength can be much more efficient than
dealing with a full spectrum or an rgb contribution at once. When it
comes to colour reproduction, multiplying path throughput weights
in rgb in general produces inaccurate results, as explained for ex-
ample in [Fascione et al. 2017a; Peercy 1993; Ward and Eydelberg-
Vileshin 2002].

Fig. 4. An example for a cached path with multiple next event estimation

samples, one manifold next event estimation sample (dashed), and connec-

tions to multiple sensor points (which is useful for instance for stereo or

motion blur).

Deferred splatting. Our execution order for path tracing is path-
first, that is, a full path is constructed before moving on to the next.
Also, a graph structure with complete information about this path,
including all path vertices and material interactions at these ver-
tices, is kept in memory before splatting the sample to the frame
buffer. Note that this structure is not a linear list of vertices but an
acyclic graph. In particular, it potentially includes multiple vertices
on sensors and lights if, for instance, splitting, next event estima-
tion [Coveyou et al. 1967], or bidirectional path tracing [Lafortune
andWillems 1993; Veach and Guibas 1994] are used (see Fig. 4). This
enables us to select different buffers for splatting and to evaluate
arbitrary output values for extra channels in a single place after
constructing the full sample. We also evaluate weights for multi-
ple importance sampling (mis) [Veach and Guibas 1995] after the
sampling stage, making it easy to dynamically combine arbitrary
sampling techniques. This approach also easily supports the imple-
mentation of energy redistribution path tracing or gradient domain

path tracing as a post-process.

2 HISTORICAL CONTEXT

In this section, we want to give a quick overview about the train
of thoughts and the experiments that lead to Manuka as it is today,
surveying previous work on the way.

2.1 Classic RenderMan

In the past, Weta Digital was using Pixar’s PhotoRealistic RenderMan

as the main tool to render images. Increasing demands for realism
in particular for visual effects work drove the need to include for
instance improved subsurface scattering. This was facilitated using
various kind of sidecar caches, which had to be generated in separate
dedicated render passes.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

1:4 • L. Fascione, J. Hanika, M. Leone, M. Droske, J. Schwarzhaupt, T. Davidovič, A. Weidlich, and J. Meng

Composite

hroGollum

Maya

RIB

BakeVis

Indirect

Subsurface

vislocal
pantaShad

ShadowMap

DeepShad

Beauty

ShadowRIB

Fig. 5. A frame from The Hobbit: An unexpected Journey and an illustration

of the corresponding pipeline using RenderMan as backbone. Shadows,

local occlusion, indirect diffuse, and subsurface all required separate render

passes with intermediate caches as result which would in turn be fed to the

final beauty pass. For various reasons (including memory usage), many of

such passes would be required and composited to yield a final result. The

switch to path tracing promised substantial simplification of this process. .

Image courtesy of Weta Digital, ©2012 Warner Bros. Entertainment Inc. All

rights reserved

2.2 RenderMan and global illumination

Over the years we added many approximations to global illumina-
tion to our RenderMan-based pipeline, such as a point cache-based
approach to subsurface scattering used on Avatar. To be able to com-
pute more precise occlusion, we employed PantaRay [Pantaleoni
et al. 2010] and gpu ray tracing, used to bake weakly directional
ambient occlusion for the spherical harmonics pipeline used for
instance on Avatar [McKenzie et al. 2010] or The Adventures of
Tintin. Beauty renders were performed using RenderMan at the
time, reading the PantaRay occlusion during shading (see Fig. 5 for
an illustration). After extending PantaRay to area light sources, god
rays [Hanika et al. 2012], and performing first tests with path trac-
ing, we decided to implement a full path tracer to directly produce
final images.

2.3 Ray wavefronts

There exists a remarkable variety of approaches to efficiently ray
trace complex geometry, diced to the sub-pixel level which is re-
quired to obtain sufficient realism.
These include on-demand dicing and sometimes caching of the

resulting micropolygons [Christensen et al. 2006; Hou et al. 2010;
Lamparter et al. 1990; Pharr and Hanrahan 1996; Pharr et al. 1997;

Smits et al. 2000; Stoll et al. 2006] often combined with tracing
streams or wavefronts of rays, and ray-sorting methods, through to
cache-oblivious methods using sorting of ray intersections instead
of caching of micropolygons [Hanika et al. 2010; Moon et al. 2010].

Ray wavefronts are an approach to path tracing in which the ray
tracing order is in some sense the transpose of what would result
from the textbook description of path tracing: instead of tracing one
ray then following it through the path the renderer generates, all
first rays for many paths are traced first, then all materials on the
hits are evaluated, then all new generated rays are traced and so
on, in waves of alternating tracing phases and evaluating phases.
Shooting wavefronts of rays requires the ability to store many rays
along with the state of the associated global illumination algorithm
in memory. For large batches of rays, this can quickly become a
significant resource commitment.
After experimenting with on demand dicing for a while, we de-

cided on a simpler solution. Our reasoning was as follows: on de-
mand dicing means running shaders to obtain displacements. It was,
however, one of our initial design goals to not run shaders more than
necessary. This is partly due to the compute required to run shaders,
but mostly due to the accesses to many layers of large textures. We
wanted to save the memory bandwidth for actual geometry and
ray tracing acceleration structure data, as well as being concerned
by the load on the i/o infrastructure caused by large amounts of
incoherent texture requests.

In our experience sorting rays to yield cache coherence is mostly
useful for primary rays. Much of the performance improvements
reported for tracing ray wavefronts in conjunction with on demand
tessellation and shading (such as in [Hanika et al. 2010]) are likely
due to much coarser dicing for secondary bounces. Such aggressive
level of detail, however, was not an option for us, given our aim to
deliver highest quality images. Indeed it would be easy to construct
configurations using non-diffuse materials or shadow silhouettes
which would at a minimum require user intervention. Further, this
approach is often justified by an argument in which the coarser
tessellation is a form of approximate bandlimiting for the signal
contained in the incoming radiance at a given point in the scene3.
However, our observation looking at actual scene contents that are
common in vfx production processes (at least at Weta Digital) indi-
cates that the actual problem seems to be that the base cages in our
models are actually too dense for this advantage to materialise at a
geometric level. Indeed if anything, a lively discussion we’ve had for
years in the industry is centered around methods of automatic mesh
simplification that are reliable and efficient enough to complement
tessellation in a renderer’s geometry processing pipeline. We are
aware of this being a sought-after feature on the part of renderer au-
thors and users alike, but it seems this theme has not received much
attention from the research community to date. Lastly, depending
on the specifics of the texture coordinate mapping technology in
use, be that single (u,v) sets, versus (u,v) texture atlases, versus
systems like Disney’s Ptex [Burley and Lacewell 2008], enlarging
the footprint of the corresponding texture lookups may or may not

3Note that this is one of those very coarse approximations that trade the integral of a
product for the product of the integrals. It is well known how some common use cases
might make this tradeoff an unacceptable compromise in quality.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

Manuka: A batch-shading architecture for spectral path tracing in movie production • 1:5

be possible or computationally advantageous, further reducing the
potential for bandlimiting to actually occur.
Another unacceptable potential pitfall is the quality of the ray

tracing acceleration structure in the case where a top-level tree
is built around patches which are to be tessellated and shaded on
demand. An extreme example would be hair, where every strand is
a separate shape to be tessellated, but has about the same bounding
boxwhich goes into the top-level hierarchy, essentially degenerating
to a linear list.
Today, this last issue can be alleviated somewhat by partial re-

braiding [Benthin et al. 2017]. However, a full BVH build will still
yield the best performance. We decided to (view-adaptively) pre-
tessellate all geometry into micropolygons and build one single
bounding volume hierarchy on this data. This enables efficient tra-
versal of incoherent rays, and presents consistent geometry to the
path tracing layer, independent of ray differential, tracing direction,
or number of bounces. This also reduces implementation complexity
because there is no need to tweak caches for scaling behaviour.

However, this meant that we would potentially need to go out of
core on very large scenes. Because of available literature [Budge et al.
2009; Garanzha and Loop 2010] and our experience with PantaRay
[Pantaleoni et al. 2010], we were confident we would be able to
handle this.
We first wrote Manuka as a hybrid out-of-core cpu/gpu path

tracer using large ray wavefronts (in our implementation, 2 million
rays were traced at once). We designed a ray tracing kernel based on
swappable pages which used only indices and no pointers. Each page
contained a treelet, suitable for coherent memory access during ray
tracing, and the required parts of the geometry in the sub tree. bsdf
inputs and ray tracing geometry were separated, such that the light
transport and geometry intersection phases would be able to make
best use of the available memory. The ray tracer supported pausing
and resuming rays in mid flight, to enable out-of-core paging.

The complexity of the rsl übershader used for almost everything
in the RenderMan pipeline convinced us that we would not be able
to run these shaders on ray hit inside the innermost loop of our new
renderer. Thus, we decided early on to split the rendering process
into two phases, shading and path sampling, an architecture we’ve
been calling shade before hit.
As for light transport algorithms, this version of Manuka had

support for path tracing with next event estimation, light tracing, and
Kelemen Metropolis [Kelemen et al. 2002]. The latter was possible
due to a trick that reduced the amount of memory required to store
the state of the current samples in the Markov chains significantly:
we made use of multiple try Metropolis [Liu et al. 2000] to multiplex
a few (e.g. 32) tentative samples into one shared current state.

While this simple path tracer was producing pictures, there was
clearly room to improve the noise characteristics of the output.

2.4 Manuka today

Soon, more advanced sampling techniques, in particular manifold

exploration [Jakob and Marschner 2012] and vertex connection and

merging [Georgiev et al. 2012], made us rethink our architecture.
To be able to quickly experiment with these sampling techniques,
we wrote a second rendering module inside Manuka, tracing whole
paths at once, fully on the cpu. As a surprising result, there was no

performance penalty for us as compared to the in-core cpu code
path of the wavefront tracer. This may be due to our unique shade
before hit architecture: while the rays connecting directly to camera
are still coherent, there is usually very little common memory traffic
to be extracted from indirect diffuse rays, increasingly more so
for longer paths. The way we extract bsdf inputs from per-vertex
data also does not require any texture filtering, which might have
allowed for some caching effects on larger texture tiles. Further,
the ray-sorting step and some memory traffic accessing the ever
growing ray states disappeared.

On the other hand, the increased flexibility in choosing and craft-
ing interesting sampling strategies yielded a handsome payoff. This
may be no surprise, as it is well known how the rendering error
in Monte Carlo sampling is proportional to the ratio of the sample
standard deviation σ to the square root of the sample count N . That
is to say that in a time-to-equal-error setting, a new technique which
halves the standard deviation can take up to four times longer per
sample before breaking even with drawing more samples from the
old technique. The conclusion is then inevitably that optimising
for variance reduction is more important than optimising for faster
generation of samples.

When it comes to the ray tracing kernel, the choice to trace single
rays simplified our requirements a lot: it meant we do not need
support for ray interruptions, ray-sorting, or manual paging of ray
tracing data. Instead, we are now facilitating out-of-core in case it
becomes necessary by simple memory mapping of the data backing.
This choice was motivated by our experience with how users were
working with PantaRay for area light sources: due to non-local
memory access patterns, the cost for going out-of-core in this case
was so much higher than for the original application (computing
local occlusion), that users generally tried to minimise geometry or
pick a larger machine and would only rarely resort to out-of-core.
Moving on to newer versions of Manuka, the gpu code path be-

came less important for us, mostly due to a combination of memory
constraints on currently available hardware compared to our pro-
duction scene sizes, and maintenance issues when deploying to
a new gpu architecture. Since temporal consistency is of the ut-
most importance to us, we replaced the Metropolis code paths by
specialised sampling techniques working from within pure Monte
Carlo, such as moving from manifold exploration to manifold next

event estimation [Hanika et al. 2015].
One goal of the Manuka project was to build a flexible, modular

architecture, which would make it easy to replace modules of the
renderer to experiment with new ideas and try different approaches.
Indeed, this short summary of Manuka’s history shows that we did
in fact exchange a number of ourmodules multiple times. In contrast,
the data flow from rib input to the path tracing backend, including
the shade before hit architecture was there from the start. Also, light
transport has always been spectral and subsurface scattering was
fully path traced from the beginning.

3 ARCHITECTURE

Pipeline Overview. Manuka comes with a relatively complete im-
plementation of a classic RenderMan frontend. This includes a rib
parser and support for RenderMan Interface Filter plugins, pro-
cedural geometry plugins, shadeop plugins and dspy plugins as

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

1:6 • L. Fascione, J. Hanika, M. Leone, M. Droske, J. Schwarzhaupt, T. Davidovič, A. Weidlich, and J. Meng

described in the manual for Pixar’s PhotoRealistic RenderMan ver-
sions based on reyes [Pixar Animation Studios 2015]. A few exten-
sions have also been implemented, notably a procedural geometry
interface to implement plugin tessellation engines, which turned
out to be very useful for Level of Detail procedurals. Micropoly-
gon grids can then be obtained either from rib primitives through
Manuka’s tessellation engine, or directly from these tessellation
plugins. Manuka’s internal tessellation engine is a modern imple-
mentation of reyes split-and-dice, supporting polygon, nurbs, sub-
division surface, curve, implicit surface and volumetric dicing, with
the implementation features one would expect such as parallelisa-
tion and vectorisation. Shadeable micropolygon grids obtained as
above are then processed through the following pipeline:

• First, grids from multiple faces that are small enough are
joined intomultigrids, to improve the efficiency of the simd
execution and texturing subsystems. Note that this step
takes care of deduplicating vertices on boundaries which
will then be shaded only once. The layout and semantics
of the binding of primitive variable to shader parameters
effectively implies that multigrids cannot be formed from
grids that disagree on the values of non per-vertex data (cor-
responding to the uniform and constant storage classes
in rib), such as references to multiple textures out of a tex-
ture atlas. Although this might sound like an impediment,
it is actually a desirable property to have from an access
coherence point of view.

• Multigrids are dispatched to various execution threads and
shaded in parallel. Manuka shaders are written in our im-
plementation of rsl 2.0 [Pixar Animation Studios 2015],
compiled down to native machine code and executed in a
simd fashion as required by language semantics.

• Running shaders on multigrids results in producing per-
vertex bsdf input data which is then transferred to the BVH
builder in the backend. Out-of-core is performed by using
memory mapping on this storage.

After all grids have been processed and collected, a bounding volume
hierarchy is built on the complete list of micropolygons (except for
instanced geometry, which has separate bvh and transformation
matrices). In the second phase, light transport takes place, and a
multitude of supported techniques can be used to construct transport
paths. Once a complete path is constructed, it can be evaluated and
the contribution added to the corresponding pixels as specified by
the configuration of the various arbitrary output variables.

3.1 Shade before hit

We decouple shading and path sampling. That is, evaluation of rsl
shaders happens in batched mode on all vertices of the tessellated
micropolygons before the light transport phase starts. While in
classic rsl the result of running a surface shader is the final color
at that location, and in osl [Gritz 2009] is a closure, in Manuka the
result of a shader is a data aggregate containing the bsdf inputs, their
weights, and the layering setup: once shading ends, this aggregate is
compressed and stored as per-vertex data along with the geometry.
We keep ray tracing geometry and bsdf input data separate to
improve locality of reference during ray tracing: the separation

helps ensure that shading data will not be accidentally fetched into
the processor cache during geometry intersection computation.
Differently put, we evaluate the loop invariant only once, and

convert primitive variables to bsdf inputs for each vertex on a grid.
Since the compressed bsdf inputs are much smaller than the set
of input textures used to shade a vertex, this reduces the memory
pressure during path tracing (as well as avoiding the potential for
i/o stalls from texturing). Moreover, this approach avoids repeated
shading of the same grid vertices when intersecting the same mi-
cropolygon multiple times during the tracing of different paths. This
especially pays off for high sample counts and long paths (that is,
paths with many bounces, such as in hair for instance in Fig. 6).
As opposed to the original reyes paper, we use bilinear interpo-

lation of these bsdf inputs later when evaluating bsdfs per path
vertex during light transport4. This improves temporal stability of
geometry which moves very slowly with respect to the pixel raster,
especially for coarse tessellations. Note that this only applies to the
bsdf inputs: the bsdf itself is evaluated exactly at the hit location
(in other words: the hit is Phong shaded, based on parameters that
are Gouraud interpolated).

Since shading happens once on startup for the whole grid of tessel-
lated vertices, our pipeline inherits many of the properties described
by Cook et al. [1987, Sec. 2.3] when it comes to texture locality and
vectorisation: texture locality is enforced by merging grids up to
texture seams before shading. Internally, the system uses a texture
cache which easily achieves very high access coherence figures:
being able to use the texture coordinates traveling with the grids
to schedule shading execution means that only projection-based
texturing requires a proper texture cache5, because the scheduler
can easily dispatch execution in a texture coherent manner for (s, t)-
mapped grids. To make sure vectorisation makes use of available
sse or avx capabilities when running renders on an heterogeneous
machine room, we just-in-time compile shaders from llvm bytecode
on renderer startup (with the aid of a cache of precompiled binaries
to save on redundant recompilations).

We follow this paradigm for hair strands and volumes as well, and
perform view-adaptive tessellation into line segments and voxels,
respectively, followed by shading during ingestion of the input. On
hair, this enables the artists to add fine details and displacement for
increased realism.

3.2 Spectral rendering

We simulate light transport by modelling colours as spectral power
distributions. This choice has large advantages over simply using
tristimulus values in terms of accurate colour reproduction as ex-
emplified for instance by Fascione et al. [2017a].

Colour formation. Reproduction of colours from spectral data is
a fairly well understood process [CIE 1996; CIE 2004; ITU 2002;
Wyszecki and Stiles 2000]. One important aspect when working

4We note a very similar capability has been available for the longest time in Pixar’s
PhotoRealistic RenderMan and is part of the RenderMan Interface specification at least
since version 3.2.
5We note that separate assets sharing textures may also benefit from an appropriately
large texture cache, but we also observe that such a cache would need to be conspicu-
ously large in practice to withstand the load of dozens of threads concurrently shading
assets each accessing dozens to hundreds of individual files.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

Manuka: A batch-shading architecture for spectral path tracing in movie production • 1:7

Fig. 6. A frame from the movie War for the Planet of the Apes. This shot includes several characters with fur as well as multiple volumetric light sources and

foliage. A special challenge in this render are the tiny moss structures on the ground. These are modelled to very high detail, resulting in sub-pixel base meshes.

This presents a hard case for a shade before hit architecture: since there are many more vertices even on the base mesh than pixels. This is a sub sampling

situation with many more shaded vertices than materials constructed for ray intersections for low sample counts. Image courtesy of Weta Digital, ©2017

Twentieth Century Fox Film Corporation. All rights reserved.

with spectral data is to pay due consideration to the phenomenon
of observer metamerism, in which radiation from different spectral
distributions appear to have the same colour to a given observer, see
for example [Lam 1985] for an extensive discussion of the subject.

The commonly recommended approach to convert a given spec-
tral distribution to tristimulus values would be to project the dis-
tribution from the current sample into xyz space and then using
an appropriate transformation matrix to transform from xyz coor-
dinates to the desired colour space (common colour spaces used
in practice include sRGB [Stokes et al. 1996], AlexaWide and aces

[Agland 2014]). Indeed most contemporary definitions of colour
spaces employ xyz coordinates in this central role of pivot space.
Naturally, and by definition, projection into the xyz coordinate

space amounts simply to computing the scalar product of the given
distribution with the colour matching functions x̄(λ), ȳ(λ), z̄(λ) de-
fined by the cie in 1931, and derived from the Wright/Guild data
[Fairman et al. 1998; Smith and Guild 1931; Wright 1928] for the
so-called two degree observer

6.
A notable trait of this approach is that the transformation obtained

using the Wright/Guild data has the same null-space (that is, the

6Later experiments on sensitivity of human subjects to colour sensation revealed that
the apparent angular size of the source influences the ability of the observer to perceive
and distinguish colours, due to the different distribution of cones and rods in the
foveal and non-foveal regions of the retina. A second set of measurements, meant to
better embody the concept of a standard observer was then taken using a larger source
spanning about ten degrees (sometimes called the supplementary standard observer).
This not withstanding, standard colour spaces (XYZ, Rec. 709, Rec. 2020, ..) are still
referred to the original two degree observer data from 1931.

space of metamers) as the human visual system (this is because
the Wright/Guild lms space7 and the xyz space are isomorphic and
differ only by an invertible 3 × 3 transform). This is of course by
virtue of careful design choices, and constitutes a very desirable
property if the intent is to store a scene’s colour so that it matches
the impression a human would have when observing said scene in
real life.
In our use case, though, the most important trait is actually not

to match the sensation observers would have in real life were they
present in the scene, but instead it is for the rendered images to
match the metamerism that the motion picture camera exhibited
when the plates were captured, so that the integration of rendered
and captured data is as seamless and accurate as possible. For this
reason we employ spectral responsivity curves during rendering
that are built measuring the spectral sensitivity of the principal
photography camera and transforming these measurements into
colour matching functions to produce tristimulus data in xyz 1931
colour space coordinates. Such spectral sensitivity curves can be
measured [Hardeberg et al. 1998] or derived approximately [Jiang
et al. 2013; Kawakami et al. 2013]. There exist commercial devices
for such measurements [Image-Engineering 2010] as well as do-
it-yourself kits [Karge et al. 2014] for home-made devices. We are
actively working on developing an improved device for camera
characterisation to be used in the future.

7The space called lms is the space of sensitivity of the cone receptors in the retina:
these are classified as L-cones, M-cones and S-cones due to their sensitivity to long,
medium and short wavelengths.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

1:8 • L. Fascione, J. Hanika, M. Leone, M. Droske, J. Schwarzhaupt, T. Davidovič, A. Weidlich, and J. Meng

4spp, 1 × λ 4spp, 8 × λ 64spp, 1 × λ 64spp, 8 × λ

Fig. 7. Closeup view of a skin render with wavelength dependent extinction

under the surface, using path traced sub surface scattering. The images

labeled 8 × λ use exactly the same paths as the 1 × λ counterparts, but

also evaluate them for additional wavelengths. Individual contributions

are combined using multiple importance sampling [Wilkie et al. 2014].

This helps reduce colour noise. Thanks to the wikihuman project (http:
//gl.ict.usc.edu/Research/DigitalEmily2/) for the asset shown in these images.

Spectral transport. In general, rendering using directly the tris-
timulus values of an rgb colour space yields non-physical results
[Ward and Eydelberg-Vileshin 2002] and a different working space
will yield different results [Agland 2014]. This observation, com-
bined with the quest for the best possible importance sampling as
well as a requirement for precise matching to camera footage from
principal photography, motivated our choice to perform spectral
light transport.
Spectral rendering can be performed in many ways (see for in-

stance [Maloney 1986; Meyer 1988; Peercy 1993]), but in the interest
of best importance sampling we chose to trace a single, randomly
selected wavelength for each path. Every additional random vari-
ate introduced in a Monte Carlo method will introduce additional
noise. To control the resulting colour noise, we employ a stratified
sampling scheme called hero wavelength spectral sampling [Wilkie
et al. 2014], which provides a good opportunity for employing sse
instructions to compute the throughput of additional wavelengths
simultaneously at little additional cost. A visual comparison can be
seen in Fig. 7.

Upsampling of rgb textures to spectra. While we support using
full spectra from binned data as input, we can save memory cost
by using rgb textures. It is possible to upsample traditional rgb
values (or any colour managed tristimulus input) to a full spectrum
suitable for spectral rendering [MacAdam 1935a; Meng et al. 2015;
Smits 1999; Sun et al. 1999; Wang et al. 2004].

In general, not all input chromaticities will result in energy con-
serving reflectance spectra [MacAdam 1935b; Schrödinger 1919].
This is because highly saturated chromaticity relates to a peaky
spectrum, but the maximum is limited to one. This in turn means
the brightness, which is related to the integral of the spectrum,
needs to decrease. As a consequence, some kind of gamut mapping
[Finlayson and Hordley 2000; Forsyth 1990; Morovi 2008] needs
to be performed to output energy conserving spectra with close

chromaticity. A number of strategies to achieve this for reflectance
spectra have been described by Meng et al. [2015].
Brighter colours with high saturation [Couzin 2007] would re-

quire the renderer to simulate fluorescence during light transport
time [Glassner 1994]. We decided not to implement fluorescence
at this point because it is unclear how to make bidirectional path
construction efficient.
In Manuka, spectral upsampling uses an optimisation strategy

similar to the method proposed by Smits [1999]. There are some
important differences though. First, our optimisation converges
even for a much higher output resolution. For emission spectra, we
allow the distribution to grow above one (there is no constraint
on energy conservation), and instead constrain the process such
that a D65 input spectrum round-trips without error, i.e. it can be
converted to cie xy chromaticity coordinates and back to a full
spectrum. For both emission and reflectance spectra, the optimiser
uses the specific input colour space of the texture instead of using
fixed sRGB primaries. For reflectances, we also use cie Illuminant E
as white point, since it makes sense to expect a uniform reflectance
spectrum when the input has equal R = G = B coordinates: after
all, the white point is governed by the illumination, which is not
part of the reflectance spectrum. Also, we make use of the spectral
camera responsivity curves in the process instead of using the xyz
colour matching functions: to determine when a tristimulus colour
and a spectrum are equivalent, we determine both in camera rgb
using the spectral response curves of the device. For image based
lighting, it is most meaningful to employ the responsivities of the
camera that was used to take the picture.

Materials and importance sampling. Spectral rendering allows us
to easily support rich material models with very high degrees of
accuracy, including effects such as far-field diffraction, interference,
iridescence (cf. Fig. 8), or Rayleigh scattering in participating media.
One important feature for us is that we can robustly handle coloured
extinction in participating media. Rendering this otherwise may
quickly lead to infinite variance [Raab et al. 2008], even when using
rejection sampling by throughput [Szécsi et al. 2003], or leads to
inefficiencies when conservatively sampling the shortest free path of
all wavelengths [Kutz et al. 2017]. Sampling a path specifically for a
wavelength provides better importance sampling, which is essential
to render high-quality skin by path traced subsurface scattering.

Photometry. We make use of colour management throughout the
pipeline, employing photometric quantities [USAS and ASME 1967]
to support more intuitive user interfaces for lighters: this enables
them to change the colour of a light without affecting perceived
brightness, for instance.

3.3 Path first execution order

We decouple path sampling from mis evaluation and splatting: the
path sampling techniques are only responsible for implementing
path construction and inserting every created vertex into an acyclic
vertex graph. In particular, since the mis weights are computed
separately, the techniques do not need to be informed about any
other potentially active techniques.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

http://gl.ict.usc.edu/Research/DigitalEmily2/
http://gl.ict.usc.edu/Research/DigitalEmily2/

Manuka: A batch-shading architecture for spectral path tracing in movie production • 1:9

Fig. 8. A frame from the movie Valerian and the City of a Thousand Planets. The characters feature a complex multi-layer iridescent skin shader, making them

heavy-weight mostly to evaluate the bsdf at hit time. On the other hand, the iridescent appearance is simple to implement in a spectral renderer. This frame

includes a few plate elements: the backdrop, the space ship, and the two human main actors. Image courtesy of Weta Digital, ©STX Films and EuropaCorp. All

rights reserved.

The completed group of paths is then handed over to the next
phase, where the probability density of all active techniques is eval-
uated, to compute final mis weights for the constructed paths in
the graph. Note that the vertex graph caches all relevant quantities
along the paths including potentially expensive bsdf and pdf eval-
uations. This results in efficient computation of the mis weights,
while avoiding the complexity of recursive weight evaluation during
path construction [Georgiev 2012]. This supports one of our main
design points, increased flexibility, as it avoids the complexity of
the implementation growing too quickly when new sampling tech-
niques are added. In practice this means for instance that we can
easily combine path tracing with specialised estimators for single
scattering, such as in Fig. 9.

A disadvantage of our approach is that the irregular structure of
the vertex graph cache occasionally requires the per-thread data
structure to grow dynamically and hence requires extra care on
memory usage to remain efficient. Also, we need to keep complete
material instances around for each vertex.While the overall memory
consumption for a few hundred threads is negligible when compared
to geometry and bsdf inputs, this approach would be too memory
heavy for a ray wavefront implementation where ray counts are in
the millions.
Using this decoupled approach to path sampling, we can easily

support all kinds of arbitrary output variables, which can be com-
puted on the full path after sampling is finished. More advanced
secondary sampling techniques such as gradient domain path trac-

ing [Kettunen et al. 2015] or energy redistribution path tracing [Cline
et al. 2005] or our custom path reconnection technique optimised
for stereo, motion blur and depth of field can be run as post process
on the path vertex graph cache, without complicating the rest of
the path space code.

During splatting we use an approach inspired by density-based

outlier rejection [DeCoro et al. 2010], also filtering out firefly samples
in the process.

3.4 Selected subsystems

In the following, we review a few of our subsystems that while
not directly constituting the main architecture of Manuka, follow
individual design decisions that tie into the system around it.

Dicing. The input geometry is passed through the tessellation
pipeline to create micropolygon grids which are then shaded and
stored until the time comes to build a bvh for ray tracing. The main
goals of the tessellation pipeline are accurate dicing to achieve good
matching to the specified shading rate, watertight tessellation and
a good grid parameterisation for derivatives and differentials.
The tessellation engine supports a number of primitive classes

of various conceptual geometric dimension: points, curves, polygo-
nal meshes, subdivision surfaces, various kinds of bicubic patches
such as nurbs and Beziér patches, implicit field surfaces and vol-
umetric primitives. Naturally, some of these high level primitives
allow the corresponding tessellators to be particularly simple: a
micropolygon grid generated from a points primitive is simply a set
of nearby points, all of which are shaded and then go into storage
representing either oriented disks, ray-facing disks or geometric
spheres. Similarly, the curves tessellation logic dices the curves
down the length to produce grids that are either an appropriately
sized array of short one-dimensional segments (which again can be
oriented, ray-facing or true cylinders with various kinds of “elbows”)
or strips of vertex-pairs to represent oriented segments as surface
micropolygons.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

1:10 • L. Fascione, J. Hanika, M. Leone, M. Droske, J. Schwarzhaupt, T. Davidovič, A. Weidlich, and J. Meng

Fig. 9. A frame from the movie Guardians of the Galaxy Vol. 2. This shot is particularly heavy on procedurally created fractal geometry and participating

media. Decoupling path sampling and mis evaluation allows us to easily mix and match many different specialised importance sampling schemes. It presents a

hard case for our architecture because of the vast amount of finely detailed geometry, which could potentially benefit from occlusion culling. Image courtesy

of Weta Digital, ©2017 Marvel. All rights reserved.

For what concerns polygonal meshes and subdivision surfaces,
which are the vast majority of the primitives encountered in our
scenes, we proceed in a manner reminescent of contemporary gpu
tessellation units: we do not tessellate faces to a regular lattice, but
instead can create an arbitrary number of vertices on each edge,
as this enables the tessellator to produce watertight micropolygon
meshes without the need for stitching8. Our algorithm is inspired by
DiagSplit [Fisher et al. 2009]: tessellation happens adaptively using
an iterative multi-level approach, starting with the base cage as first
level. At each level all active patches cast a vote on tessellating their
edges. Then the votes are arbitrated and a final per-edge decision
is reached. After that, the patches decide whether they can dice or
need further splitting. Those that need splitting go to the next level.
This stage was no performance bottleneck for us, since we run

it once up front and it is relatively light-weight compared with
shading. If needed, however, this scheme can be (but currently is
not) parallelised: all patches cast their votes in parallel, then all
edges are arbitrated in parallel, then all patches make their decision
in parallel.
8Some tessellation architectures rely instead on the so-called stitching process: when
two adjacent micropolygon grids are tessellated so that the vertex counts on the
common edges don’t match, a strip of stitching triangles is inserted in place. Note that
this can be an extremely efficient way to fix pin-hole issues in rasterisation architectures,
because these primitives are small, relatively easy to sample and require no extra
shading computations to happen. However, we preferred to avoid the injection of a
large amount of small triangles with poor aspect ratios into our bvh, to reduce the risk
of poor numerical behaviour during intersection testing.

Displacement may cause cracks at patch boundaries, due to differ-
ences in texture filtering during lookups in the displacement texture.
In order to deliver watertight meshes to the geometry storage, we
use a welding pass after displacement: we can uniquely and consis-
tently enumerate all vertices on patch edges, since the tessellation
scheme makes sure that every edge has the same number of vertices,
regardless of the face. The position of matching vertices are then
analyzed and reconciled, and the two vertices are then moved to the
new positions, while normals are kept unchanged to retain sharp
edges and creases. Note the vertices are not deduplicated.

As we use rsl for shading, we also support arbitrary differentia-
tion. In some renderers inspired by reyes, the tessellator produces
reliably rectangular grids, making the implementation of derivatives
a relatively straightforward application of central differencing. In
our case, the non-rectangular topology of our dicing scheme results
in grids comprising a mix of quadrilateral and triangular micropoly-
gons, requiring a somewhat more careful selection of neighbouring
vertices and weighting to achieve appropriately high numerical
stability in the derivatives. The interesting counter to that turns
out to be a nice pay-off in terms of reduced aliasing when differ-
entiating signals that run near-aligned to a grid’s (u,v) intrinsic
parametrisation.

Dicing oracles. The dicing oracles instructs the tessellator to dice
the primitive into micropolygons (or microvoxels for volumes) of
a certain size. We adopted in Manuka the RenderMan notion of

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

Manuka: A batch-shading architecture for spectral path tracing in movie production • 1:11

shading rate [Cook et al. 1987; Pixar Animation Studios 2015]: the
shading rate represents approximately the number of pixels a mi-
cropolygon covers on screen9. By default, we use a shading rate of
1 for front-facing micropolygons, wheras backfacing ones use 10,
and out of frustum use 100. We have found it useful to implement a
number of specialised dicing metrics for perspective cameras, auxil-
iary passes for purposes such as texture flattening, and uncommon
projections such as fisheye or latlong cameras. Among other inputs,
the dicing oracles use one or more camera objects to orient the
tessellation metric as needed. This usually works well for multiple
output cameras, such as for stereo renders.

Ray tracing acceleration structure. To accelerate ray tracing, we
use a nearly standard binary bounding volume hierarchy, built using
the surface area heuristic [Aila et al. 2013; Goldsmith and Salmon
1987; MacDonald and Booth 1990]. For motion blur, we support
variable 2k + 1 time samples per vertex, which turn into the same
number of linearly interpolated bounding boxes per node in the
tree. This is loosely inspired by arguments outlined by Grünschloß
et al. [2011]. These motion boxes are combined when two nodes
are merged into a parent node. We support a maximum of k = 6
which turns into 64 motion segments per shutter interval. If more
precision is needed (for instance for a quickly moving rotor), we
use transformation blur, which is conceptually similar to instancing
with time-dependent transformation.

Traversal uses sse instructions for bounding box interpolation for
the ray time, and employs an approach inspired by Intel’s Embree
ray tracing library, where the 3 × 4 ray/plane tests used to intersect
one ray with two bounding boxes are turned into three sse tests.

Our geometry is stored alongwith the bounding volume hierarchy
in a compact encoding, organised as pages of treelets, with vertices
sorted by Morton code for increased locality.
The ray caster is wrapped in functionality to support nested

volumes by discarding intersections with lower priority [Schmidt
and Budge 2002], to handle transparency for occlusion rays, and
to discard intersections which need to be excluded for production
functionality such as holdouts.

Ray tracing precision. To avoid surface acne [Woo et al. 1996],
many rendering systems apply some sort of small ray bias ε when
starting a new ray from a shading point on geometry. This ε is
usually chosen proportionally to the floating point value of the
world space position of the hit point (with the aim of only changing
the mantissa by a constant amount, not touching the exponent if
possible). We apply a variant of mail boxing instead, and equip each
new ray with a small, ε-sized bounding box inside which the same
primitive id shall be ignored10.

Another severe problem are missed intersections. Especially rays
tunneling through the edge between two micropolygons can result
in clearly visible light leaking or other similar artifacts. To address

9The naming is RenderMan convention, and it has been argued at first that tessellation
rate would have been a better name. Given the fundamental coupling of micropolygon
grids and shading in reyes though, the tessellation rate does have a 1 : 1 correspondence
to the rate at which shading actually is executed, as all micropolygon vertices must be
shaded, thereby justifying the name.
10 As discussed in the section on dicing, not all of our micropolygon primitives are flat:
for bilinear patch micropolygons, for example, there could be two valid intersections
between a ray and a single micropolygon.

this we use a variant of the triangle intersection test described by
Chirkov [2005]. As outlined by Hanika [2011, Sec. 5.2.6], this test
can be implemented to err on the safe side: the idea is to code the
intersection test so that the triangle is effectively enlarged by the
uncertainty caused by floating point quantisation, a similar concept
is applied very successfully to bounding box intersection testing
by Ize [2013]. After some experimentation with this approach, we
decided to replace it with a different modification, which does not
make the micropolygons bigger, but instead guarantees we get a
consistent answer to the ray/edge sidedness test for micropolygons,
independent of which side of the edge is being tested against a ray.
This approach can be usefully paired with our intersection test for
bilinear patch micropolygons, which is a similarly adjusted version
of the test described by Ramsey [2004].
To increase floating point resolution where it’s most needed, it

has proven useful to represent geometry in a coordinate space with
its origin close to the render camera positions. This is related to the
concept of the worldcamera object in RenderMan, in that users can
specify in rib what space to use for micropolygon representation
by simply defining a camera object of such name.

Materials. Our material system is designed for maximum realism
by implementing complex physical processes as well as supporting
fine details.
This includes fully path traced subsurface scattering using the

Dwivedi sampling scheme [Křivánek and d’Eon 2014] for dense
media such as skin. We support a set of diffusion profiles along
with ray traced sub surface [Christensen and Burley 2015; D’Eon
and Irving 2011; Frisvad et al. 2014; King et al. 2013], too, but in
general the quality/performance trade off is in favour of the fully
path traced model.
Our bsdfs are composed of a layering system, modeling inter-

reflections to a user-specifiable degree of realism. This run-time
evaluated stack is more expensive to evaluate than just querying
a precomputed texture (such as Burley’s Disney principled BRDF

presented by McAuley et al. [2012]), but fits our overall architecture
well: in general, our renders tend to be memory bound, so trading
compute for memory accesses is sometimes profitable for us. The
main reason behind using a layering system that can depend on the
incoming ray direction is however much increased visual quality.

Since we have a spectral renderer, we can easily include advanced
spectral effects [Weidlich and Wilkie 2009] as can be seen in images
from the movie Valerian and the City of a Thousand Planets.
We support near- and far-field models for fibers and for sub

surface scattering, the latter switching to diffuse albedo and translu-
cency when viewed from far away. Our fiber model supports eccen-
tricity (since Furious 7) as well as seamless transition from far-field
pre-integrated curve scattering to a near-field model (first used on
The Jungle Book). We also employ a level of detail mechanism that
turns many thin hairs into one thicker but more transparent hair
(first employed on The Hobbit: The Battle of the Five Armies). This
helps control variance for sub-pixel wide hairs in the distance.
To facilitate ray differentials which depend on both geometric

curvature and bsdf blur, the material system provides a unified
roughness estimate for all interactions to the light transport algo-
rithms, based on the mean cosine.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

1:12 • L. Fascione, J. Hanika, M. Leone, M. Droske, J. Schwarzhaupt, T. Davidovič, A. Weidlich, and J. Meng

Volumes. We use a data structure that is very similar in spirit to
Pixar’s [Wrenninge 2016] to support efficient motion blur. We treat
volumetrics as a first class citizen, and encourage using it together
with surface transport. We follow the shade before hit tessellation
paradigm for volumes too: we adaptively and anisotropically dice
the volume depending on projected pixel size and depth. Note that
this is not a perspective grid, but a spatial subdivision scheme driven
by the dicing oracle, deriving depth from the coordinate system of
a designated camera. The depth dimension is simply not subdivided
as often, such that the scheme carries over transparently to out-of-
frustum areas and multi-view renders. This not only results in less
overall data, but also lends itself well for regular tracking [Sutton
et al. 1999] (i.e. a 3D DDA), where all voxels pierced by a ray are
traversed deterministically. In particular, this makes sure that every
voxel is touched exactly once, whereas null collision-based trackers
(such as Woodcock tracking [Woodcock et al. 1965] or residual
ratio tracking [Novák et al. 2014] to sample distances or to estimate
transmittance) are often less efficient, since these trackers are likely
to ask for collision coefficients inside the same voxel multiple times.
Also, regular tracking enables unbiased support for more complex
rendering algorithms with strict requirements on pdf evaluation, in
particular the hero wavelength sampling scheme. This is important
for us in media with chromatic extinction, such as skin.

We note that with spectral tracking [Kutz et al. 2017] there exists
a method to exploit spectral correlation of samples even for null
collision-based tracking. It is, however, fundamentally incompat-
ible with the hero wavelength sampling scheme because spectral
tracking cannot provide pdf evaluations.
Our volumes can be overlapping in many ways: In the most

common case, multiple (potentially instanced and heterogeneous)
collision coefficients are summed up to form the final medium. This
is equivalent to summing the densities (for equal scattering cross-
sections) or multiplying the transmittances. Sampling a distance
proceeds by sampling one tentative distance per volume and se-
lecting the shortest one. Computing the pdf is particularly simple
when all volumes implement distance sampling by transmittance:
the result is the product of transmittances and the normalisation
constant is the sum of the extinction coefficients. However, we sup-
port a few more specialised sampling strategies such as building
arbitrary CDFs, forcing scattering vertices before holdout objects,
or biasing random walks for Dwivedi sampling. The general case
requires to compute the probability that the other volumes did
not sample an event before the given distance, which can be more
costly. Volumes can further be enclosed in watertight shapes, and
will potentially be collected along a ray segment through multiple
transparent interfaces. To resolve multiple overlapping shapes with
internal volumes, we do on-line constructive solid geometry using
user-defined volume priorities [Schmidt and Budge 2002].
Finally, we also support collection of emission from very thin

media by including line integration [Simon et al. 2017].

Path space sampling. We implemented and experimented with a
wide variety of path sampling algorithms. Still, the most frequently
used technique to render an image remains path tracing (from the
eye) with next event estimation. Part of the reason may be that we

implemented a fairly full-featured light hierarchy to sample high-
quality light source positions for next event estimation [Keller et al.
2017; Pharr et al. 2017; Shirley and Wang 1991; Walter et al. 2005;
Wang and Åkerlund 2009]. We further improve path tracing results
by adaptive sampling in image space, using variance estimation. This
technique works best in conjunction with unidirectional techniques
starting at the eye. As path space adaptive sampling, we employ
guiding [Vorba et al. 2014]. To efficiently cover a set of important
caustic paths, we use manifold next event estimation [Hanika et al.
2015], which is a stripped down Monte Carlo variant of manifold
exploration [Jakob and Marschner 2012]. We also implemented
vertex connection and merging [Georgiev et al. 2012; Hachisuka
et al. 2012]. This technique, however, is very costly due to the many
techniques that have to be considered in the multiple importance
sampling mix, and is used only in absence of alternatives. Another
problem with this technique is that the photon kernel estimation
comes with bias that may lead to visible quality degradation. The
same is true for beam radiance estimates, which we have as a tool,
but do not use frequently. All variants ofMarkov chainmethods have
not found adoption in production so far, mainly because of uneven
convergence properties due to autocorrelation of the samples in the
chain. In volumes, we use an approach very close to equi-angular
sampling as presented by Kulla and Fajardo [2011], and build a
custom cdf used for sampling a combination of phase function,
transmittance and the distribution of incoming light, as well as
forcing scatter events before holdout objects (by renormalising the
probability distribution to a fixed maximum).
While not all techniques from academia were applicable to pro-

ductionwork, generallymore expensive but higher-quality sampling
has paid off for us. In the interest of generating predictable results,
we prefer to improve the sampling over approximations. This means
for instance using Dwivedi sampling [Křivánek and d’Eon 2014]
over diffusion profiles, better importance sampling in the light hi-
erarchy instead of clustering or light cuts approaches [Walter et al.
2005], and to avoid using photons and beams.

Geometric ray differentials are used for path guiding lookups as
well as for photon map lookups in vcm and are implemented as a
side product of the constraint derivative computation for manifold
next event estimation.

Light source sampling. Manuka had to scale to millions of light
sources since the early days, because of the way we model emitters:
in our system light sources are simply geometry that happens to
have one or more emissive lobes. This means we can intersect them
by path tracing, but tessellating and shading them as regular geom-
etry also transparently results in support for textured and displaced
lights. On the other hand, this also means we have to efficiently
handle millions of emitting micropolygons. To facilitate this, we
build a hierarchical structure on top of the tessellated lights, similar
to [Walter et al. 2005; Wang and Åkerlund 2009]. The hierarchy
supports a variety of query types. We mainly select an emitting
micropolygon by using an estimate of radiance incident to a given
shading point.
Similar to Donikian et al. [2006], we use a screen space cache

to refine the sampling probabilities. In particular, we learn which
nodes in the tree yield successful visibility tests for certain regions

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

Manuka: A batch-shading architecture for spectral path tracing in movie production • 1:13

in screen space. This is done by tracking an average correction term,
which relates sampling density to actual radiance in the evaluation.
Note that this also corrects other potential shortcomings in the
sampling density, not only visibility.
We also support selection via estimation of bsdf values, which

we limit to primary path vertices only given its moderate cost. The
screen space cache is also leveraged to accelerate this computation;
the variance in the bsdf evaluation of nodes is tracked and, once
it falls below a threshold, a cached evaluation is used instead. This
happens when either the roughness of the bsdf is high enough that
its evaluation is similar in all directions, when there are no nodes
in the hierarchy that lie within a cone of directions where the bsdf
varies much, or when the sub tree being evaluated lies within a cone
of directions small enough that the bsdf evaluation remains close
to constant.
In the case of volume scattering, the light hierarchy supports a

special query type, which takes a long beam as input, and returns
a light source sampled proportional to a measure of how much
the light contributes to that beam. This is used to accelerate single
scattering or to build more accurate cdf for free path sampling. If
the volume within which sampling is occurring is homogeneous,
then we further evaluate the phase function in order to importance
sample relevant light sources.

Image space sampling. While the techniques mentioned in the
previous paragraphs greatly reduce the variance of samples that
land on the image, it remains true that for most production scenes,
local regions of the final image will have widely varying amounts of
noise present in the incoming signal. For example, a character with
complex shading and subsurface scattering effects will generally
produce noisier samples than a nearby flat wall that is directly lit
without complex occlusions. Using uniform sampling of the image
space for such scenes would either result in a fast render where
parts of the image remain unusably noisy, or a slow render where
effort has been expended needlessly sampling regions of the image
that are already converged to a qualitatively sufficient degree.
Manuka’s implementation of adaptive sampling (see [Zwicker

et al. 2015]) tracks a per-pixel estimate of the variance of the sam-
ple luminance, which is updated on-line during splatting after the
reconstruction filter is applied. We perform classical reconstruction
filtering insofar as we do not perform filter importance sampling
[Ernst et al. 2006], as we have found this gives us higher overall
efficiency. The adaptive sampler is seeded with a low initial number
of uniformly sampled paths per pixel, usually 32. The user also sets
a target quality measure, which is internally converted to a target
sample standard error. When the initial number of samples have
been drawn, variance and standard error are estimated across the
entire image and a sensor importance map is computed, which de-
fines the image space sampling density for a subsequent sample
budget in proportion to the difference between the pixel’s estimated
standard error and the user specified target. Pixels for which the
standard error is below the target are disabled only if they do not
fall within the region of influence of a live pixel’s reconstruction
filter. This process is repeated until the variance estimate for all
pixels in the image fall below the target standard error.

We made the decision to track sample variance exclusively and
not rely on cross-pixel estimates of the variance of the mean. While
the latter measure also informs about the level of noise in the im-
age, it is our belief that the renderer should concern itself with
resolving only the noise that is produced by its own processes and
leave image space denoising to be performed as a post process by
tools specialized to that domain. Also, Manuka determines sample
standard deviation and error as a measure relative to the local mean
and not in absolute terms, which is important as noise is perceptible
mostly in its magnitude relative to the signal that carries it. When
doing this, care must be taken: in relative terms, noise riding on
an arbitrarily dark region of the image may be quite large while
also being imperceptible; furthermore, very bright regions of the
image can have noise that is not visible if it is beyond the point
where the image is clipped to white. Users can therefore specify the
luminance range Manuka should concentrate its sampling efforts on,
and samples that fall beyond this range have their relative variance
smoothly dampened to avoid over sampling.

An interesting observation is that while high frequency noise is
generally themost visible to humans,Monte Carlo processes actually
produce noise in all frequencies (that is, the noise signal produced
actually has a rather white spectrum); indeed, we observed that this
low-frequency noise component became visible in many renders
once users set the quality target high enough, as the early implemen-
tation of the adaptive sampler tracked pixels independently form
one another. With that in mind, we added estimates of variance at
various image resolutions by combining the per-pixel statistics. The
final variance estimate for a given pixel is the result of estimating
both its own local sample variance, as well as the variance derived
from aggregating the statistics for all pixels within circles of radius
from 1 to 32 pixels centered around it. While this is an expensive
operation in terms of compute resources, we have found this results
in more stable end results and is effective at reducing the amount
of low-frequency noise left in the renders produced by Manuka.

4 PRODUCTION ESSENTIALS

Sanitising input. To enable maximum artistic creativity, we im-
plement a few mechanisms that preprocess our input to improve
performance. The reasoning behind this is that we would like to
let the computer deal with technical details that may not be obvi-
ous to the user wherever possible. This includes for example the
elimination of bsdf layers which are hidden under other opaque
layers, deduplication of per-lobe normals. These sanitisation steps
sometimes result in tremendous memory savings.

Supporting workflows. As well as being a physically-based light
transport simulator, Manuka supports side channel data and back
doors to facilitate established workflows in movie production. This
includes the output of arbitrary output variables (AOVs), and con-
cepts such as holdouts, shadow casters, optional visibility to cam-
era, and gobos. Path length can be controlled as a user parameter,
and optionally the material interface supports increasing bsdf lobe
roughness with increasing number of bounces from the camera.
The most extreme back door is the evaluation of traditional rsl
illuminance loops in the shader (which is the only construct in
Manuka that supports lights-as-code). Note that some of these tricks

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

1:14 • L. Fascione, J. Hanika, M. Leone, M. Droske, J. Schwarzhaupt, T. Davidovič, A. Weidlich, and J. Meng

make an implementation of a consistent bidirectional estimator hard
or impossible.

Light path selection. We do not support generic light path regular
expressions. Manuka has, however, builtin support for a fixed set
of selectors which are tailored exactly to the needs of our users.
The resulting buffers will then be combined by the compositing
department, making use of them in combination with AOVs and
deep buffers.

Checkpoints and restarts. We support interrupting the render and
restarting it at a later point. This obviously includes the frame buffer
and (quasi-)random seeds, but we also avoid the need for repeated
tessellation and shading by using data caches.

5 RESULTS

We present typical numbers for the performance of our system in
form of aggregate numbers for the whole facility, averaged over
three weeks and all shows. Additionally, we picked three frames
as example of occasionally appearing extraordinary production
requirements, to demonstrate behaviour of the system in more
extreme cases, see Fig. 6, Fig. 8 and Fig. 9.

Occlusion culling. We did not address occlusion culling so far in
our discussion. Shade before hit implies that we would waste time
shading vertices that would not contribute to the final render. We
were concerned about this in the design phase of Manuka, and we
implemented a so called oracle pass, which runs a coarse ray tracing
pass on un-diced, un-shaded, and un-displaced input geometry,
annotated by a very rough material description to coarsely mimic
the ray distribution of the final render. Visibility discovered during
this pass is stored, and we construct a conservative estimate of hit
density that is used to inform final shading rate or even completely
discard the geometry.
In the original reyes paper, the authors state that usually Com-

puter graphics models are like movie sets and only model the impor-
tant parts of the scene. This still seems to be true to some extent,
since the oracle pass is a feature that is rarely used in practice at
Weta Digital. The time it takes to do a second pass of scene ingestion
often outweighs the benefits of occlusion culling. This is illustrated
in Table 4: occlusion culling can bring our shading reuse from the
figure shading reuse in to what is indicated as delayed shading reuse.
This is different from ideal shading reuse in that it always shades a
whole grid at once. Note how even in the complex scene from Fig. 9
where the majority of the shaded vertices are never touched for the
final render, Manuka’s architecture still gains a 4× speedup over
shade on hit.

Shade order. Table 1 shows the effect of grid scheduling during
shading. In random order, the shapes in the input rib stream are
shuffled before shading. This leads to incoherent access patterns to
both ram and disk storage. In identifier order, we sort elements in
the input stream lexically according to globally unique identifier
strings, which, much like file paths, match the hierarchical structure
of the scene graph. As arbitrary as it may sound, this order works
well for us because the naming scheme currently in use at Weta
Digital generates identifiers which correlate well with the texture
sets used by the corresponding assets, effectively maximizing the

Apes3 Valerian GOTG2
cache misses Fig. 6 Fig. 8 Fig. 9
shading random order 34.6M 1.5M 7.7M
shading identifier order 28.0M 0.7M 5.6M
ratio 0.81 0.47 0.72

Table 1. The effect of grid ordering on shading performance. For random
order, the incoming shapes were randomly shuffled, while for identifier order,
the grids were sorted by a hierarchical identifier name. These tests use 1GB

of memory texture cache and were run at 2k resolution with shading rate 1.

Results are given as the median over multiple runs on the same machine.

Apes3 Valerian GOTG2
texture reduction Fig. 6 Fig. 8 Fig. 9
total textures referenced 2.1 TB 950 GB 5.5 TB
textures read from disk 105.4 GB 3.6 GB 77.6 GB
number of unique tex. files 27k 26k 22k
avg. number of layers 5.38 1.94 1.58
avg. per-vertex bsdf inputs 35.91 B 11.95 B 23.25 B
total per-vertex data 12.85 GB 1.25 GB 24.4 GB
% of original data stored 12.2% 34.7% 31.4%

Table 2. Texture size figures for the three test scenes. Manuka’s per-vertex

bsdf inputs facilitate compression of the input textures. The number of

layers reported here is the number of layers stored during light transport,

i.e. where blending has a directional dependency.

Apes3 Valerian GOTG2
timing breakdown Fig. 6 Fig. 8 Fig. 9
shading (frontend) 1h 55m 15m 4h 28m
light transport (backend) 5h 18m 55m 4h 35m

Table 3. This table shows a coarse breakdown into shading and light trans-

port time. The shading phase is dominated by texturing and takes up a

significant percentage of the total render time.

probability that assets that share the same textures be processed in
close succession.

Size of bsdf inputs. In addition to geometry, we store per-vertex
bsdf inputs. We argue that this is a more compact data layout than
storing textures, since these values are pre-filtered and stored at
exactly the shading rate. Also, we compress and quantise the data,
using domain knowledge: layer blend weights use only eight bits
and are used to mask out invisible layers which are not stored at
all. The smallest possible size for a simple rgb colour is 4 bytes
per vertex. Using up to 14 layers of bsdf with per-lobe shading
normals, we have seen bsdf inputs up to 200 bytes. A more typical
bsdf might have maybe six or seven layers and with a per-vertex
storage requirement in the vicinity of 100 bytes. When possible, we
take advantage of storing dictionaries per grid, reducing net storage
cost per vertex further. A numerical analysis of the ratio between
the input textures and the output bsdf data can be found in Table 2.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

Manuka: A batch-shading architecture for spectral path tracing in movie production • 1:15

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

4 20 21 25 50 75 100 200 300

%
 o

f
re

n
d

e
rs

adaptive target

 0
 5

 10
 15
 20
 25
 30
 35
 40

[0 , 0.25) [0.25, 0.5) [0.5 , 1.0) [1.0 , 2.0) [2.0 , 4.0) [4.0 , 8.0) [8.0 , 16.0) [16.0, oo)

%
 o

f
re

n
d

e
rs

shading reuse ratio

Fig. 10. Top: distribution of adaptive targets (100% would be considered a

converged render) throughout the facility in the last three weeks. This is

a random snapshot and numbers will vary a bit when shows are closer to

delivery. For this snapshot, we get an average shading reuse ratio of 13.5×.
We reach higher reuse ratios for longer running renders, which means we

cut down on render times more, the more complex the render is. Bottom:

well over 90% of all renders (including test renders and those with small

adaptive target) profit from shading reuse, i.e. have a reuse ratio > 1×.

Apes3 Valerian GOTG2
shading reuse Fig. 6 Fig. 8 Fig. 9
approx. deinstanced # vertices 23.2G 49.3G 182.5G
total #vertices 376M 75M 1.12G
#v read ≥ 1× 108M 30M 243M
total #material queries 7.3G 1.1G 4.9G
shading reuse 19.33× 14.2× 4.3×
delayed shading reuse 26.57× 17.2× 4.8×
ideal shading reuse 67.43× 35.0× 19.9×
break even # progressions 24 6.5 114
progressions rendered 466 92 493

Table 4. Analysis of actual and theoretically possible shading reuse. Shading
reuse is what our system leverages. The ideal shading reuse figure is the

maximum theoretically possible shading reuse if we employed shade on hit

together with a perfect cache. Delayed shading reuse indicates how much

reuse could be reached if the shading and caching happens on a per-grid

basis instead of on a per-vertex basis. In the Apes3 shot, shading reuse is

encumbered by sub sampling vertices in overly detailed grids (coming from

the moss), not from the lack of occlusion culling.

Render time breakdown. There is some variance in how we spend
the total render time budget. Generally, there is a surprisingly small
share spent in ray tracing (about 20% of the render time). Shading
typically takes 5% – 10% of the total runtime, and is in turn usually
dominated by texture accesses (often well above 50% of the shad-
ing run time). Some breakdown numbers can be seen in Table 3.
Evaluating and sampling light sources in the light hierarchy (up to
25%), as well as cdf construction for volumes are expensive, and
even the run-time cost of evaluating layered bsdf is significant. As
mentioned before, in terms of time to lower variance, these more
involved sampling strategies proved to be useful.

Shading reuse. We quantify the amount of shading reuse that our
shade before hit architecture facilitates by analysing the number
of shaded vertices and comparing this to the number of material
instances created during the light transport stage.

From a back-of-the-envelope computation we expect for a typical
render about 2 million paths per progression11 (for a 2k render),
with a typical average of 5 bounces, and expect a converged image
after 500 progressions. This results in just about five billion paths.
On a typical production scene we often see about 200 million shaded
vertices, which would yield about 25 times more material accesses
during light transport than vertices shaded.
Indeed, when collecting statistics from three weeks worth of

renders in the facility, we observe a ratio of 32.6 : 1 traced vs.
shaded vertices. This number is considering converged renders,
i.e. the adaptive sampling was set to reach a target of 100% for
all pixels. If we include intermediate test renders which are set to
accept more variance in favour of faster turnaround times, this ratio
drops to about 13.5 : 1. Detailed histograms of the data can be
seen in Fig. 10. None of these renders use the oracle pre-pass for
occlusion culling. For individual breakdowns for the three frames,
refer to shading reuse in Table 4. Please note that these numbers
correlate the number of shaded vertices to the number of material

queries, not to the number of vertex data reads. The difference is
that constructing a material for a micropolygon would usually read
four vertices and thus make the reuse number grow by about 4×.
A shade on hit architecture would however shade only one point
and not all four corners and then interpolate, so we deemed this
comparison more useful.

Another interesting number in Table 4 is the break even number
of progressions: assuming no adaptive sampling takes place, this
is the number of samples per pixel we need to compute before we
shade less than an ideal, hypothetical shade on hit architecture
would. We compute this figure by assuming the number of material
queries is equally distributed between progressions while keeping
the number of shaded vertices fixed.

Note that these numbers do not quantify the advantages of more
coherent texture access and potential benefits of using wider simd
during batch shading of grids, which would be a lot harder to lever-
age during light transport.

6 DISCUSSION

We follow the classic reyes architecture closely and perform shading
before sampling. An important difference is that shading in our
system does not include bsdf evaluation. This means that we can
do motion blur correctly, since shading results in bsdf inputs which
are moved along the time dimension. We follow the shade-once
paradigm and only compute bsdf inputs at shutter open, which may
lead to slight inaccuracies for highly time-dependent shading. This
occurs for instance for strong motion blur, due to changing texture
filter regions. High-quality fire, sparks and rain require to make
particles appear with sub shutter interval accuracy. The workaround

11The most used path scheduling sequence in practice at Weta Digital traces one path
per pixel through all pixels in what we ended up calling progressions. This sequencing
is useful for interactivity, as all of the image at any point is kept at about a uniform
level of noise. It is also useful for our adaptive sampling engine, which is continuously
fed data for the whole frame buffer.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

1:16 • L. Fascione, J. Hanika, M. Leone, M. Droske, J. Schwarzhaupt, T. Davidovič, A. Weidlich, and J. Meng

used in production is to render lines with spatial shading instead of
points with time-varying shading.
We also use micropolygons and exploit texture locality and vec-

torisation during shading. In analogy to the original paper, our
architecture is designed for rendering exceedingly complex models.
We mean both geometry and rsl shaders with textures, as well as
complicated light transport, touching surface points with many rays,
reusing shading information efficiently.

Disadvantages. Look development workflows depend on fast it-
eration cycles when tuning material appearance. However, our ar-
chitecture is optimised for very complex models and time to final
frame. We have a special mode to support this workflow, but it is
much less efficient than the batch shading code path. A specialised
gpu program evaluating the same shaders would be a better way
of supporting look development workflows, much like Pixar’s Flow
tool [Nahmias and Pesare 2016].

Assumptions and design choices. Our architecture is designed to
be fast for offline batch rendering of assets with maximum realism
when it comes to geometrical details and shading complexity. In
particular, faster time-to-first-image may be achieved by using a
more classic shade on hit architecture. Application domains with
simpler geometry and simpler shaders, such as feature animation
as opposed to vfx, may benefit from moving compute efforts from
more complex path space sampling techniques to post processing in
the form of denoising, which usually works increasingly better for
smoother surfaces with less detail. If fewer indirect bounces or more
approximate indirect lighting is acceptable, an on-demand tessella-
tion scheme, switching to coarse level of detail quickly, may be ben-
eficial. Also, if colour accuracy is expendable but extremely bright
and saturated colours are needed to achieve a specific look (again,
as it might be the case for feature animation work), using rgb trans-
port might be a valid design choice. This is a consequence of energy
conservation, which dictates a limit on how bright and saturated a
colour can be at the same time, when following physically-based
spectral transport.

In-house vs. commercial. Manuka is an in-house product and this
means we don’t have to support external customers and their work-
flows, in theory enabling us to phase out legacy code if nobody is
using it. In practice this rarely happens or takes a long time: part of
the reason is that Manuka’s development is very agile, the releases
happen relatively frequently and are immediately adopted by some
shows, while others continue using older functionality.

The main benefit of developing a renderer in-house is that we are
able to quickly respond to production needs. In general, Manuka’s
development is more driven by user needs than by the developers.
For instance the decision to not use the occlusion culling oracle
is entirely a result of the kind of input our users create, while the
developers were concerned about possible inefficiencies without it.

7 FUTURE CHALLENGES

Path tracing has brought simple unified workflows to production
rendering. Many, if not all lighting effects can now be solved in
a single-pass beauty render. In the future, we would like to fur-
ther unify workflows: the push to speed up rendering may lead

to extended use of the path tracing solution in fields such as lay-
out, animation, or live pre-visualisation of motion capture on stage.
This is currently the realm of specialised real-time rendering soft-
ware, requiring specifically simplified input geometry and material
descriptions. Merging these scene representations and rendering
algorithms seems like a worthwhile effort.
But even within the comparatively tight specifications of a ren-

derer for final frames, there is room to improve the time to first

iteration. Note that this is different to time to first pixel. Artists re-
quire a reasonably converged image to be able to judge the look.
Optimising for this requires to address speed issues in the whole
pipeline, carrying data all the way from the user input to the dis-
played frame. Much can be gained by simplifying the parameter
space which has to be explored when fine tuning light transport
algorithms, for instance by just providing one monolithic, complex
algorithm that always works. On the other hand, we have a good
repertoire of specialised solutions, such as for rendering hair, or
caustics with manifold next event estimation, which greatly outper-
form general solutions in applicable cases.

General approaches to light transport (for instance vcm or gradi-
ent domain path tracing) can be very expensive and exhibit problems
in specific cases. For instance the photon density estimation using
a disk area or a sphere volume both fail in hair. Gradient domain
path tracing produces artifacts if the underlying sampler used to
compute gradients is too noisy. These spurious fail cases combined
with significant overhead are the reason why any new algorithm
has to answer the tough question: “can we turn it on by default?”.
To that end it would be a great step to be able to automatically

educate users about inefficiencies in the renderer caused by a par-
ticular scene setup. For instance it is obvious to an expert developer
that modelling a solid glass coating around an object is clearly less
efficient than using a multi-layer bsdf.

ACKNOWLEDGMENTS

We share a powerful memory of the early days on Manuka: our
project involved a large number of people besides the authors and
we would like to start acknowledging that this body of work was
made possible thanks to Joe Letteri and Sebastian Sylwan: they en-
trusted us with the mission, gave us the time and resources to make
it happen and provided us with a great richness of inspiration and
courage to stay true to our path, to push boundaries and to keep
moving forwards. We are especially grateful for the daily discus-
sions with Joe providing access to a wealth of information in terms
of background and inspiration, as well as insight into the process of
moviemaking and how it evolved during his career. Being able to
unroll the history of a number of commonly accepted industry prac-
tices gave us key insights during the design of the architecture, and
helped us understand what features we needed to keep and what
instead were better reconsidered or redesigned from the ground
up. After Manuka became the chosen production renderer at Weta
Digital, many users from the look development, lighting and effects
disciplines have also contributed valuable insights and thought-
provoking observations, and we’re sure we wouldn’t have as good
a system now without their help. We would also like to thank the
manymembers of theManuka team over the years: Jiři Vorba, Shijun
Haw, Kimball Thurston, Peter Pearson, Tom Matterson, Christian

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

Manuka: A batch-shading architecture for spectral path tracing in movie production • 1:17

Hipp, as well as Leonhard Grünschloß, Eugene d’Eon, Ralf Kar-
renberg, Sehera Nawaz, Liana Fleming, Daniel Lond, Jan Althaus,
Patrick Kelly, Robin Hub, Antoine Bouthors, Derek Gerstmann. No
system of this size would have any hope of success without good
documentation, for which Carla Morris was key, and proper testing
and validation, thanks to Björn Siegert and Arthur Terzis. In the
end, many visiting researchers have enriched the project bringing in
new ideas and inspirations to our collective work: Alexander Wilkie,
Wenzel Jakob, Jařosláv Krivanek, Florian Simon, Iliyan Georgiev,
Marco Manzi, Markus Kettunen, Tzu-Mao Li, Christopher Corsi,
Jordan Gestring, Jeff Stuart, Javor Kalojanov, Ling-Qi Yan.

REFERENCES

Steve Agland. 2014. CG Rendering and ACES. http://nbviewer.ipython.org/gist/sagland/
3c791e79353673fd24fa. (2014).

Timo Aila, Tero Karras, and Samuli Laine. 2013. On Quality Metrics of Bounding
Volume Hierarchies. In Proceedings of High Performance Graphics (HPG ’13). 101–107.
https://doi.org/10.1145/2492045.2492056

Carsten Benthin, Sven Woop, Ingo Wald, and Attila T. Áfra. 2017. Improved Two-level
BVHs Using Partial Re-braiding. In Proceedings of High Performance Graphics (HPG

’17). Article 7, 8 pages. https://doi.org/10.1145/3105762.3105776
Brian Budge, Tony Bernardin, Jeff Stuart, Shubhabrata Sengupta, Kenneth Joy, and John

Owens. 2009. Out-of-core data management for path tracing on hybrid resources.
In Computer Graphics Forum (Proc. of Eurographics). 385–396.

Brent Burley and Dylan Lacewell. 2008. Ptex: Per-face Texture Mapping for Production
Rendering. In Proceedings of the Nineteenth Eurographics Conference on Rendering

(EGSR ’08). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 1155–
1164. https://doi.org/10.1111/j.1467-8659.2008.01253.x

Nick Chirkov. 2005. Fast 3D Line Segment–Triangle Intersection Test. Journal of

Graphics, Gpu, and Game Tools 10, 3 (2005), 13–18.
Per Christensen and Brent Burley. 2015. Approximate reflectance profiles for efficient

subsurface scattering. Technical Report 15-04. Pixar Animation Studios.
Per Christensen, Julian Fong, David Laur, and Dana Batali. 2006. Ray Tracing for the

Movie ‘Cars’. In Proceedings of the IEEE Symposium on Interactive Ray Tracing. 1–6.
Per Christensen andWojciech Jarosz. 2016. The Path to Path-TracedMovies. Foundations

and Trends in Computer Graphics and Vision 10 (2016), 103–175. Issue 2.
CIE. 1996. The Basis of Physical Photometry. Commission Internationale de l’Eclairage.
CIE. 2004. Colorimetry. Technical Report. Commission Internationale de l’Eclairage.
David Cline, Justin Talbot, and Parris K. Egbert. 2005. Energy Redistribution Path

Tracing. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3 (2005), 1186–1195.
Robert Cook, Loren Carpenter, and Edwin Catmull. 1987. The Reyes Image Rendering

Architecture. Computer Graphics (Proc. SIGGRAPH) 21, 4 (1987), 95–102.
Dennis Couzin. 2007. Optimal fluorescent colors. Color Research & Application 32, 2

(2007), 85–91.
R. R. Coveyou, V. R. Cain, and K. J. Yost. 1967. Adjoint and Importance in Monte

Carlo Application. Nuclear Science and Engineering 27, 2 (1967), 219–234. https:
//doi.org/10.13182/NSE67-A18262

Christopher DeCoro, Tim Weyrich, and Szymon Rusinkiewicz. 2010. Density-based
Outlier Rejection in Monte Carlo Rendering. Computer Graphics Forum (Proc. Pacific

Graphics) 29, 7 (Sept. 2010), 2119–2125.
Eugene D’Eon and Geoffrey Irving. 2011. A Quantized-diffusion Model for Rendering

Translucent Materials. ACM Trans. on Graphics (Proc. SIGGRAPH) 30, 4, Article 56
(July 2011), 14 pages.

Michael Donikian, Bruce Walter, Kavita Bala, Sebastian Fernandez, and Donald P.
Greenberg. 2006. Accurate Direct Illumination Using Iterative Adaptive Sampling.
IEEE Transactions on Visualization and Computer Graphics 12, 3 (May 2006), 353–364.

Christian Eisenacher, Gregory Nichols, Andrew Selle, and Brent Burley. 2013. Sorted
Deferred Shading for Production Path Tracing. Computer Graphics Forum (Proc.

Eurographics Symposium on Rendering) 32, 4 (2013), 125–132.
Manfred Ernst, Marc Stamminger, and Günther Greiner. 2006. Filter Importance Sam-

pling. In Proc. IEEE Symposium on Interactive Ray Tracing. 125–132.
Hugh Fairman, Michael Brill, and Henry Hemmendinger. 1998. How the CIE 1931

color-matching functions were derived from Wright-Guild data. Color Research and

Application 22, 1 (1998), 11–23.
Luca Fascione, Johannes Hanika, Marcos Fajardo, Per Christensen, Brent Burley, and

Brian Green. 2017a. Path Tracing in Production – Part 1: Writing Production
Renderers. In SIGGRAPH Courses.

Luca Fascione, Johannes Hanika, Rob Pieké, Christopher Kulla, Christophe Hery,
Ryusuke Villemin, Thorsten-Walther Schmidt, Daniel Heckenberg, and André Maz-
zone. 2017b. Path Tracing in Production – Part 2: Making movies. In SIGGRAPH

Courses.

Graham D. Finlayson and Steven D. Hordley. 2000. Improving gamut mapping color
constancy. IEEE Transactions on Image Processing 9, 10 (2000), 1774–1783.

Matthew Fisher, Kayvon Fatahalian, Solomon Boulos, Kurt Akeley, William R. Mark,
and Pat Hanrahan. 2009. DiagSplit: Parallel, Crack-free, Adaptive Tessellation for
Micropolygon Rendering. ACM Trans. Graph. 28, 5, Article 150 (Dec. 2009), 10 pages.
https://doi.org/10.1145/1618452.1618496

D. A. Forsyth. 1990. A Novel Algorithm for Color Constancy. Int. J. Comput. Vision 5, 1
(Sept. 1990), 5–36.

Jeppe Revall Frisvad, Toshiya Hachisuka, and Thomas Kim Kjeldsen. 2014. Directional
Dipole Model for Subsurface Scattering. ACM Trans. on Graphics (Proc. SIGGRAPH)

34, 1, Article 5 (Dec. 2014), 12 pages.
Kirill Garanzha and Charles Loop. 2010. Fast Ray Sorting and Breadth-First Packet

Traversal for GPU Ray Tracing. In Computer Graphics Forum (Proc. of Eurographics).
289–298.

Iliyan Georgiev. 2012. Implementing Vertex Connection and Merging. Technical Report.
Saarland University. http://www.iliyan.com/publications/ImplementingVCM

Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light
Transport Simulation with Vertex Connection and Merging. ACM Trans. on Graphics

(Proc. SIGGRAPH Asia) 31, 6 (2012), 192:1–192:10.
Andrew Glassner. 1994. A Model for Fluorescence and Phosphorescence. In Proceedings

of the 5th Eurographics Workshop on Rendering. 57–68.
Jeffrey Goldsmith and John Salmon. 1987. Automatic Creation of Object Hierarchies

for Ray Tracing. IEEE Computer Graphics & Applications 7, 5 (1987), 14–20.
Larry Gritz (Ed.). 2009. Open Shading Language. Culver City, CA, USA. http:

//opensource.imageworks.com/?p=osl
Leonhard Grünschloß, Martin Stich, Sehera Nawaz, and Alexander Keller. 2011. MSBVH:

An Efficient Acceleration Data Structure for Ray Traced Motion Blur. In Proceedings

of the ACM SIGGRAPH Symposium on High Performance Graphics (HPG ’11). 65–70.
Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A Path Space

Extension for Robust Light Transport Simulation. ACM Trans. on Graphics (Proc.

SIGGRAPH Asia) 31, 6 (2012), 191:1–191:10.
Johannes Hanika. 2011. Spectral Light Transport Simulation using a Precision-based Ray

Tracing Architecture. Ph.D. Dissertation. Ulm University.
Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Manifold Next Event Es-

timation. Computer Graphics Forum (Proceedings of Eurographics Symposium on

Rendering) 34, 4 (June 2015), 87–97.
Johannes Hanika, Peter Hillman, Martin Hill, and Luca Fascione. 2012. Camera Space

Volumetric Shadows. In Proceedings of Digital Production Symposium. 7–14.
Johannes Hanika, Alexander Keller, and Hendrik Lensch. 2010. Two-Level Ray Tracing

with reordering for highly complex Scenes. In Proc. of Graphics Interface 2010. 145–
152.

Jon Yngve Hardeberg, Hans Brettel, and Francis J. M. Schmitt. 1998. Spectral character-
ization of electronic cameras. In Proc. SPIE. 3409:1–3409:10. https://doi.org/10.1117/
12.324101

Qiming Hou, Hao Qin, Wenyao Li, Baining Guo, and Kun Zhou. 2010. Micropolygon
ray tracing with defocus and motion blur. ACM Trans. on Graphics (Proc. SIGGRAPH)

29, 4 (2010), 1–10.
Image-Engineering. 2010. Camspecs Express. https://www.image-engineering.de/

products/equipment/measurement-devices/588-camspecs-express. (2010).
ITU. 2002. Recommendation ITU-R BT.709-5: Parameter values for the HDTV standards

for production and international programme exchange. Technical Report.
Thiago Ize. 2013. Robust BVH Ray Traversal. Journal of Computer Graphics Techniques

(JCGT) 2, 2 (19 July 2013), 12–27. http://jcgt.org/published/0002/02/02/
Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: a Markov chain Monte

Carlo technique for rendering scenes with difficult specular transport. ACM Trans.

on Graphics (Proc. SIGGRAPH) 31, 4 (2012), 58:1–58:13.
Jun Jiang, Dengyu Liu, Jinwei Gu, and Sabine Susstrunk. 2013. What is the Space of

Spectral Sensitivity Functions for Digital Color Cameras?. In IEEE Workshop on the

Applications of Computer Vision (WACV).
Andreas Karge, Jan Fröhlich, and Bernd Eberhardt. 2014. Open Film Tools –

Camera Characterization for Cinematographers. https://www.hdm-stuttgart.de/
open-film-tools/english/publications/OFT-CameraCharacterization.pdf. (2014).

Rei Kawakami, Zhao Hongxun, Robby T. Tan, and Katsushi Ikeuchi. 2013. Camera
Spectral Sensitivity and White Balance Estimation from Sky Images. International
Journal of Computer Vision (June 2013).

Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A
simple and robust mutation strategy for the Metropolis light transport algorithm.
Computer Graphics Forum 21, 3 (2002), 531–540.

Alexander Keller, Luca Fascione, Marcos Fajardo, Per Christensen, Johannes Hanika,
Christian Eisenacher, and Greg Nichols. 2015. The Path-Tracing Revolution in the
Movie Industry. In SIGGRAPH Courses.

Alexander Keller, Carsten Wächter, Matthias Raab, Daniel Seibert, Dietgar van Antwer-
pen, J. Korndörfer, , and L. Kettner. 2017. The Iray Light Transport Simulation and
Rendering System. arXiv:1705.01263 [cs.GR]. (May 2017).

Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and
Matthias Zwicker. 2015. Gradient-Domain Path Tracing. ACM Trans. on Graphics

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

http://nbviewer.ipython.org/gist/sagland/3c791e79353673fd24fa
http://nbviewer.ipython.org/gist/sagland/3c791e79353673fd24fa
https://doi.org/10.1145/2492045.2492056
https://doi.org/10.1145/3105762.3105776
https://doi.org/10.1111/j.1467-8659.2008.01253.x
https://doi.org/10.13182/NSE67-A18262
https://doi.org/10.13182/NSE67-A18262
https://doi.org/10.1145/1618452.1618496
http://www.iliyan.com/publications/ImplementingVCM
http://opensource.imageworks.com/?p=osl
http://opensource.imageworks.com/?p=osl
https://doi.org/10.1117/12.324101
https://doi.org/10.1117/12.324101
https://www.image-engineering.de/products/equipment/measurement-devices/588-camspecs-express
https://www.image-engineering.de/products/equipment/measurement-devices/588-camspecs-express
http://jcgt.org/published/0002/02/02/
https://www.hdm-stuttgart.de/open-film-tools/english/publications/OFT-CameraCharacterization.pdf
https://www.hdm-stuttgart.de/open-film-tools/english/publications/OFT-CameraCharacterization.pdf

1:18 • L. Fascione, J. Hanika, M. Leone, M. Droske, J. Schwarzhaupt, T. Davidovič, A. Weidlich, and J. Meng

(Proc. SIGGRAPH) 34, 4 (2015), 123:1–123:13.
Alan King, Christopher Kulla, Alejandro Conty, and Marcos Fajardo. 2013. BSSRDF

Importance Sampling. In SIGGRAPH Talks.
Christopher Kulla and Marcos Fajardo. 2011. Importance Sampling of Area Lights in

Participating Media. In SIGGRAPH Talks. 55:1–55:1.
Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and Decomposition

Tracking for Rendering Heterogeneous Volumes. ACM Trans. on Graphics (Proc.

SIGGRAPH) 36, 4 (July 2017), 111:1–111:16.
Jaroslav Křivánek and Eugene d’Eon. 2014. A Zero-variance-based Sampling Scheme

for Monte Carlo Subsurface Scattering. In SIGGRAPH Talks. 66:1–66:1.
Eric Lafortune and Yves Willems. 1993. Bi-Directional Path Tracing. In Proc. of COM-

PUGRAPHICS. 145–153.
K. M. Lam. 1985. Metamerism and Colour Constancy. Ph.D. Dissertation. University of

Bradford.
Bernd Lamparter, Heinrich Müller, and Jörg Winckler. 1990. The Ray-z-Buffer—An

Approach for Ray Tracing Arbitrarily Large Scenes. Technical Report. Albert-Ludwigs
University at Freiburg.

Jun S. Liu, Faming Liang, and Wing Hung Wong. 2000. The Multiple-Try Method and
Local Optimization in Metropolis Sampling. J. Amer. Statist. Assoc. 95, 449 (March
2000), 121–134.

David L. MacAdam. 1935a. Maximum Visual Efficiency of Colored Materials. Journal
of the Optical Society of America) 25, 11 (1935), 361–367.

David L. MacAdam. 1935b. The Theory of the Maximum Visual Efficiency of Colored
Materials. Journal of the Optical Society of America) 25, 8 (1935), 249–249.

David J. MacDonald and Kellogg S. Booth. 1990. Heuristics for ray tracing using space
subdivision. The Visual Computer 6, 3 (1990), 153–166.

Laurence T. Maloney. 1986. Evaluation of linear models of surface spectral reflectance
with small numbers of parameters. Journal of the Optical Society of America) 3, 10
(1986), 1673–1683.

Stephen McAuley, Stephen Hill, Naty Hoffman, Yoshiharu Gotanda, Brian Smits, Brent
Burley, and Adam Martinez. 2012. Practical Physically-based Shading in Film and
Game Production. In SIGGRAPH Courses. 10:1–10:7.

Nick McKenzie, Martin Hill, and Jon Allitt. 2010. Rendering "Avatar": Spherical Har-
monics in Production. (2010). SIGGRAPH Talks.

Johannes Meng, Florian Simon, Johannes Hanika, and Carsten Dachsbacher. 2015.
Physically Meaningful Rendering using Tristimulus Colours. Proc. Eurographics
Symposium on Rendering 34, 4 (June 2015), 31–40.

Gary W. Meyer. 1988. Wavelength Selection for Synthetic Image Generation. Comput.

Vision Graph. Image Process. 41, 1 (Jan. 1988), 57–79.
Bochang Moon, Yongyoung Byun, Tae-Joon Kim, Pio Claudio, Hye-Sun Kim, Yun-Ji

Ban, Seung Woo Nam, and Sung-Eui Yoon. 2010. Cache-oblivious Ray Reordering.
ACM Trans. on Graphics (Proc. SIGGRAPH) 29, 3 (July 2010), 28:1–28:10.

Jn Morovi. 2008. Color Gamut Mapping. Wiley Publishing.
Jean-Daniel Nahmias and Davide Pesare. 2016. Look Development in Real Time. (2016).

Siggraph NVIDIA Presentations.
Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual ratio tracking for estimat-

ing attenuation in participating media. ACM Trans. on Graphics (Proc. SIGGRAPH

Asia) 33, 6 (Nov. 2014), 179:1–179:11. https://doi.org/10.1145/2661229.2661292
Jacopo Pantaleoni, Luca Fascione, Martin Hill, and Timo Aila. 2010. PantaRay: Fast

Ray-traced Occlusion Caching of Massive Scenes. ACM Trans. on Graphics (Proc.

SIGGRAPH) 29, 3 (2010), 1–10.
Mark S. Peercy. 1993. Linear Color Representations for Full Speed Spectral Rendering.

In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH ’93). 191–198.
Matt Pharr and Pat Hanrahan. 1996. Geometry Caching for Ray-Tracing Displacement

Maps. In Proc. Eurographics Workshop on Rendering. 31–40.
Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2017. Physically Based Rendering:

From Theory to Implementation (3rd ed.). Morgan Kaufmann.
Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. 1997. Rendering Complex

Scenes with Memory-Coherent Ray Tracing. In Proc. of SIGGRAPH ’97. 101–108.
Pixar Animation Studios. 2015. RenderMan 20 documentation.
Matthias Raab, Daniel Seibert, and Alexander Keller. 2008. Unbiased Global Illumination

with Participating Media. In Monte Carlo and Quasi-Monte Carlo Methods 2006. 591–
606.

Shaun D. Ramsey, Kristin Potter, and Charles Hansen. 2004. Ray Bilinear Patch In-
tersections. Journal of Graphics Tools 9, 3 (2004), 41–47. https://doi.org/10.1080/
10867651.2004.10504896

Charles Schmidt and Brian Budge. 2002. Simple Nested Dielectrics in Ray Traced
Images. Journal of Graphics Tools 7, 2 (2002), 1–8.

Erwin Schrödinger. 1919. Theorie der Pigmente größter Leuchtkraft. Annalen der

Physik 367, 15 (1919), 603–622.
Peter Shirley and Changyaw Wang. 1991. Direct Lighting Calculation by Monte Carlo

Integration. In Proc. Eurographics Workshop on Rendering. 54–59.
Florian Simon, Johannes Hanika, Tobias Zirr, and Carsten Dachsbacher. 2017. Line

Integration for Rendering Heterogeneous Emissive Volumes. Computer Graphics

Forum (Proceedings of Eurographics Symposium on Rendering) 36, 4 (June 2017),

101–110.
Thomas Smith and John Guild. 1931. The C.I.E. colorimetric standards and their use.

Transactions of the Optical Society 33, 3 (1931), 73–134.
Brian Smits. 1999. An RGB-to-spectrum conversion for reflectances. Journal of Graphics

Tools 4, 4 (1999), 11–22.
Brian Smits, Peter Shirley, and Michael Stark. 2000. Direct Ray Tracing of Displacement

Mapped Triangles. In Proc. Eurographics Workshop on Rendering. 307–318.
Michael Stokes, Matthew Anderson, Srinivasan Chandrasekar, and Ricardo Motta. 1996.

A Standard Default Color Space for the Internet — sRGB. http://www.color.org/
contrib/sRGB.html. (November 1996).

Gordon Stoll, William Mark, Peter Djeu, Rui Wang, and Ikrima Elhassan. 2006. Razor:
An architecture for dynamic multiresolution ray tracing. Technical Report 06-21.
Department of Computer Science, University of Texas at Austin.

Yinlong Sun, F. David Fracchia, Thomas W. Calvert, and Mark S. Drew. 1999. Deriving
Spectra from Colors and Rendering Light Interference. IEEE Comput. Graph. Appl.

19, 4 (July 1999), 61–67.
T. M. Sutton, F. B. Brown, F. G. Bischoff, D. B. MacMillan, C. L. Ellis, J. T. Ward, C. T.

Ballinger, D. J. Kelly, and L. Schindler. 1999. The physical models and statistical

procedures used in the RACERMonte Carlo Code. Technical Report KAPL-4840. Knolls
Atomic Power Laboratory, Niskayuna, NY, USA. https://doi.org/10.2172/767449

László Szécsi, László Szirmay-Kalos, and Csaba Kelemen. 2003. Variance Reduction for
Russian Roulette. Journal of WSCG 11, 1 (2003), 1–8.

USAS and ASME. 1967. USA Standard Letter Symbols for Illuminating Engineering.
United States of America Standards Institute.

Eric Veach and Leonidas Guibas. 1994. Bidirectional Estimators for Light Transport. In
Proc. Eurographics Workshop on Rendering. 147–162.

Eric Veach and Leonidas J Guibas. 1995. Optimally combining sampling techniques for
Monte Carlo rendering. Proc. SIGGRAPH (1995), 419–428.

Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014.
On-line Learning of Parametric Mixture Models for Light Transport Simulation.
ACM Trans. on Graphics (Proc. SIGGRAPH) 33, 4 (Aug. 2014), 101:1–101:11.

Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and
Donald P. Greenberg. 2005. Lightcuts: A Scalable Approach to Illumination. ACM
Trans. on Graphics (Proc. SIGGRAPH) 24, 3 (July 2005), 1098–1107.

QiqiWang, Haiying Xu, and Yinlong Sun. 2004. Practical construction of reflectances for
spectral rendering. In In Proceedings of the 22th International Conference in Central

Europe on Computer Graphics, Visualization and Computer Vision. 193–196.
Rui Wang and Oskar Åkerlund. 2009. Bidirectional Importance Sampling for Unstruc-

tured Direct Illumination. Computer Graphics Forum 28, 2 (2009), 269–278.
Greg Ward and Elena Eydelberg-Vileshin. 2002. Picture Perfect RGB Rendering Us-

ing Spectral Prefiltering and Sharp Color Primaries. In Eurographics Workshop on

Rendering. The Eurographics Association, 117–124.
Andrea Weidlich and Alexander Wilkie. 2009. Rendering the effect of labradorescence.

In Graphics Interface. 79–85.
Alexander Wilkie, Sehera Nawaz, Marc Droske, Andrea Weidlich, and Johannes Hanika.

2014. Hero Wavelength Spectral Sampling. Computer Graphics Forum (Proceedings

of Eurographics Symposium on Rendering) 33, 4 (July 2014), 123–131.
Andrew Woo, Andrew Pearce, and Marc Ouellette. 1996. It’s Really Not a Rendering

Bug, You See ... IEEE Comput. Graph. Appl. 16, 5 (Sept. 1996), 21–25.
E. R. Woodcock, T. Murphy, P. J. Hemmings, and T. C. Longworth. 1965. Techniques

used in the GEM code for Monte Carlo neutronics calculations in reactors and other
systems of complex geometry. In Applications of Computing Methods to Reactor

Problems. Argonne National Laboratory.
Magnus Wrenninge. 2016. Efficient rendering of volumetric motion blur using tempo-

rally unstructured volumes. Journal of Computer Graphics Techniques 5, 1 (2016),
1–34.

William David Wright. 1928. A re-determination of the trichromatic coefficients of the
spectral colours. Transactions of the Optical Society 30, 4 (1928), 141–164.

G. Wyszecki and W. S. Stiles. 2000. Color Science: Concepts and Methods, Quantitative

Data and Formulae. John Wiley & Sons.
Matthias Zwicker,Wojciech Jarosz, Jaakko Lehtinen, BochangMoon, Ravi Ramamoorthi,

Fabrice Rousselle, Pradeep Sen, Cyril Soler, and Sung-Eui Yoon. 2015. Recent
Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering.
Computer Graphics Forum (Proceedings of Eurographics) 34, 2 (May 2015), 667–681.
https://doi.org/10.1111/cgf.12592

Received June 2017; revised October 2017; final version November 2017;
accepted December 2017

ACM Transactions on Graphics, Vol. 37, No. 1, Article 1. Publication date: February 2018.

https://doi.org/10.1145/2661229.2661292
https://doi.org/10.1080/10867651.2004.10504896
https://doi.org/10.1080/10867651.2004.10504896
http://www.color.org/contrib/sRGB.html
http://www.color.org/contrib/sRGB.html
https://doi.org/10.2172/767449
https://doi.org/10.1111/cgf.12592

	Abstract
	1 Introduction
	1.1 Main aspects of the Manuka architecture

	2 Historical Context
	2.1 Classic RenderMan
	2.2 RenderMan and global illumination
	2.3 Ray wavefronts
	2.4 Manuka today

	3 Architecture
	3.1 Shade before hit
	3.2 Spectral rendering
	3.3 Path first execution order
	3.4 Selected subsystems

	4 Production essentials
	5 Results
	6 Discussion
	7 Future Challenges
	Acknowledgments
	References

