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Fig. 1. A dining room lit from the outside by an area light and by a spot light on the table. The insets show that our (unidirectional) guided sampling is able to
resolve the caustic much better than path tracing (PT) in the same time. Guided sampling learns the difficult parts of the light transport in 3 minutes (guided
contribution, bottom right image) and rendered for 27 minutes. Our approach is selective, i.e. the guided sampler automatically focuses only on the parts of the
illumination which are poorly sampled by the unguided estimator. The images on the right show the unguided and guided component of our method.

Finding good global importance sampling strategies for Monte Carlo light

transport is challenging. While estimators using local methods (such as

BSDF sampling or next event estimation) often work well in the majority

of a scene, small regions in path space can be sampled insufficiently (e.g. a

reflected caustic). We propose a novel data-driven guided sampling method

which selectively adapts to such problematic regions and complements the

unguided estimator. It is based on complete transport paths, i.e. is able to

resolve the correlation due to BSDFs and free flight distances in participating

media. It is conceptually simple and places anisotropic truncated Gaussian

distributions around guide paths to reconstruct a continuous probability

density function (guided PDF). Guide paths are iteratively sampled from the

guided as well as the unguided PDF and only recorded if they cause high

variance in the current estimator. While plain Monte Carlo samples paths

independently and Markov chain-based methods perturb a single current

sample, we determine the reconstruction kernels by a set of neighbouring

paths. This enables local exploration of the integrand without detailed bal-

ance constraints or the need for analytic derivatives. We show that our

method can decompose the path space into a region that is well sampled by

the unguided estimator and one that is handled by the new guided sampler.

In realistic scenarios, we show 4× speedups over the unguided sampler.

CCS Concepts: • Computing methodologies → Ray tracing;

Additional Key Words and Phrases: Global Illumination, Sampling and Re-

construction, Monte Carlo, Stochastic Sampling

1 INTRODUCTION
Photorealistic image synthesis is important for product visualisa-

tion, architecture, and visual effects in movie production. In these

fields, Monte Carlo light transport simulation has found widespread

adoption due to its ability to accurately simulate complex lighting
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effects. In this class of techniques, path tracing is still the most fre-

quently used technique among practitioners, due to its simplicity

and easy maintenance. This relatively simple solution – starting at

the camera sensor, iteratively extending transport paths to more

bounces, combined with next event estimation (i.e. deterministically

connecting to the light sources) – can efficiently account for the vast

majority of rendering problems in practice [Fascione et al. 2017].

However, path tracing often encounters transport phenomena

which it fails to sample sufficiently. Although the source of the

difficulty may be very localised, it can cause noise virtually every-

where in the image. More robust solutions have been proposed,

e.g. [Georgiev et al. 2012; Hachisuka et al. 2012; Veach and Guibas

1997]), but have not found broad adoption so far. The reasons are

many: they often suffer from temporal flickering or blurry artifacts,

and some cannot handle special requirements such as hair strands

or participating media – or the computational or memory overhead

they introduce is just too high.

In this paper, we present a novel method that addresses these is-

sues and balances local exploration and global discovery of transport

paths. The global discovery uses stratified sampling with uniformly

distributed points, e.g. a path tracer using the Halton sequence or

bidirectional path tracing (BDPT) [Veach and Guibas 1994]. As a

basis for the local exploration, we store samples causing high vari-

ance as guide paths. The key is to store full paths, as opposed to

a disconnected set of end points [Vorba et al. 2014] or path seg-

ments [Jensen 1995]. By this, we can make use of all the available

information during local exploration by creating new paths which

are sampled using Gaussian distributions around the guide paths.

These newly spawned paths are often selected as new guide paths

for subsequent sampling. In particular, our method

• is selective, i.e. we introduce an iterative learning process which

identifies sub-spaces of the integration causing high variance.
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• uses information from complete paths, i.e. guided sampling ac-

counts for path length, Russian roulette, BSDF, visibility, etc.

• samples from a set of neighbouring paths. Plain Monte Carlo

constructs independent samples, Markov chains mutate from a

single current state sample, while we use the full information

from multiple previous paths to sample a new one.

We show that our approach can work in a variety of scene configu-

rations, including special cases which are difficult for previous work

such as participating media, hair fibers.

2 BACKGROUND AND PREVIOUS WORK
Light transport. This field is well studied [Chandrasekar 1960] and

has been formalised in computer graphics using the rendering equa-

tion [Kajiya 1986] and the path integral [Veach 1998]. To compute

the amount of radiant energy Ip incident on a pixel p, we need to

integrate differential spectral radiant flux over a wavelength range

(weighted by sensor responsivity), shutter time interval, aperture

area of the optical device, and the vertex areas of all relevant points

of interaction of the transport path with the scene:

Ip =

∫
P

hp (X) · f (X) dX, (1)

where P is the path space and a path X of length k is formed by

a list of vertices X = (x0, x1, .., xk−1
); x0 being on the sensor and

xk−1
on a light. Eq. (1) includes the pixel reconstruction filter hp (X)

and the measurement contribution function f (X) [Veach 1998]:

f (X) =W (x0) ·G(x0, x1) ·T (x0, x1) · Le (xk−1
) ·

k−2∏
v=1

fs (xv ) ·G(xv , xv+1) ·T (xv , xv+1), with (2)

G(x, y) = D(x, y) · D(y, x)/∥x − y∥2, and (3)

D(x, y) =


⟨n(x),ωx→y⟩ x on surface,√

1 − ⟨r (x),ωx→y⟩2 x on fiber,

1 x in medium.

(4)

For the sake of simpler notation, we omitted the dependencies on

wavelength and incident and outgoing directions for the scattering

function fs (x). It takes the form of a bidirectional scattering distribu-

tion function (BSDF) on surfaces, scattering coefficient times phase

function µs (x) · φ(cosθ ) in volumes, or a curve scattering function

on hair fibers. T (.) denotes the volumetric transmittance between

the two given points. D(x, y) accounts for the foreshortening ac-

cording to the surface normal n(x) or the main fiber direction r (x),
and has no effect in media. We will also omit the dependency on

pixel position p and wavelength λ wherever possible.

Monte Carlo methods. To compute integrals such as Equation (1),

many Monte Carlo (MC) [Sobol 1994] or Markov chain Monte Carlo

(MCMC) approaches [Hastings 1970; Metropolis et al. 1953] have

been devised and applied to light transport [Kelemen et al. 2002;

Pharr et al. 2017; Veach and Guibas 1997].

While MC is usually good at uniformly discovering islands in

the path space, MCMC approaches are better at exploring them

once found. A hybrid approach exists [Cline et al. 2005], but often

requires manual, scene-dependent intervention to determine what

should be explored by MC or MCMC to avoid wasteful sampling

and unnecessary flickering in animations.

Our technique explicitly determines which parts of the path space

get explored well by MC, and will then spend additional work only

on the remaining parts. We achieve this by storing transport paths

in subspaces which are intricate to sample and by this acquire infor-

mation about the transport in a scene. This is in contrast to MCMC

methods which always only depend on a single current state.

Advanced (MC)MC light transport methods. Previous work ex-

ploits additional information to guide local exploration in MCMC.

In particular, geometric derivatives [Jakob 2013] have been used to

globally optimise all vertices of a path simultaneously. This work

clearly shows the interdependencies of path vertices along a full

path in form of a block-tridiagonal matrix, which maps half vector

constraints to vertex area locations (cf. [Jakob and Marschner 2012,

Figure 2(c)] or [Kaplanyan et al. 2014, Equation (11)]). This moti-

vates our approach of working with complete transport paths (see

Section 6 in the supplemental document for an extended discussion

of the tridiagonal structure).

Analytic derivatives of the measurement contribution have been

explored to help with computing step sizes [Fasiolo et al. 2018;

Li et al. 2015]. Instead, we employ an observed light field, since

fine displacements and visibility make analytical derivatives unsta-

ble [Hanika et al. 2015].

MCMC has also been augmented with large caches (photon maps)

which represent visibility and information beyond a single state [Gru-

son et al. 2016; Hachisuka and Jensen 2011; Šik et al. 2016]. However,

we want our method to focus only on small subspaces of the path

space where exploration is difficult. Moreover, photon maps do not

encode the full information about complete transport paths, but

represent a 2D marginal distribution (4D if incoming directions are

stored).

High-dimensional importance sampling. Metropolis light trans-

port can importance sample complete paths [Veach and Guibas

1997] in the limit by performing many small mutations. There are

approaches to incorporate more global information into regular MC

sampling. Joint importance sampling [Georgiev et al. 2013] succes-

sively derives joint probability density functions (PDFs) for sampling

2 to 3 vertices in participating media at once. Weber et al. [2017] use

an uncached, deterministic path construction to construct in the

order of 10 vertices inside a medium towards a light source as an

extended next event estimation. Closed form approximations have

been used to guide scattering events towards a light source in dense

media [Křivánek and d’Eon 2014; Meng et al. 2016]. Note that all of

these are strictly limited to participating media.

Particle filters. SequentialMonte Carlo or particle filters [DelMoral

1996] are usually used to discover the posterior distribution of a

hidden Markov model (for instance tracking one or multiple moving

2D targets over time). They can be used to estimate a PDF by first

sampling an initial set of particles followed by a move and resam-

pling step. As this approach suffers from progressive degeneration,

i.e. it tends to get stuck in a single mode, many countermeasures

have been proposed, see e.g. [Gilks and Berzuini 2001]. In our con-

text, however, we are computing a static equilibrium distribution
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Fig. 2. A 1D illustration of our approach: parts of the integrand (f , blue) are well represented by a PDF (pu , orange). We wish to approximate the difference
between the integrand and the orange PDF. Guiding records (Yi , red points) are iteratively placed and then used to reconstruct a continuous guided PDF (pд ,
green). These two PDF are then combined with multiple importance sampling (balance heuristic) to yield a good Monte Carlo estimator for the integral.

of light, so we do not move our discovered samples over time. Also

resampling means discarding some information from the previous

iteration which did not work well for light transport. However, we

do employ a similar resampling step for dynamic scenes.

Population Monte Carlo (PMC) [Cappé et al. 2004] and adaptive

importance sampling [Cappé et al. 2008] also derive parameters for a

PDF from previous samples. PMC used to be most effective in 2D and

has been used to determine various 2D kernels for instance for lens

perturbations [Fan 2006] and energy redistribution path tracing [Lai

et al. 2007]. Recent work extends it to higher dimensional cases,

e.g. particle MCMC [Andrieu et al. 2010].

Previous work suggests that light transport lends itself well for

a decomposition into 2D subdomains (one per bounce), e.g. as

done with padded replications for low discrepancy sampling [Kollig

and Keller 2002a,b]. However, maintaining the correlation between

bounces as dictated, for instance, by non-diffuse BSDFs is not possi-

ble. Thus we cannot use a padded 2D replication of particle filters.

Learning-based methods. Despite elaborate sampling techniques,

learning-based approaches can improve the simulation by using

information from previously sampled paths and guidingMC samples

to regions where more samples are required. Care has to be taken

to maintain the unbiasedness of an estimator, even when working

in image space only [Kirk and Arvo 1991]. Guiding can also be

performed by learning the 2D incoming light field at cache records

distributed throughout the scene [Vorba et al. 2014], and has been

combined with reinforcement learning [Dahm and Keller 2017a,b].

The work of Hey and Purgathofer [2002] uses kernels around guide

samples to reconstruct a signal and is in that sense similar to our

approach, but only for a 2D hemispherical signal.

Note that all of these approaches only consider a 2D slice of the

path space at once and thus need to explicitly differentiate modes at

each cache point. Even including BSDF information requires costly

processing [Herholz et al. 2016]. Instead of clustering, we store

complete paths and by this keep the entire information present

during path sampling as well as the dimensions of the path vertices

separated. This allows us to fit simpler unimodal distributions to

the local surroundings of a path sample, and include correlation

between the bounces such as information about the path length.

Spatial subdivision schemes for adaptive sampling, e.g. [Hachisuka

et al. 2008; Müller et al. 2017], are appealing because of their sim-

plicity, but are intractable in higher dimensions. Subdividing every

dimension only once in a 32-dimensional space would result in

2
32 ≈ 4G bins to store. In contrast, we store a subset of full transport

paths only, and define a continuous PDF around them for guiding.

3 A SELECTIVE GUIDING FRAMEWORK FOR
COMPLETE PATHS

Computing the integral over a function f with a regular, unguided

MC estimator often works well for some part of the integrand, but

others are not well represented by the underlying unguided proba-

bility density function (unguided PDF). The goal of our work is to

derive and add a new guided PDF to the existing one, as to make the

sum of both proportional to the integrand f (Section 3.1). This is

equivalent to adding a PDF in the context of multiple importance

sampling [Veach and Guibas 1995], using the balance heuristic. Since

data-driven guiding is expensive, we want to apply it only where

needed, i.e. where existing techniques fail to converge in accept-

able time. To construct this new PDF, we draw samples from the

unguided PDF, and record samples which cause high variance in a

cache along with their sample weight, f divided by the sampling

density, as guide samples (Section 3.2). We use complete transport

paths as samples, to retain as much information as possible. From

these, we reconstruct a continuous PDF using a Gaussian mixture

model. To sample from this PDF, we randomly pick one guide sample

by its weight, and then sample from a Gaussian distribution cen-

tered around it (Section 3.3). The Gaussian kernel’s size depends on

the neighbouring guide samples (Section 3.4). Learning the guided

PDF is sped up by running this process iteratively on small sample

batches, also sampling from the guided PDF learned so far.

3.1 Overview
In Figure 2, an example integrand f (X) is shown in blue, and the

existingMC estimator draws samples from the PDF shown in orange,

which we denote as the unguided PDF pu (X). More formally, we are

approximating the integral using the estimator:

⟨I (X)⟩u =
f (X)
pu (X)

. (5)

In our example, the PDF pu represents the left smooth mode of

the integrand well, but misses the other features (two more modes).

Thus we construct the additional guided PDF piд(X) (shown in green)
which is iteratively refined for i = 0, 1, ..., and captures the differ-

ences between the integrand f (X) (blue) and the unguided PDF

pu (X) (orange). The converged guided PDF is shown in Figure 2,
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(a) (b) (c) (d)

Fig. 3. Schematic overview of the guiding method employing full paths. We start with all path traced trajectories, depicted in (a). From these, we select
the ones that are most poorly sampled by the underlying Monte Carlo estimator, shown in (b). For each of these guide paths, we compute anisotropic
reconstruction kernels at every path vertex, to fill in the gaps between the samples. This is visualised in (c). To sample from this structure, we first pick a guide
path and then successively sample path vertices according to the reconstruction kernels (d). Evaluating the PDF requires to sum up the PDF associated with
all guide paths that may create the given path.

right. Eventually, we want to combine these two PDFs using multi-

ple importance sampling (MIS). More precisely, we will be using a

single-sample model with the balance heuristic [Veach and Guibas

1995] resulting in a combined estimator with a mixing weight u, i.e.

⟨I (X)⟩iд =
f (X)

u · pu (X) + (1 − u) · piд(X)
. (6)

The guided PDF will be constructed incrementally and with ev-

ery iteration i we adjust piд(X) to further reduce the variance of

Equation (6).

Intuitively, we proceed as illustrated in Figure 3. We begin by

letting p0

д(X) ≡ 0 and effectively sampling X using only pu (X)
(Figure 3a). From the paths X, we select only a few new guide paths

Y motivated by importance sampling: we first determine whether a

path is an outlier causing high variance (via density-based outlier

rejection [DeCoro et al. 2010]) and only from these we pick the N
with the highest contribution to the estimate in Equation (6). We

will iteratively add batches of guide paths Yj sampled from both

pu and the current guided pdf piд to the cache, and once they are

added we keep them unchanged until the end. This is illustrated in

Figure 3b and detailed in Section 3.2.

The guide paths Yj are turned into a continuous function us-

ing a Gaussian reconstruction kernel (Figure 3c). We use a high-

dimensional neighbour search to determine large enough recon-

struction kernels to close the gaps between paths and to achieve

smooth coverage. One challenge is that the PDF evaluation can be-

come slow in Gaussian mixture models. Therefore we use truncated

Gaussian kernels to be able to cull away samples efficiently. Our

Gaussians are truncated at ≈ 3.330σ , see Section 7 in the supple-

mental document for details.

To sample from the cache, we first select a guide path Yj using a

cumulative density function (CDF) built on path weightsw j which

are updated every iteration i to reflect the new guided PDF piд(X)
(see Section 3.4). Then we sample a new path vertex xv following

the Gaussian reconstruction kernel (Σ, µ)v around every guide path

vertex yv (Figure 3d), starting at the sensor (see Section 3.3).

In the subsequent iteration i + 1, we draw samples from both

pu (X) and piд(X), with probabilities u and 1 − u, respectively. No
matter which technique was used, new samples will be considered to

be recorded as new guide samples for the next iteration, depending

on their contribution ⟨I (X)⟩iд .

There are concerns whether an estimator is still unbiased when

changing weights and kernel parameters of a PDF based on particles

adaptively [Douc et al. 2007; Kirk and Arvo 1991]. In our case we

will use multiple importance sampling (MIS) with an unguided

estimator, which guarantees an unbiased combination. For that we

require pu (X) to form a complete unbiased estimator, in particular

∀X : f (X) > 0 ⇒ pu (X) > 0. This will not be the case for our

guided PDFs piд(X) which may be zero in areas where the original

estimator is deemed sufficiently good already. We chose the balance

heuristic to combine the PDFs as it is close to optimal [Veach and

Guibas 1995]; note that it is not relevant for the final sampling

quality, as the convex combination of both PDFs pu (X) and piд(X)
adapts to be proportional to f (X).
Learning and sampling from piд(X) has several key advantages:

• The algorithm leverages both global stratification via regular

(quasi-)Monte Carlo sampling and local exploration due to the

Gaussian.

• Sampling is fast, since only one guide sample needs to be chosen

and the corresponding Gaussian needs to be sampled. We only

need a careful implementation of the PDF evaluation for good

performance.

• It focuses on parts of the integration domain where unguided

sampling performs poorly.

• Compared to MCMC where step sizes are often guesswork, we

use neighbouring samples to derive sampling spread. This is

more robust than using analytical derivatives which can fail,

e.g. due to fine displacements and visibility.

• Guide path caches can easily be reused across frames in an

animation (Section 3.5).

3.2 Selecting new guide paths
In every iteration i we adapt the guiding cache to the residual vari-

ance present in the current estimator ⟨I ⟩iд (Equation (6)). The cache

stores full transport paths consisting of one point on the sensor, one

point on an emitter, and a list of vertices in between.

We generate a batch of such path samples from both the unguided

and guided estimator (e.g. one sample per pixel), and select paths

that are causing the highest variance in the current combined esti-

mator ⟨I ⟩iд . These samples need to have a high contribution in order
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to cause a big difference to the expected value. High contribution

can be caused by high measurement as well as low PDF. The for-

mer does not necessarily cause high variance if sampled well (e.g.

looking directly into the sun). We therefore use density-based outlier

rejection (DBOR) [DeCoro et al. 2010; Zirr et al. 2018] to distinguish

between high sample contributions caused by bright measurement

and those caused by low PDF value. From the latter, we keep the

N paths with the highest contribution as new guide paths. This

avoids selecting new guide paths in regions that have already been

sampled well in previous iterations. For implementation details re-

garding DBOR, please see Section 3 in the supplemental document.

As sample weight associated with each selected path Yj , we store
the value of the estimator Equation (6) (Section 3.4 details how the

weights are computed).

We chose to add only N (in the order of several hundred) new

samples in every iteration, as in our experiments this led to improved

learning performance; an observation supported by previous work

[Chopin et al. 2011]. We add unguided as well as guided samples

to the cache since both have the ability to discover new features:

one globally, the other locally. In contrast to particle filters, once a

path is added to the guiding cache, it is never removed or resampled,

since in our experiments this led to loss of information, oscillation,

and clumping of guide paths (cf. Section 3.4, Section 6). Only the

associated weight and kernel parameters change over time.

3.3 Sampling from the cache
To sample from pд(X), we first select a guide path Y by sampling the

CDF built on the path weightsw j . Having selected a guide path rep-

resenting the difference between the unguided PDF pu (X) and the

measurement contribution function f (X), we need to reconstruct a

continuous PDF pд(X) around it. This is accomplished with a recon-

struction kernel: at every high-dimensional control point (a guide

path) we place a truncated Gaussian with a covariance matrix of the

same dimensionality adapted to a number of nearest neighbours.

Since the measurement contribution function is a separable product

of terms and since we will be sampling full paths incrementally

by constructing one vertex at a time, we assume that this high-

dimensional covariance matrix has a block-tridiagonal structure.

Thus we only need to compute a sparse set of coefficients relating up

to three consecutive path vertices to each other. Please see Section

6 in the supplemental document for an expanded explanation.

We create path vertices xv one by one, starting at the camera: First,

we sample x0 on the camera lens as for regular path tracing. Then,

successively for every vertex v > 0, we compute the parameters

Σv , µv of a truncated Gaussian distribution N[Σv , µv ] from which

we will sample xv .
For volumes, we sample a 3D truncated Gaussian N[Σv , µv ]

which is already in vertex area measure. For surface points xv ,
we first sample x′ according to the 2D Gaussian in the frame of the

next guide vertex, and then trace a ray to project x′ to the surface

geometry which yields xv (see Figure 4). This step incurs a Jacobian

determinant to account for the change of measure:

pд(xv |xv−1) = N[Σv , µv ](x′) ·G(xv−1, xv )/G(xv−1, x′). (7)

Obviously (near-)specular BSDFs will pose a problem if outgoing

directions are chosen this way: the measurement contribution will

Yj
X

(a)

xv
u

n

xv−1

Yj
X

(b)

x′ xv

xv−1

Yj
X

(c)

xv

xv−1

Yj
X

(d)

xv

xv−1

Fig. 4. Sampling the next vertex xv in volumes (a,c) and on surfaces (b,d).
The Gaussian distributions are defined in a frame (u, v, n) at the guide path
vertex, where n is aligned with the incident path segment. In the surface
case (b), the sampled point x′ needs to be projected to the surface geometry.
For highly specular BSDF (c,d), we sample from the BSDF instead of from
the guide path Gaussian. The volume case (c) then only samples the distance
from a 1D Gaussian which is the 3D volume Gaussian conditioned to the
sampled ray.

likely evaluate to (near-)zero. To cover this case, we mix in outgoing

directions sampled from the BSDF as well. We stochastically select

between BSDF and Gaussian sampling depending on the Beckmann

equivalent roughness of the surface material of the current vertex

xv−1. The mode of interaction (reflect or transmit) is constrained to

be the same as the guide path’s. This case can also be combined with

volume sampling: we choose the 2D direction by BSDF sampling,

and sample the distance by a 1D Gaussian, by taking the conditional

of the 3D Gaussian for this fixed direction (see Figure 4c).

To evaluate the guided PDF pд(X) for a given path X, we need to

sum up the PDF of sampling X given any of the guide paths Yj , i.e.

pд(X) =
∑
j
w j · pд(X|Yj ) /

∑
j
w j , (8)

pд(X|Yj ) = p(x0) ·

k−1∏
v=1

r · pд(xv |xv−1) + (1 − r ) · ps (xv |xv−1),

where we account for the Gaussians pд(xv |xv−1) from Equation (7),

the guide pathweightsw j as well as for the PDF of BSDF samplingps .
The weight r is computed from the surface roughness of the vertex

xv−1 or the mean cosine in case of volume scattering. Additionally,

p(x0) includes the PDFs to choose a wavelength, time, and aperture

position on the camera.

3.4 Determining reconstruction kernel parameters
It remains to compute the Gaussian parameters Σ and µ, as well as
the path weightsw j .

Reconstruction kernel size. The kernels should be wide enough to

close the gaps between the guide paths in the path space. Otherwise

the guided PDF will leave a part of the difficult sampling domain

to the unguided PDF pu (X) (see Figure 6). This would still result in

an unbiased estimator, but may lead to outliers generated by pu (X).
Thus we employ a high-dimensional nearest neighbour search on

all guide paths Yj of same configuration, i.e. of the same length k
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all unguided guided guide paths all unguided guided guide paths

Fig. 5. Left half: a volumetric caustic cast by a coloured spot light through a specular dielectric sphere. Right half: a glass sphere on a plane. The rows represent
a selection of the consecutive learning progressions from i = 2 to i = 29. The renders are broken down into contributions from the guided and unguided
samplers, as indicated on the columns. While in the volume caustic, virtually all paths require guiding for efficient sampling, the diffuse ground plane in the
right part is robustly separated out by our approach. Additionally, we show the guide path locations as black dots to visualise both the even spacing and the
local learning. For illustration, we used a constant 10-pixel wide Gaussian for the first vertex in these images.

y2

x2

z2

Fig. 6. Left: A 2D illustration of the guided PDF (black Gaussians). If the
unguided sampler creates high variance samples inside the support of the
guided PDF (green) their contribution will be effectively reduced by MIS. If
the high variance samples lie outside of the support of the guided PDF (red)
these samples will be added to the cache in the learning phase. However,
during rendering the cache remains fixed and these outliers contribute fully
to the image. Right: A diffuse path X with 5 vertices, sampled in between
two guide paths Y and Z. Their covariance matrices Σ2 around vertex v = 2

need to be very large to define an overlap with x2. If they are too small,
the blue path X cannot be constructed by either of these guide paths, even
though they are very close in all other dimensions. This means the gap will
be filled by the unguided sampler (potentially with higher variance).

and succession of reflect, transmit, hair fiber, or volume scattering

events. As distance metric, we use the sum of the squared Euclidean

distances of the path vertices:

d(Y,Z) =
k−1∑
v=0

∥yv − zv ∥2. (9)

For every guide path we collect a small number of neighbouring

paths (we are using 10, but any number between 4 to 20 yielded

similar results). To derive the Gaussian to sample the respective next

path vertex xv given vertex xv−1, we first compute a covariance

matrix Σ̄v and the corresponding mean µ̄v :

Σ̄v =

(
Σ11 Σ12

Σ21 Σ22

)
, µ̄v =

(
µ1

µ2

)
, (10)

where the block Σ11 expresses how thev-th vertices of the neighbour
paths are distributed around their mean µ1, and Σ11 ∈ R2×2

if xv is

on a surface, or Σ11 ∈ R3×3
if xv is in a volume. Σ22 is the same for

the previous vertex xv−1, and the dimensionality of the off-diagonal

blocks follows accordingly. This means that Σ̄v can be 4× 4, 5× 5 or

6 × 6-dimensional and captures how the v-th path vertex behaves

with respect to the (v−1)-th path vertex.We compute the covariance

matrix in an orthonormal frame for every path vertex, where one

basis vector is aligned with the incoming ray direction yv − yv−1

of the guide path.

To derive an accurate sampling distribution, we compute the

conditional Σ̄v |xv−1 to obtain a truncated Gaussian distribution

N[Σ̄v , µ̄v ] from which we will sample xv :

Σv = Σ̄v |xv−1 = Σ11 − Σ12 · Σ
−1

22
· Σ21, (11)

µv = µ̄v |xv−1 = µ1 + Σ12 · Σ
−1

22
(xv−1 − µ2). (12)

Since Equation (11) does not depend on xv−1, we precompute and

store Σv , (Σ12 · Σ−1

22
), µ1, and µ2 at the guide path vertex yv−1:

We perform a singular value decomposition of Σv , regularise the
singular values, and keep the rotation matrix and singular values

suitable to transform an isotropic Gaussian random variable.

The conditional in Equation (11) results in small Gaussians, fa-

cilitating our goal to yield good sampling efficiency such that, for

instance, the sampled rays do actually intersect the light source they

aim for (see Figure 7).

The size of the Gaussian for the first vertex y1 is not based on

the neighbouring paths. Instead, we use a simple radius shrinking

scheme similar to progressive photon mapping [Knaus and Zwicker

2011] which is based on a ray differential footprint. We successively

shrink the size of the Gaussian at y1 which allows us to control

screen space stratification, and ensures that the first Gaussians are

not overlapping excessively, making PDF evaluation faster.
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X

(a) xv−1 (Σ22, µ2)

(Σ11, µ1)(Σ, µ)v xv

X

(b) xv−1

(Σ11, µ1)x′
x′′

Fig. 7. For most accurate sampling of xv , we compute a covariance matrix
(5×5 in this example, since xv−1 is a surface point and xv is in a volume). One
block in the matrix, Σ11, expresses how xv should be distributed according
to the collected data from the guide paths (shown in black). Because we
already have a fixed previous vertex xv−1, we derive the conditional of
the 5 × 5 Gaussian accordingly, resulting in a new distribution N[Σv , µv ]
(shown in blue). If there is a non-zero covariance between the coordinates
of the guide path vertices yv and yv−1 the conditional Gaussian Σv will
typically be a lot more focused than Σ11. In this example, disregarding the
covariance would amount to sampling according to Σ11 with much larger
spread, as illustrated in (b). Using Σv results in higher quality samples
which are more likely to be valid paths, as well as faster PDF evaluation
due to culling.

An illustration of the progressive sample placement in screen

space can be seen in Figure 5, showcasing the separation into the

contribution from the guided and the unguided part of our tech-

nique as well as global and local exploration. In Section 2 of the

supplemental document we show a visualisation of a guide path, its

neighbouring guide paths from the cache and some sampled paths

for the same scenes.

Guide path weights. In contrast to particle filtering methods, we

do not employ a resampling step in the learning phase, and we

never remove guide paths. Our experiments confirmed that in re-

gions where only very scarce information can be obtained from the

unguided sampler, discarding any path can be a substantial loss.

Also, learning performs much faster if important paths attract more

samples. Thus we aim to keep all guide paths and reevaluate the

weights w j once new paths are added. If the density of paths be-

comes higher, the weight should become smaller. For importance

sampling of guide paths, we should select them by their contribution

to the estimator in Equation (6):

w j =
⟨I (Yj )⟩iд∑
l ⟨I (Yl )⟩iд

. (13)

In every new iteration i , we need to recompute these weights for all

paths in the cache. Unfortunately, in iteration i Equation (6) depends
on the guided PDFpiд(Yj )which in turn depends on updated weights
w j based on paths sampled in iterations [0, i]. This leads to a circular
dependency between Equation (8) and Equation (13).

As a solution, we propose to use the PDF of the previous itera-

tion pi−1

д (Yj ) instead. To avoid oscillation, we take an exponential

average of previous weights:

wi
j = t ·

⟨I (Yj )⟩i−1

д∑
l ⟨I (Yl )⟩i−1

д
+ (1 − t) ·wi−1

j , (14)

where we choose t = 0.5 for paths that were previously contained

in the cache, and t = 1 for new additions. Note that since t depends
on j, these weights do not sum to one any more, so they have to be

explicitly normalised in Equation (8).

3.5 Extension to dynamic scenes
To explicitly improve temporal stability, we employ a resampling

step which is in direct correspondence to the resampling step in

particle filters for target tracking. When rendering a new frame of

an animation, we keep the guide path cache of the previous frame

and use it as an initial guided PDF to sample a few paths from.

Since the difference between frames is often small due to temporal

coherence, this step often yields good samples and makes sure that

effects that have been discovered previously have a good chance

to be discovered in the subsequent frame, too. After this initial

seeding step, the old guide paths are discarded and the learning

phase continues as usual on the resampled guide paths. Please see

the accompanying video for a visual evaluation, and Section 5 in the

supplemental document for more details about how we resample

the guide path cache of the previous frame and the relation to classic

particle filter methods as they are used for target tracking.

4 IMPLEMENTATION DETAILS
We implemented our method in a custom spectral rendering system.

In our evaluation we found 10k-50k guide paths to be sufficient in

most cases and therefore we did not optimise our implementation

for run time speed or memory.

We store the guide paths and their vertices in two separate linear

buffers. A path vertex needs 128 bytes of memory: 112 bytes for

sampling information including the eigenvalue decomposition, 12

bytes for the world space position and the remaining 4 bytes are

used for flags (e.g. volume, surface, transmit, reflect) and shader

information. For each path we store its wavelength, weight, mea-

surement contribution, the individual PDF values pu and pд , the
index of the first path vertex in the vertex buffer, as well as some

additional debugging information. Storing 50k guide paths therefore

requires about 150MB of memory.

4.1 PDF evaluation
To evaluate the guided PDF pд(X) in Equation (8) for a given path

X, we have to identify all guide paths that could have sampled X. To
reduce the computation, we employ a variety of culling approaches:

first, we use a BVH to find only guide paths Yj with overlapping

truncated Gaussians for x1 because the PDF conditional on other

guide paths would evaluate to zero. Each vertex has a correspond-

ing bounding box that encloses its truncated sampling Gaussian.

For surfaces, we determine all potential guide paths by intersect-

ing this structure with the camera ray, enumerating all intersect-

ing 2D Gaussians. For volumes, we can perform a simpler point

query to find all overlapping 3D Gaussians. Afterwards, we do a

quick culling step based on the path configurations (path length

and reflect/transmit/volume scattering sequence have to match).

Additionally, we cull a guide path as soon as one Gaussian evaluates

to zero. Since the Gaussians are designed to cover a small number

of neighbours, we can expect the culling to be effective.

4.2 Covariance matrices
To compute the covariance matrices (cf. Section 3.4) for a guide path,

we search for similar guide paths using a high-dimensional nearest

neighbour search. Since the number of guide paths is usually low
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Fig. 8. Convergence plots for the DiningRoom and Pool scene illustrating
that asymptotically our proposed method behaves like regular Monte Carlo,
but with lower error than plain path tracing. The orange line depicts the
error if the learning phase is explicitly terminated after a while and the
frame buffer is cleared. The guided PDF retained in the path cache makes
sure the convergence quickly recovers. The dashed line indicates the error
if the frame buffer is not cleared after learning stopped at 2

6 samples.

(10–100k) and culling using the same BVH as for the PDF calculation

is very effective, we employ a simple brute force approach and

compute the pairwise distances between the guide paths according

to Equation (9). We realise that this is very inefficient asymptotically,

but it was not a bottleneck in our experiments. If the need for more

guide paths arises, an appropriate acceleration structure for the

nearest neighbour search will be needed.

The eigenvalue decomposition of the covariance matrices Σv can

result in negative eigenvalues due to numerical problems. Therefore

we clamp them from below to the pixel footprint at the vertex x1 of

a path. This also counteracts sub pixel clumping of samples.

4.3 Learning mode/Rendering mode
Our method can be used fully progressively, and similar to Müller

et al. [2017] it does not strictly require a dedicated learning phase.

Figure 8 illustrates the error behaviour (without DBOR) with sample

count if we explicitly split the algorithm into learning and rendering

phase versus if we just keep rendering. The main difference is that

clearing the frame buffer after learning leads to a fresh start without

any potentially accumulated outlier samples. If DBOR is used to

remove any outliers from the learning phase, we conclude that

clearing the frame buffer after learning is not necessary.

Stopping the learning process. For time-limited renders, it can

be an advantage to stop the learning process at some point, since

excessive learning can fill the cache with a large number of paths,

leading to slow PDF evaluation. It is difficult to define a criterion to

decide when the learning phase was sufficiently long: theoretically

we can never be sure to have explored all important features in the

path space since we have to rely on the unguided sampler to find

them (which can take arbitrarily long). We found that allotting 10%

of the total run time to the learning phase, and the rest accordingly

for the rendering phase, works well in our test scenes. We have

encountered cases where the DBOR guide path selection detects

that all effects are already sufficiently explored and does not admit

any more guide paths into the cache. In this case, the algorithm

transparently stops recomputing the guide path cache. There are,

however, fail cases to this, for instance in scenes where all transport

is equally difficult. This leads to an indefinitely growing cache. We

would like to explore more robust criteria in the future.

Remaining high variance samples. Stopping the learning process

means that there can be regions in the path space that have not been

explored yet. If these are sampled during the rendering phase by

the unguided sampler, its high variance samples possibly contribute

fully to the image as bright outliers. Resolving this is possible by

an extended learning phase or by outlier removal. In Figure 12 we

show that removing the remaining outliers discards significantly

less energy than using unguided sampling only and removing all

outliers. We perform the outlier removal with DBOR, which we

already use for path classification during the learning phase. Please

see Sections 3 and 4 in the supplemental document for details.

4.4 Parameters
Our implementation has parameters that we want to discuss in the

following. First, we usually choose the unguided mixing weight

from Equation (6) as u = 0.5. We ran experiments adjusting it such

that the observed variance in the guided and unguided contributions

to the image are of equal magnitude. This led to results very close

to 0.5, but may be worth reconsidering in the future.

Second, we need to set the number of samples added to the cache

in every iteration. We found that using a budget of 0.1–1% of the

total number of generated samples per iteration works well in our

tests. Since DBOR can be unreliable in the beginning of the learning

phase, we use a conservative maximum of 0.2%. We use one heap

per thread to efficiently manage the list of highest-ranked paths.

Density-based outlier rejection. As mentioned in Section 3.2, we

use density-based outlier rejection [DeCoro et al. 2010; Zirr et al.

2018] during the learning phase to distinguish between high-contri-

bution samples which are frequent enough to not cause high vari-

ance, and those which are important as guide paths. The correspond-

ing frequency threshold has an impact on learning: lowering the

threshold increases the chances to add irrelevant samples to the

guiding cache which the unguided sampler would have been able to

handle. This can decrease the efficiency of the guided sampler. On

the other hand, increasing the threshold reduces the learning speed,

as only very rare samples are added to the cache, and consequently

more unguided samples are needed.

Progressive Gaussian shrinking. As mentioned before, we use a

progressive radius shrinking scheme based on a ray differential

footprint for the size of the Gaussians at the first vertex. We start

by a screen space radius of 50 pixels and progressively shrink it

during the learning phase depending on the scene. Starting with

a large radius is important for discovery in the beginning of the

learning phase and allows to share guide paths between pixels. The

radius at the end of shrinking has two important impacts. First, a

smaller radius results in less overlapping Gaussians and therefore

more effective culling and faster PDF evaluation. Second, a smaller

radius results in larger cache sizes because guide paths can only be

shared between fewer pixels which increases PDF evaluation time.

Choosing an optimal minimal radius automatically is challenging

and remains future work. Right now, it is a user parameter that is
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Mitsuba/PT 1ksppMitsuba/PT 1kspp Mitsuba/[Vorba et al. 2014] 900sppMitsuba/[Vorba et al. 2014] 900spp

PT 1ksppPT 1kspp guided PT 441sppguided PT 441spp

Fig. 9. Roughly equal time comparison to 2D marginalised guide records
[Vorba et al. 2014]. The top row has been rendered in Mitsuba, and the
bottom row in our renderer (on different machines with different operating
systems, one RGB and one spectral). We normalised run time to 1024spp
for next event estimation (left). The scene is lit by a key light to the right
and a constant environment map. Here, 2D records should work just fine
because the problem is essentially 2D. Since our method focuses its efforts
on difficult regions (the water droplets), it performs much better using only
950 guide paths (bottom right) even compared to Vorba et al.’s method (top
right) using ≈700k guide records, which has to learn the whole scene.

chosen between 1 (which we use for the Pool and Tumbler scenes)

and 10 pixels (which we use for all other scenes in this work).

5 RESULTS
Our results have been rendered on an AMD Ryzen 7 1800X with

64GB of main memory. In all our experiments with the guided

sampler, half the samples are guided (u = 0.5). The maximum path

length is 32 path vertices for all images.

5.1 Evaluation of guided sampling
We evaluated our guided sampling in a variety of scenes with dif-

ferent challenging lighting settings and performed equal-time com-

parisons between path tracing with next event estimation (PT) and

guided path tracing (guided PT). The details about learn and render

time, number of guide paths and error metrics compared to a path

traced reference are given in Table 1.

DiningRoom. In Figure 1 we show an indoor scene illuminated

by a large light outside and a small bright spotlight inside on the

table. PT handles the outside illumination that dominates the overall

lighting in this scenes very well. However, it struggles to resolve

the caustic caused by the lamp and teapot on the table. Our algo-

rithm robustly selects the difficult regions and is able to sample

the reflected caustic effectively. The insets show the results of our

Mitsuba/PT 640sppMitsuba/PT 640spp Mitsuba/[Müller et al. 2017] 256sppMitsuba/[Müller et al. 2017] 256spp

PT 640sppPT 640spp guided PT 260sppguided PT 260spp

Fig. 10. Roughly equal time comparison to 2D marginalised guide records
[Müller et al. 2017]. The top row has been rendered in Mitsuba, and the
bottom row in our renderer (on the same machine, one RGB and one spectral).
We normalised run time to 640spp/5 min for next event estimation (left). In
this case the difficult parts of transport are spread all over the scene, so our
method cannot show its full strength by focusing efforts to small areas in
screen space. Factoring in the colour noise from spectral rendering, it yields
comparable benefits over path tracing.

guided PT with outlier removal. For PT there was no outlier removal

otherwise the caustic would be missing completely.

Pool. A scene where the difficult caustic affects a much bigger

portion of the image is the first scene in Figure 13. Here a swimming

pool is illuminated by environment lighting containing a bright sun

which causes intricate caustics on the bottom of the pool. Our guided

PT handles this scene equally well and divides the illumination of

the sun, which is handled by the guided sampler, from the more

uniform rest of the environment illumination that is handled by the

unguided sampler. In all comparisons in Figure 13 we used outlier

removal with the same threshold for both PT and guided PT.

Tumbler. The second scene in Figure 13 contains a complicated

caustic and many small glints on the water surface and the surface

of the tumbler. This scene is challenging since it contains many

direct and indirect highlights. Again the illumination is robustly

divided into a high frequency component for the guided sampler

and a low frequency component for the unguided sampler. After

outlier removal no glints (highlights) remain in the path traced

images whereas our method resolves these small bright features

much better.

Dragon. The third scene Figure 13 shows a glossy dragon in

slightly forward-scattering fog (mean cosine is 0.5) which is illumi-

nated by several spotlights. The surrounding participating medium

complicates the light transport simulation significantly.
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We can observe that the unguided sampler computes more of

the diffusive multiple scattering illumination. The guided sampler

focuses on bright and sharp features such as the indirect glossy re-

flection of the directly illuminated part of the dragon’s wing and the

volumetric illumination from the spot lights. This multi-dimensional

feature is potentially very hard to grasp with 2D guide records. Note

that we cannot show a direct comparison to previous guiding tech-

niques as these do not support participating media.

The bottom inset shows the volume directly in front of one of the

spot lights. Usually a specialised technique, such as equi-angular

sampling [Kulla and Fajardo 2011], is required to sample such re-

gions efficiently. Our guided sampling improves the rendering qual-

ity in these regions significantly and automatically.

LivingRoom. The last scene in Figure 13 shows a living room

which is illuminated from the outside with environment lighting

and two lamps on the inside. The lamps are spherical emitters sur-

rounded by a dielectric cylinder that prevents next event estimation

and causes a high variance for PT. Guided PT focuses on this difficult

illumination which results in less noise especially in the region of

the picture above the lamps. After outlier removal, PT misses much

more energy in this region compared to guided PT.

The insets in Figure 1 and Figure 13 only show versions of PT

and guided PT with outlier removal. Figure 12 shows the full im-

ages of PT and guided PT with and without outlier removal for the

DiningRoom scene as well as the removed outliers. Figure 7 in the

supplemental document shows this comparison for all other scenes.

5.2 Comparison to related work
We compare to the previous work of Vorba et al. [2014] in Figure 9

where we render water droplets on a leaf. We used the author’s

source code available in the rendering framework Mitsuba. This

comparison has to be taken with a grain of salt because of the dif-

ferent rendering environment. We perform roughly an equal time

comparison (4-5 min) by normalising the performance of the two

different rendering systems: we render simple path tracing with

next event estimation at 1024 samples per pixel for both, and give

the guiding algorithms in the corresponding frameworks the same

time. What can be observed from these images is that the 2D caches

struggle with separating the illumination from the constant envi-

ronment map from the diffuse and very small light source present

in this scene. Our guided sampling improves this situation: first,

keeping complete transport paths can easily distinguish between

well-separated light sources. Second, we can sample along guide

paths maintaining the path configuration (reflect or transmit). Third,

we detect that samples landing on a constant environment map have

very little variance and can be handled by the path tracer. Thus the

result is smoother with about half the number of samples per pixel

while using about three orders of magnitude fewer guide records.

In Figure 10 we compare to the work of Müller et al. [2017] in

the Pool scene. We used the author’s source code available in the

rendering framework Mitsuba. Here again, this comparison has

to be taken with a grain of salt because of the different rendering

environments. Considering the additional noise introduced by our

spectral renderer the qualitative improvement over path tracing

with next event estimation is similar for both methods.

In the supplemental document, we compare our method to BDPT,

VCM, and several MCMC methods in a closeup of the DiningRoom

scene, focusing on the caustic and reflected caustic.

5.3 Path length
We visualised light transport paths appearing in a volume caustic

from a specular sphere in an unbounded homogeneous medium

in Figure 11. In this case, guided sampling saves a lot of render

time because it does not generate overly long scattering paths in

uninteresting regions of the path space, as opposed to unguided

sampling. This shows how the guide cache with full paths can make

Russian roulette for path termination unnecessary.

6 DISCUSSION
Discarded ideas. In the course of this project, we explored various,

as it turned out, wrong tracks, but we still want to share these.

Replacing Gaussians during learning by constant disk kernels or

cubic b-splines strongly limits the ability of local exploration due to

the short or non-existent tails of these kernels.

To speed up the search for neighbouring guide paths, we tried

to use a repeated application of a lower dimensional 3D nearest

neighbour search using a BVH, once per path vertex instead of a

monolithic search for the whole path. In the simplistic example in

Figure 6 this might work, but may leave gaps between the guide

paths when these are overlaid by many more undirected diffuse

paths. 3D neighbour search will underestimate the distances, since

many vertices seem close together but belong to paths that are far

apart in other bounces. This will result in more residual outliers

caused by the unguided contributions.

We experimented with photon relaxation-inspired guide path

vertex moving [Spencer and Jones 2013]. However, doing so as

a padded replication of 2D/3D operations breaks the correlation

between bounces and the resulting paths do not transport much

energy any more. We also experimented with high-dimensional

move steps (as often found in sequential Monte Carlo) and resampled

guide paths by using a Metropolis-Hastings update step similar to

PMCMC [Andrieu et al. 2010]. Unfortunately this led to clumping

and was working against the stratification in our selection stage.

These experiences suggest that expectation maximisation-based

fitting of Gaussians [Jakob et al. 2011] also probably does not work

well in this context.

Learning. Our experiments showed that selecting too many new

guide paths in one iteration hinders the exploration: the sampler

requires a few iterations to find the regions of lowest probability

density between existing Gaussians for good stratification. More-

over, irrelevant samples should never be chosen as guide paths and

should be handled by the unguided sampler. In interesting regions

which have already been discovered, adding too many overlapping

Gaussians can lead to poor performance when evaluating the PDF.

All our attempts to “repair” such scenarios with a resampling step

failed. Randomly removing samples from the cache often resulted

in oscillation instead of convergence.
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Outlier removal. Any kind of adaptive sampling (such as guiding)

takes away probability mass from areas that are deemed unimpor-

tant, to favour already discovered interesting areas. This is danger-

ous as it can increase variance in important but undiscovered areas.

To balance this effect, we focus on the surroundings of samples

which cause high variance and thus high mean squared error (MSE).

Consequently, the areas we take probability mass away from have

only minor effect on MSE. We do not introduce worse outliers since

we combine with the unguided sampler via MIS. However, in the

worst case this leads to fewer samples per pixel in the same time

for regions marked as unimportant, increasing variance there. In

such cases simply removing outlier samples often results in lower

MSE (see Figure 12). Note that this effect is found in all adaptive

sampling schemes, also in previous low dimensional marginal guid-

ing systems. This is why Vorba et al. [2014] and similar methods

always apply MIS with BSDF sampling to counteract the effect. For

final renders, we always use outlier removal. Since it is run as a

post-process [Zirr et al. 2018], we can always reconstruct the un-

biased results which are equal to the filtered result if there are no

outliers. Figure 7 in the supplemental material shows results with

and without outlier removal for all our test scenes, except the simple

scenes in Figures 5, 9 and 10 which do not use any outlier removal.

Animations. Though not part of our original scope, we imple-

mented a straightforward adaptation of our method with explicit

inter-frame reuse of guide paths for dynamic scenes (see Section 3.5

and Section 5 in the supplemental material). This is evaluated in

a supplemental video containing non-converged images to show

temporal convergence characteristics. We demonstrate that reusing

caches between frames substantially improves temporal stability

and learning speed. We leave it for future work to thoroughly anal-

yse this approach in a variety of scenes and optimise it for reduced

flickering, fast learning, and balanced exploration of path space.

Complete paths vs. 2D marginals. We explored the possibilities of

caching complete transport paths with all dimensions and their cor-

relations (incoming lighting, BSDF, free flight distance in volumes).

In cases where no such correlation exists (e.g. a diffuse Cornell box

with no complex visibility which is correlated with path length), our

method creates unnecessary overhead. Instead, low-dimensional

caches storing 2D marginals [Vorba et al. 2014] may perform better.

Also we assume that the unguided sampler works well in a signif-

icant portion of the sampling domain. In the VeachDoor scene

(see Figure 6 in the supplemental material) this is not true and all

transport would profit from guiding.

However, 2D marginal cache records do not consider BSDF or

volumes. We are interested in storing reflectance fields, not light

fields. Thus, in general the transport operator is 6D up to 9D. Guo

et al. [2018] recently showed that guidingwith spatial data structures

can be challenging with this number of dimensions already.

We argue that storing the full paths is a well-suited data structure

since it allows us to clearly distinguish between types of scattering

events (reflect, transmit, volume, specular), it encodes potentially

long specular chains, and it sidesteps the clustering problem of

multi-modal GMM: The path space helps discern different types of

incident illumination, so we can use simpler uni-modal Gaussians

and thus never run out of lobes as e.g. Vorba et al. [2014].

cameracamera

volume causticvolume caustic

spot lightspot light

glass ballglass ball

Fig. 11. Path visualisation for a volume caustic scene where a specular
sphere casts a caustic from a spot light (right). The left two pictures show
screen grabs from a 3D visualisation of traced paths, at same scale. Guiding
by complete paths efficiently selects only the relevant paths (middle) out
of the complete set of paths a path tracer (left) would trace. Most of these
paths will carry very little throughput and could be culled by using Russian
roulette, because energy is transported here by paths with five vertices or
less. However, without adjoint information Russian roulette can increase
variance substantially [Vorba and Křivánek 2016].

We showed we can afford to store important paths and we hope

to inspire future work making even better use of the data (e.g. by

jumping between paths using them as low-dimensional marginal

distributions to improve the performance in the VeachDoor scene).

Curse of dimensionality. Usually, the remaining hard-to-sample

part consists of highly directed transport and is effectively low di-

mensional. Areas withmany undirected bounces can cause problems

for our guiding, as Gaussian kernels need to become large to close

gaps in the sampling domain. Fortunately, the unguided samplers

typically perform well in these regions. However, we did encounter

situations with very large Gaussians (and thus slow PDF evaluation),

or gaps which are filled by high-variance unguided paths (as in any

dense, highly scattering medium or in the VeachDoor scene).

Deriving a PDF from many neighbours. One interesting aspect

of our guiding is that, in contrast to MC or MCMC, we can make

data-driven decisions about the sampling spread around a sample.

We found the conditional distribution derived from a 6D covariance

matrix very effective in generating accurate samples from very few

guide paths. In theory, the transport operator should depend on

three path vertices, i.e. the maximum dimension of the covariance

matrix should be 9 × 9. Our implementation assumes that incoming

rays have about the same direction since they are coupled to the

guide path, but extending this may lead to even better results. Ideally

such an approach would incorporate statistics about half vectors,

which may avoid the need to sample the BSDF at all. Our fallback

BSDF sampling uses independent sampling. At least it would poten-

tially be better to use smaller steps in primary sample space by first

deriving the random numbers using an inverse mapping [Bitterli

et al. 2017; Otsu et al. 2017; Pantaleoni 2017].

7 CONCLUSION AND FUTURE WORK
We introduced a new guided sampling technique for light transport

simulation which employs complete transport paths instead of 2D

marginals. This captures diverse kinds of lighting effects and their

correlations, including the BSDF for glossy interactions and free

flight sampling for volume scattering as well as path configuration

(reflect vs. transmit and path length instead of Russian roulette).
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This technique is selective, in that it is used only in the regions of

the path space where an existing Monte Carlo sampler is inefficient.

We automatically detect this sub domain.

This separation into highly directed/high contrast contribution

and diffusive/low contrast parts could be exploited in future work

to derive specialised variance reduction techniques. For instance

the low contrast part could work well with aggressive denoising or

gradient domain path tracing [Kettunen et al. 2015].

The method conceptually differs from Markov chain-based meth-

ods: it derives sampling of a new path frommany input paths instead

of just one current state. This enables us to accurately estimate the

spread of the distribution. Furthermore, using complete paths as

guide records allows us to use simple unimodal Gaussian distribu-

tions instead of complicated clustering, while using significantly

fewer guide records than previous work.

We would like to point out that a newly proposed guide path

does not strictly require a well-defined PDF. Our technique would

re-evaluate a PDF based on the current state of the cache. In other

words, the guide paths need not be generated by an unbiased Monte

Carlo sampler of the path integral. Instead, the cache could be filled

by Markov chains violating the detailed balance condition or by

hand-chosen paths. The latter could be useful to explicitly steer

importance to a key light that is currently being look developed.

Conversely, the guide path cache can be used to visualise the hardest

transport paths in a scene to reveal potential modelling issues.

This new approach comes with new challenges. We propose a

first set of techniques to approach these. In particular, we propose

an iterative path selection strategy akin to particle filters which

finds difficult regions in the sampling domain and keeps rare tra-

jectories in a cache. From this cache, we derive a continuous, high-

dimensional PDF similar to a Gaussian mixture model. We also

present a sampling technique which creates full path samples from

a set of neighbouring guide paths. We expect each of these steps

to improve in the future, such as faster PDF evaluation, or more

accurate sampling from fewer guide paths.
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guided PTguided PT guided PT+DBORguided PT+DBOR removedremoved

PTPT PT+DBORPT+DBOR removedremoved

RMSE 0.0345RMSE 0.0345 RMSE 0.0231RMSE 0.0231

RMSE 0.0435RMSE 0.0435 RMSE 0.1170RMSE 0.1170

Fig. 12. Applying density-based outlier rejection (DBOR) can remove residual spike noise. Doing so removes a lot of energy when the estimator is not able to
handle all features present in the scene. Our guided sampling uses a similar criterion as outlier detection to learn difficult paths, and thus running DBOR on a
guided estimator removes much less energy. In fact removing outliers on the guided estimator leads to a lower root mean squared error (RMSE) here.

Scene total render time learn time guide paths spp RMSE MAE

original outlier removal original outlier removal

PT our PT our PT our PT our PT our
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Table 1. Detailed figures about the comparisons from Figure 13 and Figure 7 in the supplemental document. We list the root mean squared error (RMSE) as
well as the mean absolute error (MAE) with and without outlier removal using DBOR seperately. MAE incurs less severe penalty for spiky outlier noise that
would be removed in realistic scenarios and thus reflects the visual error more closely for our method.
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Fig. 13. Equal-time comparisons of PT and our guided PT. The insets show PT and guided PT with outlier removal and therefore PT misses lighting effects it
can not render efficiently (e.g. caustics). In all scenes guided PT robustly identifies the part of light transport that can not be handled by PT efficiently and
improves upon this using our guided sampling for these parts. As a side effect, we obtain an interesting separation into a smooth/low contrast image (unguided
contribution) and a sharp/high contrast image (guided contribution). Please see Figure 7 in the supplemental material for DBOR/no-DBOR comparisons.
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