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Abstract
Samples with high contribution but low probability density, often called fireflies, occur in all practical Monte Carlo estima-
tors and are part of computing unbiased estimates. For finite-sample estimates, however, they can lead to excessive variance.
Rejecting all samples classified as outliers, as suggested in previous work, leads to estimates that are too low and can cause
undesirable artifacts. In this paper, we show how samples can be reweighted depending on their contribution and sampling
frequency such that the finite-sample estimate gets closer to the correct expected value and the variance can be controlled. For
this, we first derive a theory for how samples should ideally be reweighted and that this would require the probability density
function of the optimal sampling strategy. As this PDF is generally unknown, we show how the discrepancy between the optimal
and the actual sampling strategy can be estimated and used for reweighting in practice. We describe an efficient algorithm that
allows for the necessary analysis of per-pixel sample distributions in the context of Monte Carlo Rendering without storing
any individual samples, with only minimal changes to the rendering algorithm. It causes negligible runtime overhead, works in
constant memory, and is well-suited for parallel and progressive rendering. The reweighting runs as a fast postprocess, can be
controlled interactively, and our approach is non-destructive in that the unbiased result can be reconstructed at any time.

CCS Concepts
•Computing methodologies → Ray tracing;

1. Introduction

Recent advancements in the simulation of light transport using
Monte Carlo (MC) and Markov Chain Monte Carlo (MCMC) ap-
proaches have made photorealistic rendering a lot more efficient.
However, depending on the difficulty of light transport, both suffer
from high variance, leading to unpredictable results with limited
render time. In MC methods, this shows in strong, uncorrelated
noise. Our goal is to provide more stable image convergence with
a focus on limiting the variance for a given sample budget.

High variance, that manifests in so-called fireflies if no effective
estimators are available to sample some high-energy paths reliably,
can easily prevent convergence of a rendering, even when other
light transport phenomena may already appear converged. Such
fireflies produce unpleasant bright spikes on the final result in still
images, and distracting temporally unstable noise in animations.

In our paper, we propose a novel method of identifying and
reweighting such problematic samples, in order to achieve a user-
specified variance level for a given budget of samples per pixel. In
essence, we achieve this by separating samples by their magnitudes
into a small number of framebuffers rather than one. We demon-
strate that carefully constructing and reweighting these frame-
buffers according to few simple formulas suffices to provide users
with an accurate interactive control of the final variance level in
post processing, in order to trade bias with variance.

While our work shares similarities with density-based outlier
rejection [DWR10] who also identify fireflies based on sample
(brightness) distributions, we provide a novel theory for more pre-

cise handling of problematic samples by reweighting. Moreover,
we do not require complicated data structures or storage of individ-
ual sample information, but rather work in constant memory. This
makes our approach simple to implement and also removes some
failure cases of the original outlier rejection technique. Finally, our
theory gives probabilities for the statistical assumptions, both in our
work and previous work, to hold in practice.

2. Background and Related Work

Monte Carlo integration [MU49] estimates the value of a definite
integral with samples xi ∈Ω drawn from a probability density func-
tion (PDF), which, to reduce variance, is chosen as similar to the
integrand as possible (importance sampling).

Path Integral Light transport methods compute a solution to the
path integral that is defined for the measurement contribution func-
tion f (X) [Vea98] over the product surface area measure dX:

I j =
∫

Ω

h j(X) f (X)dX, with dX≡ dµ(X) =
k

∏
i=0

dA(xi).

The path space Ω is the space of all valid paths X = (x0, ...,xk) of
all lengths k ∈ [1,∞) that connect a light source to the sensor via
interactions at vertex positions xi; h j(X) is a pixel filtering function
which is non-zero only for the support of the j-th pixel.

Monte Carlo Methods Path tracing [Kaj86] applies MC in-
tegration to estimate each I j independently by sampling
paths Xi ∼ p j(Xi) starting from the camera where p j(Xi) is a prod-
uct of PDFs for BSDF, light, and lens sampling according to the
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sampling strategy:

I j ≈
1
N

N

∑
i=1

h j(Xi) f (Xi)

p j(Xi)
. (1)

Other stochastic path generation methods start from the light
sources [Arv86] or from both sides with bidirectional path trac-
ing (BDPT) [VG94, LW93] with deterministic connections of sub-
paths. Similarly, many-lights methods [DKH∗14] interpret vertices
of light subpaths as virtual light sources illuminating the scene,
i.e. connecting them to camera paths.

Local Path Sampling In MC-based rendering techniques, paths
are usually sampled according to local PDFs (e.g. BSDF sampling)
yielding path PDFs p(X) = p(x1)p(x2|x1) · · · p(xk|xk−1) which
are not globally optimal. For example, for the last vertex (on the
light source) the local PDF p(xk|xk−1) differs for next event esti-
mation and direct emitter hits.

Clamping and Reweighting Clamping MC samples to a fixed
maximum (user-controlled or material-based [WKB12]) is the
most simple strategy for controlling variance, particularly of
VPLs [Kel97], and is available in most production software. It is
well-known that clamping enforces bounded variance and conver-
gence [KK06, Ion08]. [VGG15] reduce bias by adaptively clamp-
ing outliers to the expected value of fitted Pareto distributions.
[JMD15] try to improve the robustness of MC estimates by com-
puting n lower-sample estimates and taking statistical measures
such as the median of the resulting per-pixel estimate distributions.
DeCoro et al. [DWR10] construct a k-d tree of MC samples based
on their image-space position and brightness, and only accept them
as non-outliers once the sample density in each sample’s neigh-
borhood surpasses a certain threshold. While this is the work most
closely related to ours, we avoid the runtime overhead of neighbor-
hood searches in big dynamically updated sample data structures,
and we analyze and handle problematic samples more precisely,
preventing some failure cases of their binary classification method.

Image Filtering Detecting low-quality samples and processing
them to yield a more pleasing image – typically considering sets
of multiple samples – has been done in various ways, e.g. [SW00,
SKBF12]. For an overview of more advanced noise filtering and
reconstruction methods in combination with adaptive sampling, we
refer the reader to [ZJL∗15]. Although we also reduce noise in
renderings, we do not introduce a new filtering or reconstruction
method. In contrast, our contribution is a theory for identifying bad
samples and a derivation of a factor for reweighting and reliability.

3. Variance Reduction by Reweighting

When using an unbiased Monte Carlo estimator F to sample light
transport through a given pixel, the expected value E[F ] of every
sample is exactly the correct radiance for that pixel. However, de-
pending on the quality of the estimator and the difficulty of lighting
and geometry in the scene, the variance may be high. In particu-
lar, firefly paths – paths with high throughput but low probability
density – often create bright spots in non-converged finite-sample
results: the rare sampling of a path X is compensated by a large
upscaling with 1/p(X).

Notation Description
Ω Space of light transport paths X

X, f (X) Light path X, and its measurement contribution
F An estimator for the rendering equation,

∫
Ω

f dX
N, XN ,Xi Sample count, and set of N samples Xi ∈Ω

E[F ],FN Expected value, and N-sample estimate thereof
Xi, p(Xi) Sampled path Xi, and its sampling PDF

Si Sample value Si =
f (Xi)
p(Xi)

of sampled paths Xi

p∗(X) Ideal PDF where f (X)
p∗(X)

= E[F ] = const.

r∗(Xi) Ratio between ideal and actual PDF, p∗(Xi)
p(Xi)

= Si
E[F ]

r∗(Si) Same, r∗(Si) =
Si

E[F ]
= r∗(Xi), independent of Xi

Fκ Set of “firefly” paths X where r∗(X)≥ N/κ

wκ(X) Reweighting function for paths X ∈ Fκ

Nκ Ω\Fκ, i.e. set of paths X sampled better than Fκ

ES [F ] Conditional expected value on a subspace S:
ES [F ] =

∫
S F p(X) dX/

∫
S p(X) dX

Table 1: Important notation used throughout the paper.

In the following, we analyze the problem of firefly paths in finite-
sample MC rendering. Particularly, we demonstrate that we can
find weights w(X) for reweighting badly sampled paths X that bring
the resulting biased estimate closer to the correct value than an un-
biased estimate (Sect. 3.3). For that, Sect. 3.1 introduces an ap-
propriate criterion for badly sampled firefly paths. In Sect. 3.2, we
show that a finite-sample estimate FN from N samples is always
greater than the expected value E[F ] and thus incorrect, if such fire-
fly paths are among the samples. For further motivation of a precise
handling, we show that general rejection of all problematic paths,
as e.g. done in [DWR10], trivially biases results below E[F ]. Ta-
ble 1 gives an overview of the notation used in our paper.

Spectral Sample Values In our paper, we always assume scalar
sample values Si = f (Xi)/p(Xi). This can be interpreted as both
luminance or one of many independent frequency bands.

3.1. Identifying Firefly Paths

Ideally, paths X would be sampled with an ideal probability den-
sity p∗(X) proportional to f (X), in contrast to the generally sub-
optimal PDFs p(X) of actual estimators. In this case, each sample
would yield the same zero-variance estimate f (X)/p∗(X) = E[F ].
Let r∗ be the ratio between an actual sample value S = f (X)/p(X),
and the constant, ideal sample value E[F ]:

r∗(X) =
S(X)

E[F ]
=

f (X)/p(X)

f (X)/p∗(X)
=

p∗(X)

p(X)
. (2)

Then, for a realizable estimator F with a suboptimal sampling strat-
egy p(X), the finite-sample estimate FN after N samples Xi can be
written as:

FN =
1
N ∑

f (Xi)

p(Xi)
=

1
N ∑

f (Xi)
p∗(Xi)
r∗(Xi)

= E[F ] · 1
N ∑r∗(Xi). (3)

Since p(X) is suboptimal, r∗(X) can get arbitrarily large for some
badly sampled paths X. Therefore, compared to the correct re-
sult E[F ] obtained with ideal sampling, such firefly paths might
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Figure 1: N-sample MC integration of E[F ] =
∫

f (X)dX: The re-
sult is either too high (FN > E[F ]) if firefly paths are sampled, or
too low if not (ENκ

[F ] < E[F ]). We identify firefly paths by their
sampling quality (via r∗) and show how to downscale their contri-
butions (yellow arrows) to obtain a result F ′N closer to E[F ].

increase the result excessively. In particular, as soon as an indi-
vidual sample Si significantly exceeds N ·E[F ] (or equivalently,
r∗(Xi)>>N), FN can never come close to the correct result, even
if all other samples are zero. Note that this does not contradict un-
biasedness of the estimate, since the conditional expected value un-
der the assumption that one such firefly path is sampled may differ
from the unconditional expected value, which is the correct result.
However, we will see that the assumption of sampling firefly paths
is in fact reasonable in many cases. Moreover, since it is unusual
for all other samples to be zero like in our example, it is obvious
that even samples with slightly lower ratios r∗ can still lead to high
variance. Consequently, unlike binary outlier rejection [DWR10],
we build our approach on a continuous criterion for firefly samples.

Firefly Sets We define the generalized sets of fireflies Fκ with re-
spect to a threshold parameter κ, that include more but less prob-
lematic paths with increasing κ, is:

Fκ =

{
X ∈Ω

∣∣∣∣ r∗(X)≥ N
κ

}
(4)

Complementary, we define the set of non-firefly paths with respect
to κ as Nκ := Ω \Fκ. Fig. 1 illustrates Fκ as the area above the
dashed red line. The particularly problematic set of paths in the
introductory example with r∗(Xi)>N, i.e. κ = 1, is denoted as F1.

3.2. Unbiased Finite-Sample Expected Values

In this section, we show that to be able to reconstruct the cor-
rect result from an unbiased finite-sample estimate FN by down-
weighting, we in fact need to assume that we sampled firefly
paths from each nonempty set Fκ. In order to analyze and han-
dle fireflies, we have to refrain from the idealized analysis of ex-
pected values that is generally applied to unbiased estimators. In-
stead, we need to look at actual finite-sample estimates FN com-
puted from a set of N samples Xi ∈ XN ⊂Ω. For the analysis in
this subsection, we re-parameterize the set of fireflies to Fε such
that r∗(X) ≥ N(1 + ε) ∀X ∈ Fε (equivalent to κ = (1 + ε)−1).
Choosing any ε > 0, this allows us to show that unbiased estimates
can potentially become arbitrarily large if Fε 6= ∅.

At least one firefly path We can see that whenever at least one
firefly path is sampled, i.e. XN ∩ Fε 6= ∅, the proper expected
value E[F ] is never included in the possible outcomes, and an
overly bright pixel value has to occur:

FN =
1
N ∑

Xi∈X N

Si =
1
N ∑

Xi∈Nε

Si︸ ︷︷ ︸
non-firefly paths

+
1
N ∑

Xi∈Fε

Si︸ ︷︷ ︸
firefly paths

.

Even when ignoring the contribution of non-firefly paths, we see
that FN is greater than the expected value (with r∗ from above):

1
N ∑

Xi∈Fε

Si ≥
1
N ∑

Xi∈Fε

(1+ ε)N ·E[F ]≥ (1+ ε)E[F ], (5)

thus FN ≥ (1+ε)E[F ] is always greater than the correct result E[F ]
under the assumption that at least one firefly path is sampled.

No firefly paths Conversely, if for any κ ≥ 1 no firefly path from
Fκ ⊇Fε is sampled (XN ∩Fε = ∅) or all are rejected (as in outlier
rejection [DWR10]), we cannot expect E[F ] either and obtain a too
low value (see Appendix A):

ENκ
[F ] =

1
N ∑

Xi∈Nκ

∫
Nκ

S(X) p(X) dX∫
Nκ

p(X) dX
< E[F ], (6)

where ES [X ] =
∫
S X p(X) dX∫
S p(X) dX is the conditional expected value.

Consequently, we want to avoid rejection of samples and minimize
downweighting as much as possible. We will see that on average,
less than κ samples from Fκ occur in each set of N samples XN .

3.3. Reweighting of Firefly Samples

Sect. 3.1 introduced a classification of paths X into firefly
groups Fκ of different “severity”, i.e. depending on κ. We now
show that reweighting firefly paths X ∈ Fκ with a weight wκ(X)<
1, taking into account the total sample count N, generally leads
to more accurate results than the unbiased, unweighted result esti-
mated with a suboptimal sampling density p(X). The probability
of sampling a path from one of these groups can be bounded as:∫

Fκ

p(X)dX
(2,4)
≤

∫
Fκ

κ

N
p∗(X)dX

∫
Ω

p∗=1
<

κ

N
, (7)

that is, out of N samples we expect at most κ firefly paths from Fκ

on average, and base our following analyses on this assumption.
Of course, there is a non-zero probability of sampling more or less
firefly paths, but our basic observations are unaffected by that.

To bring the result of our reweighted estimator F ′ as close to
the expected result E[F ] as possible, we use this assumption that
we sample dκe fireflies, i.e. |Fκ∩XN |= dκe: The N-sample con-
ditional expected value EN

κ [F
′] then is:

EN
κ [F
′] =

N−κ

N
ENκ

[Si]+
κ

N
EFκ

[
wκ(Si)Si

]
. (8)

We can show that for the weighting wκ(Si)=wκ(Xi)=
αN

κr∗(Xi)
, we

can always find a global variable α < 1 that brings this conditional
expected value of the weighted estimator F ′ down to the exact E[F ]
(Fig. 1). Appendix B shows that α depends on the ideal PDF p∗(X)
and the set of firefly paths Fκ, but not the individual path X ∈ Fκ.
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Figure 2: Counting the number ni of samples S j ∈XN with values
similar to Si by evaluating a kernel function K centered around the
value Si (K = 1) and falling off to both sides (until K = 0).

In practice, the ideal density p∗(X) is obviously unknown, and
while the exact α < 1 if Fκ 6= ∅ (Sect. 3.3), we conservatively
set α = 1, which keeps as much energy as possible. This brings
the weighted estimate F ′N in-between the overly large unbiased es-
timate FN and the correct value E[F ].

3.4. Finite-Sample Expected Variances

We now analyze the effect of reweighting on the variance of the
weighted estimator F ′. For this we assume |XN ∩Fκ|= dκe fire-
fly samples as for the N-sample expected value EN in Sect. 3.3.
Analogously, we constrain the variance VS [X ] = ES [(X−E[F ])2]
to samples in subsets S =Nκ and S = Fκ.

Unbiased Estimate The N-sample conditional variance VN
κ [F ] of

the unbiased estimator F , assuming κ fireflies in N samples, is:

VN
κ [F ] =

N−κ

N2 VNκ
[Si]+

κ

N2 VFκ
[Si]

>
κ

N2 VFκ

[
N
κ

E[F ]

]
=

κ

N2

(
N
κ

E[F ]−E[F ]

)2

=
E[F ]2

κ

(
1− 2κ

N
+

κ
2

N2

)
.

(9)

We observe that, as long as there are firefly paths (Fκ 6= ∅), the vari-
ance of unbiased estimates is effectively worse than an arbitrarily
large constant (depending on κ). This means that the image remains
highly unstable and results will be far from converged. Note that
this does not contradict convergence of Monte Carlo Integration,
which is theoretically proven even if variance is unbounded.

Reweighted Estimate Reweighting provides a means to control
the variance of the weighted estimator F ′ with fireflies:

VN
[
F ′
]
=

N−κ

N2 VC
Nκ

[Si]+
κ

N2 VC
Fκ

[
N
κ

Si

r∗(Xi)

]
<

1
N

VC
Nκ

[Si]+
1
κ

E[F ]2.

(10)

The first term is a bounded variance divided by N, thus adhering
to ideal MC convergence, the second is a constant divided by κ,
which equals the variance of a κ-sample MC estimate with tightly
bounded variance (i.e. no fireflies). Thus, reweighting, which is

controlled by choosing κ, allows us to set a constant upper bound
for the variance of the end result.

3.5. Summary of the Analysis

In this section, we showed that MC estimates can suffer from se-
vere variance caused by bounded and unbounded firefly samples,
the latter of which can cause unbiased finite-sample estimates to
become arbitrarily large and thus prevent practical convergence.†

We demonstrated that such samples are needed for a correct result
and can be reweighted to improve the estimate. Finally, reweighting
can be used to bound variance to a user-specified amount.

4. Variance Estimation by Sample Counting

In Sect. 3 we showed how a comparison of PDFs (computing r∗)
can be used to indicate and reweight problematic firefly paths.
Unfortunately, we generally have no way of knowing the ideal
PDF p∗. In this section, we show two complementary ways of es-
timating r∗ for reweighting the sample values Si which we obtain
from sampled paths Xi in a finite sample setXN without knowledge
of p∗(Xi). Note that the individual path Xi that produced Si is irrel-
evant and we use r∗(Xi) and r∗(Si) interchangeably (see Eq. (2)).

In Sect. 4.1 we determine if a sample Si is likely to be in a certain
firefly set Fκ based on the number of samples S j ∈ XN with val-
ues similar to Si (as illustrated in Fig. 2), resembling the approach
by DeCoro et al. [DWR10]. In particular, we provide bounds on
the reliability of such a classification. From that, Sect. 4.2 derives
an estimation of r∗(Si) and corresponding reweighting based on
sample counts. Sect. 4.3 describes a complementary approach to
estimating r∗(Si) based on a comparison of Si to a conservative
estimate of E[F ] that is continuously updated while reweighting.
This additionally recovers some unproblematic darker samples and
results in more uniform noise levels comparable to naïve sample
value clamping, but without its excessive loss of brightness.

While this section might suggest that the storage of full sample
sets XN is required, Sect. 5 details an implementation with mini-
mal runtime overhead and in constant memory bounds; in contrast
to previous work [DWR10, Ion08] it does not require storing any
individual sample values.

4.1. Firefly Classification by Sample Count

In this section, we will see that the likelihood that a sample Si is not
a firefly increases exponentially with the number ni of samples S j ∈
XN with values similar to Si, and that Si most likely belongs to the
set Nni , i.e. κ = ni. Intuitively, paths in Nni = Ω \Fni no longer
harm convergence starting at a total sample count of ni. Fortunately,
we can easily obtain this occurrence count ni of similar samples
from XN , e.g. similarly to DeCoro et al. [DWR10] by applying a
kernel K(S j−Si) centered around Si, where K(Si−Si) = 1 falling
off to both sides, yielding ni = ∑ j K(S j − Si) (compare Fig. 2).
Following these observations, we find weights for all Si by looking
at the definition of Fni in Eq. (4) and setting r∗(Si) to its lower
bound in the set criterion, i.e. r∗(Xi)u N/ni.

† While theoretical convergence is guaranteed for all admissible p(X) > 0
where f (X) > 0, p(X) may come arbitrarily close to 0 and S(X) may thus
be unbounded, trivially destroying any practically obtained mean value.
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We now look at samples Si and analyze into which sets they fall.

Bounded Fireflies Eq. (7) indicates that for any κ, we expect less
than κ firefly samples S j ∈ Fκ where S j > N/κ E[F ]. Therefore, if
we encounter ni ≥ κ samples similar to Si, there is a good chance
from a maximum likelihood perspective that Si /∈ Fκ ⊆Fni (Si is
not a firefly with respect to κ), but Si ∈Nni ⊆Nκ. This begs the
question of how certain this assumption is: Since the samples S j are
independent, each sample has an equal probability less than ni/N
of belonging to Fni and we expect ni’s random variable Ni to be
binomially distributed. Therefore, the chance that the sample Si is
actually a worse firefly than those in Fni can be assessed by bound-
ing the binomial distribution function: If samples like Si occur ni
times even though their paths are actually sampled less sufficiently
than paths inNni by at least a factor β > 1, and belong to Fni/β, the
probability that we find ni or more such samples can be bounded
by the Chernoff inequality (see Appendix C):

P(Ni ≥ ni | Si ∈ Fni/β)≤ β
−ni C(β), (11)

where C(β) is a constant greater than 0 for all β > 1. Consequently,
the probability of misclassifying Si into Nni vanishes with an in-
creasing occurrence count ni of sample values S j similar to Si. We
can confirm the work by DeCoro et al. [DWR10] in that given a κ,
an occurrence count of ni = κ is a good indicator that a correspond-
ing sample Si is well-behaved: It is likely that Si ≤ 2 N

κ
E[F ] and

thus does not destroy the estimate as discussed in Sect. 3.2: The
probability for this is at least 1− 1/2κ. In contrast to their work,
we will only discard fireflies in F1 and find more optimal weights
for the remaining problematic samples.

Unbounded Fireflies Also according to Eq. (7) we expect up to
one sample in F1, i.e. one arbitrarily large sample Si. For this sam-
ple we cannot estimate r∗(Si) as no similar sample exists and thus
ni is always one. Hence we cannot know if it belongs to F1 or even
to any worse Fκ where κ < 1, and thus we cannot come up with
a sensible reweighting and have to discard this sample. For the re-
maining samples, however, we expect smaller values S j ≤ N E[F ].

4.2. Ideal PDF Ratio Estimation and Re-Weighting

Our first approach to estimating the ratio r∗ between the actual
PDF p and the ideal PDF p∗ is based on these observations: We
classify a sample Si as ∈ Nni if we encounter ni similar samples
in Xni . Then, we ensure the necessary reweighting by determin-
ing the ideal ratio estimate as r∗(Si)u N/ni from the set criterion
of Nni , since Si still likely is in less problematic firefly sets Fκ for
some κ > ni. As stated by Eq. 11, these assumptions are reasonable
in a maximum-likelihood sense.

As noted previously, we must expect one potentially unbounded
firefly sample that cannot be reweighted reliably. Also, in case of
small occurrence count ni, the reliability of the classification is low:
If we discard all samples Si where ni does not exceed a minimum
occurrence count κmin, Eq. (11) does not give a strong guarantee
for successfully identifying and discarding all unbounded firefly
samples for low κmin. In practice, we do not want to discard more
than that one sample to retain smooth handling of firefly samples
and thus image quality. Instead, we average the ni of the immediate
neighbor pixels for that decision only, which lowers the probability
of misclassification as if κmin = 9 while keeping κmin = 1.

All other Si can be reweighted by wc(Si) := N
κ

ni−κmin
N = ni−κmin

κ
,

iff ni < κ + κmin, as discussed in Sect. 3.3. We subtract κmin to
smoothly fade in samples as would be the case without any dis-
carding. We can then choose a global parameter κ to control the
variance in our image as analyzed in Sect. 3.4. We denote the cor-
responding ratio estimate based on ni as r∗c (Si) := N

ni−κmin
.

4.3. Value-Based Lower Bounds

While sample occurrence counts provide a good means of detecting
problematic samples, they are over-conservative, treating high- and
low-energy samples alike: if only few similar values are found, they
will be reweighted. Some of these still fit into the variance bounds
of Sect. 3.4 due to their low value. In fact, images generated using
naïve clamping of values to a global maximum that results in com-
parable variance bounds sometimes deviates less from the correct
result in darker regions. However, such clamping completely breaks
high dynamic ranges, leading to a severe overall loss of brightness
in the image (see results Sect. 6.5 and Fig. 9).

Therefore, we would like to compute a less over-conservative
sample weight w(Si) that behaves similarly to naïve value clamping
for low values. In order to quantify low values, we additionally in-
crementally compute a lower bound of the expected value Emin[F ]
from samples during reweighting. According to Eq. (2), this then
lets us derive an upper bound r∗v (Si) := Si/Emin[F ] for clamp-
ing r∗(Si), based on the sample value Si rather than on ni as in r∗c .

To incrementally estimate Emin[F ], we consider our sample
set XN sorted by sample values in ascending order. We then as-
semble our reweighted estimate F ′N incrementally, denoting the
incomplete estimate F ′Ni including all samples up to i as:

F ′N1 =
1
N

wc(S1) S1 =
1
N

N
κr∗c (S1)

S1, (12)

F ′Ni = F ′Ni−1 +
1
N

w(Si) Si, (13)

where w(Si) = N
κ r∗(Si)

. This allows us to continuously up-

date Emin[F ] = F ′Ni−1 for computing r∗v (Si) of every sample Si.
We can then safely use r∗v as a conservative upper bound for set-
ting r∗(Si) = min{r∗c (Si),r∗v (Si)}. Thus, we regain energy that
would be kept by value clamping, while retaining the dynamic
range of reliable high-energy transport.

Note that in contrast to naïve clamping, the resulting variance
is still proportional to the individual pixel values. In cases where
a minimum global variance is acceptable or desired in all image
regions, Emin[F ] can simply be clamped to a minimum value by an
artistic noise level parameter.

5. The Cascaded Sample Count Framebuffer

Previous outlier handling work relies on the storage of sam-
ple sets [Ion08], and complex sample-space tree data struc-
tures [DWR10]. This can incur significant storage and runtime
overhead. In the following, we provide an efficient way of imple-
menting the methods from Sect. 4.2 and Sect. 4.3 with only a small
constant number of framebuffers that is logarithmic in the max-
imum sample luminance. The overhead to the renderer is negli-
gible, since the only change will be splatting each sample to two
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framebuffers rather than to one at a time, and evaluating a simple
weighting formula based on sample brightness. We will see that
this enables us to compute per-sample weights that closely match
our reweighting theory in a simple postprocess, while we are still
able to recover the unbiased result at any time. Note that all pa-
rameters κ, κmin, and Emin[F ] of our approach can thus be applied
to the final renders in real time, enabling interactive tweaking of
image variance and bias.

5.1. Split Sample Splatting

In order to implement the variance estimation described in Sect. 4
and to be able to reconstruct sample counts in post processing, we
split the framebuffer of our renderer into a small constant num-
ber of framebuffers, a cascade, where each framebuffer B j ac-
cumulates samples with brightnesses around the value b j in the
range [b j−1,b j+1]. The base b is a small constant that depends on
the desired precision of variance control; in all our experiments we
use b = 8. The ranges of all B j overlap, and samples are split be-
tween buffers by a specific weighting scheme detailed in this sec-
tion. The total number of required buffers then depends on the max-
imum sample brightness Smax:

j ≤ logb Smax. (14)

While Smax is generally unknown, we assume (multiple) impor-
tance sampling to usually prevent sample brightnesses that ex-
ceed the brightest light source. In our experiments all cascades had
empty B j above that threshold. In cases where local importance
sampling is also suboptimal (e.g. due to complex materials), more
buffers or clamping are viable options. Note that the number of
buffers only grows logarithmically with Smax.

Each sample Si generated by the renderer is then splatted into the
two buffers B j and B j+1 in the cascade it falls into, where b j ≤ Si:

j = blogb Sic. (15)

Before splatting Si into B j and B j+1 it is pre-multiplied by the
weights α j and α j+1, respectively:

α j =
b j/Si−1/b

1−1/b
, α j+1 = 1−α j. (16)

This hyperbolic weighting is basically an interpolation between
buffers B j and B j+1 which splits each sample between the two such
that we can count the number of samples with similar brightnesses
as described in the following, while the sum of all buffers B j still
yields the unbiased result. For j < 0, we simply splat Si fully to B0.

5.2. Per-Framebuffer Sample Counting in Post

As required for the estimation of r∗(Si) in Sect. 4.2, the specific
weights α j allow us to estimate the number of times that samples
of similar brightness have occurred and have therefore been ac-
cumulated in certain buffers B j, even when no individual samples
were stored. This is due to the fact that for any Si, the normalized
sum of its two destination buffers B j and B j+1 (i.e., each divided

by their maximum brightnesses b j ≥ α jSi and b j+1) is:

α jSi

b j +
α j+1Si

b j+1 =
b j/Si−1/b

1−1/b
Si

b j +
1−b j/Si

1−1/b
Si

b j+1 (17)

=
1−Si/b j+1 +Si/b j+1−1/b

1−1/b
= 1. (18)

Let us first assume that all samples Si in a consecutive pair of
buffers B j and B j+1 had the same value. Then, the normalized
sum N B j/b j + N B j+1/b j+1 would simply compute the number
of occurrences ni. We need to multiply by N since our framebuffers
are already normalized with respect to sample count. To handle the
general case of samples with varying values, we use the sum

n j =
NB j−1

b j−1 +
NB j

b j +
NB j+1

b j+1 , (19)

to count the number n j of samples stored in B j with values
around b j (weighted according to a kernel K like in Fig. 2).

5.3. Application to the Handling of Firefly Samples

In the following, we detail three ways of using our practical sample
counting to apply the theory built by the previous sections.

5.3.1. Reweighting (Sect. 4.2 and 4.3 in Practice)

We reweight the samples accumulated in one buffer B j at a time, as
described in Sect. 4. In order to be able to keep track of a conser-
vative estimate of the expected value as described in Sect. 4.3, we
compose the buffers in ascending order of j, i.e. sample brightness.
We use the n j computed for B j to estimate r∗c (B j) for all samples Si
accumulated in B j, substituting ni with n j in the formula for r∗c (Si).

Value-Based Lower Bounds Eq. (19) implies that fully included
sample values may be off by a factor of b, when B j−1 contains
many samples, but B j contains only few. In order to evenly match
the resulting variance to the one caused by the value-based lower
bounds from Sect. 4.3, we also use this maximum sample contri-
bution b j for computing r∗v (Si) = b j/Emin[F ], where we continu-
ously update Emin[F ] with the weighted composition of all preced-
ing framebuffers.

Outlier Rejection In order to reliably identify unbounded outliers
that cannot be sensibly reweighted, we not only compute n j based
only on the individual pixel values in B j, but additionally compute
an average n̄ j over the n j of the immediate pixel neighborhood, i.e.
3× 3 pixel blocks. We use this average n̄ j as a rejection criterion
with κmin =1, and then use the individual n j for reweighting. This
gives us the reliability as if κmin =9 as per Sect. 4.2, while mini-
mizing correlation artifacts and retaining image quality.

5.3.2. Expected Value Estimation (Sect. 3.3 in Practice)

We also provide results that demonstrate the numerical accuracy of
our theory, where we set κ = 1 in order to get as close to the ex-
pected value as possible, and compare the resulting image to a con-
verged reference (Fig. 3b). We find that the reweighted image is in-
deed closer to the reference than the unbiased result, and any other
reweighting with different values of κ. For these experiments, we
adjust the value-based lower bounds for accuracy, rather than even
variance, and use the value r∗v (Si) = b j/Emin[F ] from Sect. 4.3.
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(a) unbiased path tracing 10k spp (b) reweighted: κ = 1 (c) reweighted: κ = 100 (d) adaptive bilateral blur

(e) difference of (a) to reference (f) difference of (b) to reference (g) difference of (c) to reference (h) difference of (d) to reference

Figure 3: Top row: a diffuse torus embedded in glass; bottom row: difference images to an 1.000.000 spp reference. (a) simple path tracing
with next event estimation. (b) the same paths as in a), but reweighted to closely match the expected value as per Sect. 3.3 (κ = 1). Note how
the difference is better than in the unbiased and the aggressively reweighted case. (c) reweighting to enforce bounded variance for a given
sample budget, resulting in darker but noise-free images (κ = 100). (d) using the weights to compute an adaptive radius for a simple bilateral
blur, guided by the reliable samples. This gives smooth and energy-conserving images that resemble those produced by photon mapping.

5.3.3. Use in Image Filtering

By definition, r∗ tells us the value a firefly sample should ide-
ally take. This information can also be used for other purposes
than simple downweighting. For instance, we can also spread the
energy across the local neighborhood with an adaptive filter akin
to [SW00]. For that, we determine the standard deviation of a Gaus-
sian such that the peak value of the filter is exactly our reweighting
factor; the spread of the filter thus automatically adapts to how well
certain phenomena were sampled. Since the spread can be large
and we want to avoid clearly visible bias by blurring over geomet-
ric edges, we employ a cross-bilateral filter, similar to virtual flash
photography [MJL∗13]. We retain energy by normalization using
the masked filter weights. To demonstrate the idea, one result can
be seen in Fig. 3d. Note that noise reduction filters are outside our
core contribution, and we show this as a motivation for incorporat-
ing the information into more sophisticated filtering approaches.

6. Results and Discussion

We implemented our method in Mitsuba [Jak10]. All results were
rendered using forward path sampling with next event estimation
which easily cause a great variety of firefly samples in many scenes,
giving us plenty of opportunity to demonstrate our technique. Note
that our approach is not tied to any specific estimator. Other estima-
tors like bi-directional path tracing also generate fireflies in many
scenarios, which can be handled in the same way.

6.1. Validation of our Theory

In the following we validate the accuracy of our theoretical anal-
yses, both visually and numerically. Fig. 3 shows the torus scene
used in [JM12]. The scene features specular caustics of a small sun
and clear sky light through a refractive glass cube. Caustic paths

µ2/κ 3µ2/κ 100µ2/κ

(a)

ub

(b)

κ=100

(c)

ub

(d)

κ=32

Figure 4: False-color visualization of a naïve 5× 5 pixel window
variance estimate, for (a,b) Fig. 3 and (c,d) Fig. 8. In accordance
with Section 3.4, reweighting scales the variance down to about

1 µ2

κ
of the windowed mean µ, such that it stays below 3 µ2

κ
.

connecting the camera to the sun are therefore rarely sampled, re-
sulting in severe fireflies initially, and strong noise afterwards, per-
sisting for several hundred thousand samples per pixel.

Expected Value Fig. 3 shows results for several methods of
reweighting: The unbiased result (a) differs more from the ground
truth than the reweighted result (b) which brings the individual
pixels closer to the expected value by setting κ= 1. Reweighting
with κ = 100 (c) suppresses the noise of unconverged phenom-
ena by further downweighting, while retaining the energy of well-
sampled phenomena.

Expected Variance We also find that in accordance with our the-
ory in Section 3.4, setting κ = 100 reduces caustic variance down
to 1% of E[F ]2: The corresponding false-color visualization of the
reweighted result in Fig. 4(d) displays its variance compared to the
unweighted result (c). The colors indicate that reweighting reliably
shrinks variance into the range of 1% of the squared local mean.
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(a) 1024 spp Unbiased, RMSE 0.763 (b) 1024 spp Reweighted, RMSE 0.511 (c) 20× Difference

Figure 5: A Bathroom rendered using path tracing: (a) 1024 samples per pixel (spp) unbiased rendering (b) equal-time 1024 sample
rendering using our reweighting of “firefly” samples to bound variance, and (c) a difference image ×20. Given a fixed sample budget,
we can determine a scaling factor by how much each high-variance path needs to be scaled down in order to yield results with a given
variance. Particularly, that variance can be controlled interactively in a post processing step, and we show that our biased method can be
used (Parameter κ = 20) to achieve lower root mean-squared error (RMSE) compared to unbiased results.

 0.1

 1

 10

 0.1  1  10  100
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unbiased
k=1
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k=32
k=32, b=2

k=128
MLT

SPPM

Figure 6: Root mean squared error for different κ and cascade
base b = 2,8 in the bathroom scene; for comparison we show
Metropolis light transport (MLT) [Vea98] and stochastic progres-
sive photon mapping (SPPM) [HJ09].

Handling of Fireflies Fig. 5 shows a realistic example of
physically-based rendering with a lot of glossy, near-specular and
specular light transport, and interior lighting with small light bulbs.
As expected, fireflies caused by rarely sampled specular paths that
would otherwise render the result useless are removed, while more
glossy caustics are retained; the overall noise is reduced.

MSE The corresponding plot in Fig. 6 shows that also numeri-
cally, reweighting can bring images closer to the ground truth. Note
how in accordance with theory, κ = 1 is closest. The graph also
compares results using our common choice of framebuffer cascade
base b= 8 to a finer separation base b= 2, which multiplies storage
cost by three. Note that the quality is not substantially affected.

6.2. Temporal Coherence

As already seen in Fig. 4, higher values of κ reduce variance. This
property is particularly desirable to guarantee temporal coherence
when rendering animations. In order to numerically evaluate the
improvement in stability, Fig. 7 plots the deviations of two identical
frames when rendered with different random seeds. Reweighting
significantly increases the robustness of unconverged results. In
order to see how these numerical results also translate to visually
more stable images, please refer to the supplemental video.

 0.1

 1

 10  100  1000  10000  100000

rm
sd

samples

unbiased
k=1
k=8

k=32
k=32, b=2

k=128

Figure 7: Root mean squared difference using two different seeds
for different κ,b in the bathroom scene. As expected, image stability
is increased by greater values of κ.

6.3. Storage Cost and Performance

We use a framebuffer cascade separation base of b = 8 for classi-
fying samples into framebuffers in all our results except the MSE
plots in Fig. 6, where we also show b = 2 for comparison. None of
our b = 8-based results required more than six framebuffers in the
cascade, which corresponds to a dynamic range of 32.768. An ad-
ditional framebuffer would increase the dynamic range to 262.144.
On an Intel i7-5820K-6-core CPU at 3.3 GHz, we could not reli-
ably measure a performance overhead during rendering and found
it negligible in the standard deviation of timings. The reweighting
was done in real-time in OpenGL shaders on an NVIDIA Quadro
M5000, taking less than 5 ms.

6.4. Effect on Complex Light Transport

Fig. 8 shows the flashlight scene featuring light transport of various
difficulty levels. (a) The small light bulb inside the flashlight causes
high variance for light reflected by the green specular reflector. (b)
Reweighting removes this variance, while the direct illumination
remains unaffected (no glass in front of the bulb). Note how the
green caustic of the reflector is attenuated with increasing distance
and variance. Another small light bulb in the black box on the right
casts soft caustics through the glossy reflector suspended above.
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(a) unbiased (b) reweighted (c) clamping (d) k-d rejection [DWR10]

Figure 8: A flashlight with a small light bulb reflecting off a green-tinted mirror. The scene also features two easier caustics: a specular
reflection (red box) and a glossy bounce light (blue). (a) 10.000 unbiased forward path tracing samples. (b) Same paths reweighted to control
variance (κ = 32), resulting in a darker but stable image. Notice how well-sampled phenomena such as the reflected area light and light
reflected by the glossy diffuser are retained, while fireflies are removed and lamp caustics are attenuated with increasing variance. (c) Naïvly
clamping sample values to 250. (d) Outlier rejection by DeCoro et al. [DWR10] using k-d trees. Their binary rejection criterion badly handles
smooth changes in variance and their 6x6 pixel kernel introduces MCMC-like correlation artifacts.

In contrast to specular caustics, these glossy caustics are sampled
better by next event estimation and reweighting correctly retains
them. Finally, a large area light is reflected by the mirror on the
left. The resulting caustics are sufficiently sampled by forward path
sampling, and reweighting correctly retains them, too.

6.5. Comparison to Related Techniques

Naïve value clamping as shown in Fig. 8(c) yields good results
comparable to ours in dark regions, but naturally fails to retain the
dynamic range in bright regions. Fig. 9 details this loss of bright-
ness by clamping (a,c), which is preserved by our method (b,d).

A comparison to the outlier rejection algorithm proposed by
DeCoro et al. [DWR10] is provided in Fig. 8(d). While variance
is also reduced, their algorithm fails to adapt to the smooth change
of variance in front of the reflector and introduces significant corre-
lation artifacts, due to their naïve use of larger pixel neighborhoods.

6.6. Introduced Bias

Fig. 10 shows very difficult light transport, rendered with a simple
path tracer with next event estimation. Our algorithm (correctly)
identifies most of the samples as firefly paths and thus removes a
lot of the energy, resulting in much darker images. Here, in a way
pure reweighting methods are stretched to their natural limits: high
variance everywhere forces them to strike a balance with large bias.
Smaller κ remove less energy at the price of higher variance.

6.7. Additional Applications

Fig. 3(d) uses the weights computed for κ=32 to determine a corre-
sponding bilateral Gaussian filter radius, as described in Sect. 5.3.3,
instead of downweighting. This partially blurs the results, but con-
serves the overall energy – similar to those produced by consistent
density estimation methods such as Photon Mapping.

7. Conclusions and Future Work

We showed how analyzing the core of the Monte Carlo method
yields detailed knowledge about paths leading to high variance.

(a) clamp (b) κ=32 (c) a)-ub (d) b)-ub (e) c)-b)

Figure 9: Bias introduced by (a) naïve clamping compared to (b)
reweighting, as in Fig. 8. Note the complete loss of dynamic range
in the (c) difference of the naïvly clamped and the unbiased re-
sult. (d) Reweighting preserves the dynamic range. (e) The bias of
clamping is emphasized by the difference to the reweighted result.

(b) 140 spp reweighted(b) 140 spp reweighted

(a) 140 spp unbiased(a) 140 spp unbiased

(d) 5k spp reweighted(d) 5k spp reweighted

(c) 5k spp unbiased(c) 5k spp unbiased

Figure 10: (a) 140 forward path tracing samples, (b) reweighted
with κ=100. (c) 5000 unbiased samples still require reweighting.
(d) 5000 samples reweighted, κ=100. As a simple path tracer per-
forms very badly in this scene, samples are downweighted a lot and
much energy is lost until variance bounds are met.

Even when using a set of estimators with MIS, such paths can oc-
cur if not all important phenomena can be sampled efficiently. By
classifying samples into a cascade of firefly buffers, it is possible
to blend together results with a desired variance at any point. We
built a thorough theory that roots this reweighting in a compari-
son of actual path sampling probability densities to a hypothetical
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ideal estimator. We showed that downscaling firefly contributions
accordingly yields a biased but consistent estimator (κ = 1), which
can converge to the real expected value faster than the unbiased ver-
sion. Optionally, variance can be bounded more rigorously at the
cost of bias (κ > 1). Additionally, we showed an application where
the width of a simple reconstruction filter was estimated by our the-
ory. We believe that this knowledge can be leveraged in the context
of more sophisticated filters and adaptive sampling [ZJL∗15].
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Institute for Theoretical Studies, HITS gGmbH.

Appendix A: Unbiased Finite-Sample Expected Value

We derive the expected value in case that no firefly path is sampled.
In Eq. 20 we plug in E[F ]= f/p∗ and use

∫
N dX=

∫
Ω

dX−
∫
FdX:

EN [F ] =
1
N ∑

Xi∈N

∫
N

f (X)
p(X)

p(X) dX∫
N p(X) dX

(20)

=

∫
Ω

f (X)dX−
∫
F E[F ]p∗(X)dX∫

N p(X) dX
=

E[F ](1−
∫
F p∗(X)dX)∫

N p(X) dX

< E[F ]
1−N/κ

∫
F p(X) dX∫

N p(X) dX
(21)

= E[F ]
1+N/κ (−1+(1−

∫
F p(X) dX))∫

N p(X) dX
(22)

≤ E[F ]
(
−N/κ+1+N/κ

)
= E[F ]. (23)

Appendix B: Optimal Reweighting

In order to determine the optimal α, we re-arrange Eq. (8) for the
conditional expected value EN

κ [F
′] of the weighted estimator F ′:

EN
κ [F
′] =

N−κ

N
ENκ

[Si]+
κ

N
EFκ

[
αN

κ r∗(Xi)
Si

]

= E[F ]

(
N−κ

N

∫
Nκ

p∗(X) dX∫
Nκ

p(X) dX
+α

)
!
= E[F ] (24)

⇔ α =1−
N−κ

N

∫
Nκ

p∗(X)dX∫
Nκ

p(X)dX
≥ 1−

∫
Nκ

p∗(X)dX. (25)

Therefore, α≥ (ideal probability mass of all firefly paths in Fκ).

Appendix C: Variance Estimation Probability Bound

Eq. 11 gives an upper bound for the binomially-distributed proba-
bility of misclassifying samples, based on [AG89]:

F

(
N−ni,N,1−

ni

βN

)
≤ exp

−ND

(
ni

N
‖

ni

βN

) , (26)

D(a ‖ p) = a log
a
p
+(1−a) log

1−a
1− p

. (27)

Since
(

N−ni/β

N−ni

)N−ni
=
(

1+ ni−ni/β

N−ni

)N−ni
≤ exp

(
ni− ni

β

)
, we get:

exp

(
−ni logβ− (N−ni) log

N−ni

N−ni/β

)
(28)

≤ exp

(
−ni logβ+ni−

ni

β

)
≤ β
−ni C(β). (29)

The constant C(β) = 1+ 1/β−1
log β

is greater than 0 for all β > 1 and
monotonously increasing towards infinity. E.g., C(β= 2)u 0.2787.
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