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Figure 1: Equal time comparison (15m): Regular quasi-Monte Carlo light transport (Halton points, left) can be inefficient at exploring local
features such as the caustic in on the iris or the subsurface scattering in the sclera of this eye. Markov chain methods such as Kelemen
Metropolis light transport (KMLT, middle) explore such features better but suffer from clumping artifacts leading to temporal inconsistency
in animation. We propose a local quasi-Monte Carlo integration scheme (LQMC, right) which uses stratified point sets for local exploration
of lighting features, leading to more even convergence.

Abstract
In physically-based image synthesis, the path space of light transport paths is usually explored by stochastic sampling. The
two main families of algorithms are Monte Carlo/quasi-Monte Carlo sampling and Markov chain Monte Carlo. While the
former is known for good uniform discovery of important regions, the latter facilitates efficient exploration of local effects.
We introduce a hybrid sampling technique which uses quasi-Monte Carlo points to achieve good stratification in both stages:
we use the Halton sequence to generate initial seed paths and rank-1 lattices for local exploration. This method avoids the
hard problem of introducing QMC sequences into MCMC while still stratifying samples both globally and locally. We propose
perturbation strategies that prefer dimensions close to the camera, facilitating efficient reuse of transport path suffixes. This
framework provides maximum control of the sampling scheme by the programmer, which can be hard to achieve with Markov
chain-based methods. We show that local QMC exploration can generate results on par with state of the art light transport
sampling methods, while providing more uniform convergence, improving temporal consistency.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

1. Introduction

Physically-based image synthesis is both an important and chal-
lenging task [KFF∗15]. To address this challenge, there are two
main families of sampling methods: Monte Carlo and Markov
chain Monte Carlo methods.

† lorenzo.tessari@kit.edu

These families reflect the duality of the sampling problem, which
essentially consists of two problems to solve: global discovery and
local exploration. Plain Monte Carlo is typically better at global
discovery of local maxima or modes of the integrand. This prop-
erty can even be improved by employing quasi-Monte Carlo sam-
pling [Nie92], reducing the Monte Carlo error.

On the other hand, Markov chain methods facilitate good lo-
cal exploration by adapting sampling density to the target function
without explicit inversion. This is done by keeping a previously
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rank-1 lattice
Markov chain

Figure 2: Illustration how the two-dimensional unit torus (in
analogy to primary sample space) is explored using N = 128
points, both by a rank-1 lattice with generator vector g =
(1,12) [Dam09] and a Markov chain adding uniform random steps
in [−1/

√
N,1/

√
N]. Left: full domain, right: local resampling.

sampled path as the state of the Markov chain, thus using more in-
formation than pure independent Monte Carlo. Often times, how-
ever, this comes at the cost of worse global discovery and strat-
ification of samples, resulting in temporal instability of rendered
frames. Also, Markov chains can be hard to control because of the
iterative nature of the sampling scheme.

This work adds one more technique to the toolbox, which has
properties in between those two: provide good global discovery and
also stratified local exploration, with maximum control by the user.
We achieve this by using regular (quasi-)Monte Carlo path tracing
to sample seed paths, followed by a step where the proximity of
this seed path is explored by using a stratified point set, perturbing
the random number driving sequence in primary sample space. We
show that this results in

• better exploration of lighting effects that are important on the
image (dimensions close to camera, such as depth of field).
• efficient re-use of long paths (similar to virtual point lights).
• good stratification over pixels and improved temporal stability.
• a simple implementation, comparable to Metropolis in primary

sample space.
• maximum control over the sampling process.

2. Background and Previous Work

Light transport Simulating the behaviour of light can be done
by generating transport paths X, essentially a list of path vertices
where photon collision occurs. Along these, the measurement con-
tribution function f (X), can be evaluated. This means computing
the differential flux per all area measures dxi encountered on the
vertices xi.

The rendering equation [Kaj86] computes the pixel intensity
I(p) for a pixel p by collecting this quantity over the path space,
weighted by the pixel filter h(p):

I(p) =
∫
P

hp(X) · f (X)dX (1)

Monte Carlo path sampling, such as bidirectional path tracing
(BDPT) [LW93, VG94], creates a path X distributed according to
a probability density function (PDF) p(X). This process usually

uses s-dimensional, uniformly distributed i.i.d random numbers
u ∈ [0,1)s, for instance by using the inverse CDF method. The
cumulative distribution function (CDF) corresponding to p(X) is
written as P(X) and we will use P−1(u) = X to denote the path
sampling process.

BDPT subsumes a set of sampling techniques t: it samples sub-
paths from the sensor and from the light sources and connects the
two using the path segment t. We will use pt(X) and Pt(X) to de-
note the PDF and CDF of the given technique t, respectively. To
give a correct estimator, all these techniques have to be weighted
together by appropriate weighting functions wt(X), which are best
implemented using multiple importance sampling (MIS) [VG95].

Adaptive sampling To better explore difficult features of an im-
age, often times adaptive sampling is performed, usually in image
space [ZJL∗15]. However, this can be inefficient: a variance buffer
or similar image space considerations will only be able to guide
samples in the first two dimensions of a potentially high dimen-
sional and difficult sampling process. The most part of the path
space sampling has to be performed completely randomly, usually
re-tracing until a light source is found.

To achieve adaptivity in path space, guiding paths by using pho-
ton maps or dedicated guiding records [VKS∗14] has been ex-
plored. This comes at a certain preprocessing and storage cost, and
also needs to evaluate complete transport paths.

Distribution effects such as depth of field or motion blur, or in
general effects which are easily observable because they happen
close to the camera are important, but usually they require us to
trace full paths to the light source. Reusing subpaths can be per-
formed, for example, via trajectory splitting [VK16]. Our technique
does this, too, but in a sense can be seen as adjoint trajectory split-
ting: we split the path at the camera to better explore the pixels in
the image, but without starting at the light source. That is we first
construct a transport path by any sampling means and then explore
it after the fact.

To facilitate high-dimensional adaptive sampling in path space
(i.e. importance sample the integrand which is not possible to invert
directly), Markov chain methods can be used.

Markov chain methods MCMC [MRR∗53, Has70] has
been adopted for light transport in path space (Veach-style,
VMLT) [VG97] and simplified to work on the input random
numbers u instead of the paths directly (Kelemen-style, KMLT or
primary sample space MLT) [KSKAC02].

Several specialised mutation strategies have been devised since.
MMLT [HKD14] selects a technique t from the set of bidirectional
methods to explore by adding knowledge about the MIS weights
into the Markov chain. This resolves the issue that regular Monte
Carlo estimators have when combining an excessive amount of
techniques, where some of those would be inadequate and weighted
close to zero by MIS, wasting computation [KGH∗14].

All Markov chain-based methods usually share the drawback
that they tend to thoroughly explore local regions and neglect
global discovery, leading to temporal flickering.
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Energy redistribution path tracing (ERPT) [CTE05], originally
combined with Veach-style mutations, was the first technique to in-
corporate globally stratified independent samples with short bursts
of local Markov chains. This is currently the state of the art when
combining quasi-Monte Carlo independent samples with local ex-
ploration by a Markov chain. We are devising a technique to per-
form the local exploration via stratified sampling, too.

While this could be achieved with multiple-try Metropo-
lis [LLW00] and general balance methods [ST10], we chose a dif-
ferent approach and are not using Markov chains at all. We com-
pute the conditional probabilities of a dependent sample directly by
replacing the Markov chain by a local lattice rule (see Fig. 2).

Quasi-Monte Carlo extensions For an excellent introduction to
quasi-Monte Carlo we refer the reader to [Nie92]. Quasi-Monte
Carlo point sets can be readily dropped into a light transport pro-
gram by simply replacing the pseudo random number generator.
Local exploration or reordering computation for tiling (for exam-
ple) can be performed via sample enumeration [GRK12]. This
method, however, requires good quality (0,m,s)-nets which are
hard to come by. Also, when moving to higher dimensions (s =
5..10) the number of points quickly becomes a problem due to the
construction of elementary intervals via a Cartesian product. We
need points with good distribution properties where the number of
points N is about in the same range as the number of dimensions s.

There has been work on including quasi-Monte Carlo sam-
pling into MCMC [CMNO10], even on continuous state
spaces [CDO11], using completely uniformly distributed driving
sequences. To gain more control over how many samples are in ev-
ery sequence based on the number of dimensions, we removed the
Markov chain theory from our estimators completely.

Also from quasi-Monte Carlo literature, we will apply Cranley-
Patterson rotations [CP76] to extend a lattice rule with few sample
points to the full continuous sampling domain.

For our purpose, padded replications [KK02] of two- or three-
dimensional point sets could potentially have been adopted. We
opted to use one rank-1 lattice for all dimensions of the perturbation
together instead because it is conceptually simpler to compute one
single multidimensional lattice and has more freedom with respect
to the number of lattice points.

Rank-1 lattices A rank-1 lattice is a s-dimensional lattice with a
one dimensional indexing scheme. To be precise, rank-1 lattices are
defined on the s-dimensional unit hypercube by a generator vector
g ∈Ns, and the j-th lattice point can be written as

r j =

{
j

N
·g
}

1
, (2)

where N is the number of points in the lattice and the braces
indicate a modulo one operation. An example can be seen in Fig. 2
(left, the orange points). An important property for us is that the
Voronoi cells around the points r j are congruential (on the unit
torus). To obtain good generator vectors g in high dimensions, we
use the component-by-component construction scheme [NC06].

Path reuse Most bidirectional methods perform some kind of path
reuse. Sometimes just the vertices of one light path are reused for
all vertices of an eye path [LW93,VG94]. Photon maps cache many
light paths and connect them to all eye paths [HPJ12, GKDS12].
Virtual point lights use extreme caching of very few light paths in
the same context [DKH∗13].

Multi frame rendering [MFSSK06] uses a deterministic offset in
a discrete dimension, to reconnect paths to multiple frame buffers.
Our technique includes this as a single dimension in our pertur-
bation. Moreover, we propose a scheme that works on continuous
dimensions such as aperture position, shutter time, outgoing direc-
tions from secondary path vertices or anything that is represented
by the primary sample space formulation of light transport.

Dependent sampling Manifold next event estimation (MNEE)
[HDF15] solves a related problem as we do when evaluating the
PDF of a perturbed path. The main difference is that in MNEE the
seed path is not an admissible sample. It would be interesting, how-
ever, to include this technique in our framework.

Hero wavelength sampling [WND∗14] also traces a path with a
single wavelength (the hero wavelength) as seed path, and explores
a stratified set of neighbouring wavelengths, by performing an MIS
combination. The theoretical basis of this is the same as what we
use in this work, however it is limited to one specific dimension
(wavelength). The extension to arbitrary dimensions comes with a
few challenges we will address in the following. Hero wavelength
sampling is a one-dimensional subset of the technique we propose.

Gradient domain path tracing [KMA∗15] constructs shifted
paths through neighbouring pixels. To be able to use the contribu-
tion of these dependent paths, it accumulates the seed and the offset
path into a separate buffer, in form of a gradient. This gradient is
used in a post process solving a Poisson equation to reconstruct the
final image. The dependent samples we are using are very similar in
spirit but our framework provides more freedom for sample place-
ment: we are not bound to a tensor product construction (enumerate
all neighbouring pixels) and can thus use any number of samples
for the local exploration. We can also explore every dimension of
path space without requiring to solve a Poisson problem on it later.

3. Stratified Local Exploration

In this section, we describe a sampling technique which will be
called local quasi-Monte Carlo integration (LQMC) in this paper.

Outline A Markov chain creates correlated samples by consider-
ing a very small state space (the current path sample Xs only). We,
on the other hand, define a local region in path space around the
current path, which will be sampled by a set of stratified sample
points directly. These points come from a quasi-Monte Carlo lat-
tice rule, i.e. have very good properties with respect to minimum
distance between the samples, which avoids clumping artifacts of-
ten encountered in Markov chain methods (see Fig. 2).

Although we use a deterministic lattice rule to offset the points in
primary sample space, we interpret the offset from the seed path to
the closest point in the lattice as a Cranley-Patterson shift [CP76],
which allows us to sample the complete continuous domain.
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The formal framework to derive a correct Monte Carlo estimator
given this set of dependent samples is multiple importance sam-
pling. To illustrate the idea, let us consider a case where we will
explore all dimensions s of a path across the full domain size. We
will extend this to adaptive dimensionality s̄� s and local explo-
ration in the next sections.

Full perturbation of all dimensions Every path Xi is a member
of a fixed set of paths R =

{
X0, · · ·Xi · · · ,XN−1

}
related to a rank-

1 lattice (we will use subscript i for a specific path and j for any of
those). This set is determined by considering the primary sample
space location us of the seed path Xs ∈ R. We find the closest lattice
point rs of a rank-1 lattice of choice which has the same number
of dimensions as us (again, we will lift this restriction later). The
primary sample space coordinates u j 6=s of the other N−1 paths are
then determined by the lattice points r as

u j = r j +(us− rs). (3)

Here, we can interpret the offset (us− rs) as a Cranley-Patterson
shift. The transition to every dependent sample X j 6=s from Xs is
thus deterministic in primary sample space. In general, the PDF
p(Xi) of a path sample Xi after one step of perturbation can be
computed by a marginal integral:

p(Xi) =
∫
P

p(Xi|Xs) · pt(Xs)dXs, (4)

where pt(Xs) is the PDF of the technique we use to generate the
seed sample Xs. The deterministic conditional PDF of sampling
any member of the set R is known in primary sample space mea-
sure du

pdu(ui|us) =
1
N

N−1

∑
j=0

δdu(ui− (r j +(us− rs))) (5)

=
1
N

N−1

∑
j=0

δdu(ui−u j). (6)

Note that us does not appear on the right hand side: the connection
between us and u j in this equation is that they both belong to the
same set R, i.e. us implicitly appears as one element of the sum on
the right hand side. To obtain a PDF in vertex area measure, we
need to evaluate the Jacobian determinants:

p(Xi|Xs) =

∥∥∥∥ dui

dXi

∥∥∥∥ · 1
N

N−1

∑
j=0

δdu(ui−u j) ·

∥∥∥∥∥dX j

du j

∥∥∥∥∥ . (7)

Due to the Dirac delta δdu, the integral in Eq. (4) reduces to a sum:

p(Xi) =

∥∥∥∥ dui

dXi

∥∥∥∥ 1
N

N−1

∑
j=0

∥∥∥∥∥dX j

du j

∥∥∥∥∥ pt(X j). (8)

This also degenerates gracefully for the special case of i = j when
the index i matches the seed sample s in set R. Finally we compute:

Ii =
wt(Xi) · f (Xi)∥∥∥ dui

dXi

∥∥∥∑
N−1
j=0

∥∥∥ dX j
du j

∥∥∥ pt(X j)
∀ Xi ∈ R (9)

for all Xi ∈ R and accumulate these N contributions to their respec-
tive pixel locations. Here, wt(Xi) represents the MIS weight for
sampling the perturbed path Xi. Note that the factor 1

N in Eq. (8)
cancels out with the normalisation over all N sample contributions.

Figure 3: Left: a point set which is not a lattice cannot be used
in our framework, since it does not reproduce consistent Cranley-
Patterson shift vectors due to Voronoi cells which are not congru-
ential. Right: A lattice fulfills these requirements.

We will derive the Jacobians for the early-reconnection strategies
we use in practise in the next sections. Using this sum of PDFs to
derive the estimator equates to the balance heuristic [VG95]. Note
that this is very similar to the formalism used in multi frame ren-
dering [MFSSK06] and hero wavelength sampling [WND∗14, Eq.
(6)], only that our approach works for both discrete dimensions (for
instance frame buffer selection) as well as continuous ones (aper-
ture position, time, or outgoing directions).

A note on lattices Ideally, we would like to have the freedom to
choose any point set for the local exploration. One reason why we
use rank-1 lattices is that they allow us to circumvent the curse of
dimensionality that would come with Cartesian product construc-
tion: we can choose N independent of dimension s̄. Another impor-
tant aspect is that they allow us to find the Cranley-Patterson shift
by simply searching for the closest point in the lattice from the seed
path coordinate: the shift will be the same when recomputing it for
a different seed path which is a member of the same set R. This is
because the Voronoi cells around each rank-1 lattice point are con-
gruential. Compare the two point sets illustrated in Fig. 3: In the
left set, two points in the shifted set R (marked as blue circles) will
find the same closest lattice point (empty circle) because they are in
the same Voronoi cell. This will result in an inconsistent Cranley-
Patterson shift (the orange and blue arrows do not agree). In the
right set, all members of the offset lattice agree on the shift after
finding their closest unshifted lattice point.

3.1. Enforcing subpath reuse and locality

Tiling the s-dimensional domain and sampling all individual tiles
via a lattice rule will eventually fill the full domain with lattice
points. In Fig. 4, this corresponds to stacked copies of the orange
region until the whole domain (along the y-axis in the figure) is
filled. Likewise, the orange region will span all the way to the right,
if we are exploring all dimensions of the sampling domain.

Our approach makes sense only because of two additional as-
pects: a) we only explore a subset of dimensions s̄� s to facilitate
path reuse, by breaking the path into a static part and one that is
to be explored (see Fig. 5). And b) we want to achieve high MIS
weights (similar to acceptance rate in MCMC) by increased local-
ity of the samples within the same set R. As a side effect locality
helps memory accesses and speeds up memory-heavy renders.
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Figure 4: Parallel coordinates visualisation (akin to [Kaj86, p.
148]) of path space and the subdomain we explore by a lattice rule
(orange). To increase locality, we aim for both small s̄ and small
tile size (vertical size of the orange region in the illustration).

Figure 5: Illustration of exploring the first dimensions using a lo-
cal rank-1 lattice. Top: simple case where only a few dimensions
are needed (wavelength, time, subpixel, aperture position and pixel
coordinate). Bottom: more complex example with paths that en-
counter near-specular events. The subsurface scattering subpath
through the bunny is reused in both cases.

Sub path reuse We want to only explore a small subset of di-
mensions s̄ � s, corresponding to a lower dimensional vector
of random numbers in primary sample space ū. To this end,
we choose a breakup point xb from the path vertices (similar
to [KMA∗15, HKD15]). To maximise path reuse, it should be as
close to the camera as possible (see Fig. 5).

We start to number vertices at the camera, so b = 0 means we
reconnect only to a perturbed position on the camera. This can
include dimensions for wavelength, aperture position, time, and
frame buffer in case of multi-frame rendering (s̄ = 5). In case b = 1,
the first point in the scene is perturbed, too, which includes up to
three additional dimensions in the lattice (s̄ = 8): sensor position,
which results in a changed outgoing direction, and distance for free
path sampling in the medium, if applicable. Every following ver-

tex will consume up to three additional random numbers: two for
outgoing direction if the material is not specular, and one for free
path sampling, if the connecting edge is in the volume. We do not
change the random numbers of the seed path responsible for Rus-
sian roulette or BSDF layer selection.

The Jacobians in Eq. (8) are computed as follows. In simple
cases, such as for a breakup point b = 0, perturbing the path ver-
tex on the aperture, both primary sample space and path space are
equally distributed and the Jacobians are not necessary. In the other
extreme, when resampling all dimensions, i.e. if s̄ = s, the Jacobian
from primary sample space to path space is just the PDF of the pri-
mary path sampler

∥∥du/dX
∥∥ = pt(X) and Eq. (8) becomes, only

for this special case

p(Xi) = pt(Xi) ·M, if s̄ = s, (10)

where M ≤ N is the number of paths X j in the set with pt(X j)> 0.

Analogously to how the PDF of a complete path defines the Ja-
cobian from primary sample space to path space, we are interested
in computing this density transform only up to the breakup point
xb, i.e. we compute the Jacobian for the subpath X̄ that is defined
by the subset of the random numbers ū:∥∥dū/dX̄

∥∥= pt(X̄). (11)

We require that this subpath be constructed from the eye, such that
it can be recomputed from ū (and the additional fixed random num-
bers for Russian roulette and layer selection, as mentioned above).

Locality To force the perturbed samples to be spatially close to-
gether, we use an implicit tiling of the primary sample space and
make sure a perturbation stays within this s̄-dimensional tile. For-
mally, we define a function that maps a primary sample space point
ū to the normalised space of the tile containing ū. The coordinates
[0,1)s̄ will only address the tile in question (Fig. 2, right):

T : ū 7→ (ū−o)/k, (12)

where all operations are performed component-wise. Since the tile
offset o is chosen such that ū is contained in the tile, T (ū)∈ [0,1)s̄.
The number of tiles per dimension k ∈Ns̄ is a user parameter (we
will discuss the impact and possible choices later).

3.2. Algorithm

The core technique is laid out in Alg. 1. As input, it requires the
random numbers u and the technique t to construct the seed path
from. This listing assumes a pre-selected rank-1 lattice configura-
tion. That is, the breakup point b has already been chosen for this
type of input path, determining the adaptive dimensionality s̄. Also
the tiling parameters k are fixed, so we can evaluate T (.), and the
number of points in the lattice N is known. We can thus select a
rank-1 lattice from a set of precomputed generator vectors.

First, we determine the index i of the rank-1 lattice point which
is closest to the truncated random numbers ū, transformed to tile
space T (ū). After that, we iterate over all N points in the lattice and
compute the random number vector u j by applying the Cranley-
Patterson shift in tile space and backtransforming to primary sam-
ple space (line 7). From these, we can create a new path prefix X̄ j
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which is then reconnected to the static postfix of the seed path (con-
necting the breakup point xb to xb+1, if the path has any more ver-
tices left after the breakup point). To accumulate the final contri-
bution of the path, we need to evaluate Eq. (8). For this we first
accumulate the sum into ps and then run the loop again to compute
the final contribution value.

In theory, any path sampling technique t can be used as seed
sampler. The only requirement in this formulation is that it pro-
vides enough random numbers for a path tracing prefix up to the
chosen breakup point. We could lift this restriction, however, by
applying a reverse mapping in an initial step to obtain the random
numbers [Pan17].

Note that if the seed sampling technique t handed to Alg. 1 is
combined with others in an MIS context, the individual contribu-
tions of the perturbed paths have to be weighted accordingly. This
is done by the multiplication by the MIS weight wt(X j) in line 15.

Algorithm 1 Local quasi-Monte Carlo sampling
1: procedure SAMPLE(u, t) // random numbers and technique
2: // get index of closest lattice point in tile determined by ū
3: i← argmin j ‖r j−T (ū)‖
4: ps← 0
5: for j = 0..N−1 do
6: // create offset sample, modulo tile containing ū
7: u j← T−1

({
r j +(T (ū)− ri)

}
1

)
// Eq. (3) on tile

8: // create path prefix from random numbers
9: X̄ j← P−1

t (ū j)
10: X j← reconnect X̄ j to static path postfix
11: J j←

∥∥dū j/dX̄ j
∥∥ // collect parts of Eq. (8)

12: ps← ps + pt(X j)/J j
13: end for
14: for j = 0..N−1 do
15: splat path X j with wt(X j) · f (X j)/(J j · ps) // Eq. (9)
16: end for
17: end procedure

3.3. Performance considerations

Adaptive number of samples Local exploration without adaptive
choice of the number of samples N would just amount to a reorder-
ing of computations. While this can be useful, our technique shows
much more benefit when dynamically choosing between a set of
rank-1 lattices with different sample count N for different tiles.

While we would like to pick the number N stochastically, this
would lead to a more complex computation of the marginal PDF:
we would need to recreate all possible seed paths of all lattices that
may be connected to a certain sample path.

We can, however, choose N based on a class of paths. All paths
in the set R must fall into the same class, such that all of them,
if used as seed path, will decide for the same number of lattice
points N. This is very similar to the degrees of freedom we have
when choosing the number of mutations for ERPT: in both cases
perturbed paths which fall out of the class need to be rejected.

Adaptive dimensionality As pointed out in Sec. 3.1, we want to
facilitate efficient subpath reuse and thus in general choose s̄� s.
We want to make the choice stochastic: to sample b, we build a
CDF based on the roughness of the vertices xb and xb+1.

Explore only if needed Some paths have low variance contribu-
tion and are acceptable to be accumulated to the frame buffer di-
rectly. In simple cases such as three-vertex paths with next event es-
timation which are in focus, we avoid local exploration altogether,
speeding up the render (see the next section for details).

3.4. Implementation Details

Jittered tiling Exploring each tile of the truncated primary sam-
ple space with a separate lattice rule may lead to visible changes in
noise characteristics at tile boundaries (see Fig. 6, left). Also, as-
suming that image features are locally Gaussian in shape, using a
fixed tiling pattern does not guarantee a good windowing of such a
feature, since it may be cut off in the middle. For these reasons, we
apply a global shift vector to the tiling pattern, which is randomised
after every progression in the render (i.e. after realising one sam-
ple per pixel). This s̄-dimensional offset is ∈ [0,1/k). Intuitively,
this corresponds to shifting the vertical bounds of the orange box
in Fig. 4 up and down for every dimension individually, resulting in
a first-order b-spline smoothing (applying two random shifts would
be second order [SSA05]). See Fig. 6 (right) for the effect of this
smoothing.

Seed sampling To drive the seed sampling, we use the Halton se-
quence (as implemented by [GRK12]) up to 256 dimensions and
apply the Mersenne twister after that. While it is easily possible to
create adverse effects by combining multiple different quasi-Monte
Carlo point sets, we did not observe any bad correlation artefacts
coming from this. We believe this is due to the almost random na-
ture of the Halton sequence and the fact that we use them in the
context of a Cranley-Patterson rotation.

Local sampling We precompute rank-1 lattice generator vectors
using the Matlab code provided with the component-by-component
construction [NC06] for N = 7,23,97 and 313, each for s̄= 1 . . .21.
To find the closest lattice point (as required by line 3 in Alg. 1) we
perform a brute force search with early out per dimension. This pro-
cess may potentially be sped up using a reduced Minkowski basis,
as done for 2D textures [Dam09]. This has not been a performance
concern for us. For instance, in the door scene using N = 313, the
closest point search amounts to 0.21% of the runtime).

Parameters To determine the parameters for LQMC, we first clas-
sify transport paths into four categories: normal, caustic, depth of
field, next event estimation. Caustic paths are detected by a (near)
diffuse interaction followed by a (near) specular chain towards the
light source. Depth of field is selected if the first vertex in the scene
is out of focus, determined by the circle of confusion of the camera
and a threshold value. If the seed path sampling technique success-
fully used next event estimation, we are very careful not to explore
the sample (except for depth of field and complex cases such as the
door scene).

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



L. Tessari, J. Hanika, C. Dachsbacher / Local QMC Exploration

Figure 6: Effect of jittering the tiling pattern. Left: without, right: with jittering enabled. While the left image does converge to the right
solution, the noise differences at tile boundaries may remain visible for a long time without jittering and show objectionable shower door
artefacts in animations (since the tile boundaries would stay in the exact same spot, distracting from the image content).

To choose the breakup point b (and determine the truncated di-
mensionality s̄), we construct a CDF based on the minimum rough-
ness of the path vertices xi and xi+1, for all inner vertices xi. Depth
of field paths will have a higher probability to connect to b = 0 and
caustic paths will have a high probability to connect only after the
specular chain, which often means b is the end vertex of the path
on the light source. This case means our technique degenerates to a
full multichain perturbation or KMLT seeded by plain path tracing.

In this first implementation of LQMC, we also use these cate-
gories to determine tile sizes and sample counts. Our strategy to
select tile sizes roughly corresponds to the mutation step sizes per
dimension in our implementation of KMLT. Normal paths divide
the aperture dimensions into 2× 2 tiles, the image plane into 24
tiles in width and a value corresponding to this and the aspect ra-
tio in height. The wavelength domain only uses one tile, and thus
always mutates in the full spectral range. We divide the outgoing
direction into 50–150 tiles depending on whether the path has been
classified as caustic or not. Remember that tile space is in primary
sample space and actual outgoing directions will be computed by
importance sampling the BSDF. Caustic paths also use a finer sub-
division of the image plane, we use 48 tiles here. Distances in par-
ticipating media are explored in very small steps, for our renderings
we use 1000 tiles in this dimension.

As for sample counts, we use N = 23 for normal and depth of
field paths, while caustics receive an increased sample count of N =
97. The ajar door scene shown in the results uses a fixed N as
indicated in the figure.

4. Results

Fig. 7 shows a simple diffuse scene to illustrate the effect of ex-
ploring dimensions one by one, including wavelength [WND∗14]
as a subset, as well as camera motion blur. The latter is essen-
tially multi-frame rendering [MFSSK06] on a continuous scale,
we could have connected to a different frame buffer just the same.
Note that our current implementation only supports camera motion
blur. Moving geometry would require to ray trace all path segments
again, to keep visibility consistent.

Fig. 8 is the classic ajar door scene featuring difficult visibility
between the light source in one room and the camera in another.
Our technique, though very simple, delivers output of quality com-
parable to top-of-the-line rendering algorithms. It manages to ef-
ficiently reuse path postfixes to the light source and explore them
close to the camera. We use N = 313 in this render and pick the
breakup point 1≤ b≤ 4, depending on the surface roughness. Due
to the large dynamic range of this scene the plain root mean squared
error (RMSE) values were dominated by few bright pixels, and we
report the mean of absolute differences (MAD) instead.

Fig. 9 shows a scene with heavy blur due to depth of field.
LQMC splits the seed path trajectory at the camera and reuses long
transport paths efficiently.

Figs. 1 and 10 show a difficult sampling configuration: The caus-
tic on the displaced iris make uniform exploration of the path space
very hard for all techniques. This is easier to see at low sample
counts, where pure MC methods have problems finding the right
configuration and MCMC remains stuck with clumping artefacts.
Our simple heuristic is able to detect caustic paths and increase N
to better explore the local feature, while adjusting the tile sizing
accordingly. This allows us to obtain a visually pleasant image and
a low RMSE even from the start of the computation. Fig 11 shows
the sample density of LQMC. It finds the important regions of the
image, while keeping overall stratification. Note that the eye scene
is using non-reciprocal BSDFs both on the skin and the sclera, so
no bidirectional methods are demonstrated here.

Fig. 12 demonstrates a volumetric caustic. In this setting sam-
pling benefits from light tracing, all relevant parts of the path space
are well explored by this technique (as is evident from the bidi-
rectional methods BDPT and MMLT [HKD14] in the picture). We
show that, even starting from a bad sampling strategy (plain path
tracing in our case) LQMC is able to reconstruct and search impor-
tant regions that dominate the integral.

To evaluate temporal stability, we provide a video with equal
time comparisons of unconverged renders of the depth of field test
scene and the eye as supplemental material (for each scene looping
ten identical frames with different random seeds).
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Halton (input) DOF + wavelength + time reference

Figure 7: Simple diffuse test scene to demonstrate distribution effects. Left to right: input Halton points, aperture only (s̄ = 2) shows circles
of confusion in the same colour dictated by the constant wavelength, hero wavelength and depth of field (s̄ = 3), all that plus time (s̄ = 4).
This scene is dominated by direct light, so we do not demonstrate outgoing direction here. All images use 8 spp and N = 23.

KMLT 2235 spp, MAD 0.7683KMLT 2235 spp, MAD 0.7683 VCM 917 spp, MAD 0.6164VCM 917 spp, MAD 0.6164 VMLT 4000 spp, MAD 0.3821VMLT 4000 spp, MAD 0.3821

LQMC N = 23, 2483 spp, MAD 1.0601LQMC N = 23, 2483 spp, MAD 1.0601 LQMC N = 97, 2514 spp, MAD 0.8702LQMC N = 97, 2514 spp, MAD 0.8702 LQMC N = 313, 2379 spp, MAD 0.7150LQMC N = 313, 2379 spp, MAD 0.7150

Figure 8: Equal time comparison in the ajar door scene (roughly 17 core hours on an Intel Xeon 2.50GHz). VCM used 70MB of additional
memory for the photon map. We used N = 23,97,313, which means that for every successful sample in the 2379 samples per pixel, LQMC
does N reconnections to the camera. Due to locality and reuse of computations, these are relatively cheap to evaluate. More local exploration
can more efficiently reuse long transport paths in this scene, but also make rank-1 lattice structures show more. Because of high dynamic
range and firefly outliers, we report the mean absolute deviation (MAD) as error measure for this scene.
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BDPT, RMSE 1.358BDPT, RMSE 1.358 VMLT, RMSE 0.666VMLT, RMSE 0.666 KMLT, RMSE 0.713KMLT, RMSE 0.713 LQMC, RMSE 0.527LQMC, RMSE 0.527

Figure 9: Three rough translucent teapots with shallow depth of field (equal time comparison after one minute). LQMC is able to efficiently
reuse the subsurface scattering paths through the teapots by early reconnecting them to the aperture. We recommend looking at the images
electronically on screen.

Halton, RMSE 0.7584Halton, RMSE 0.7584 ERPT, RMSE 0.3484ERPT, RMSE 0.3484 KMLT, RMSE 0.5541KMLT, RMSE 0.5541 LQMC, RMSE 0.3368LQMC, RMSE 0.3368

Halton, RMSE 0.0963Halton, RMSE 0.0963 ERPT, RMSE 0.0923ERPT, RMSE 0.0923 KMLT, RMSE 0.0875KMLT, RMSE 0.0875 LQMC, RMSE 0.0440LQMC, RMSE 0.0440

Figure 10: An eye with difficult caustic paths and displacement on the iris. Left to right: path tracing with next event estimation, ERPT,
KMLT, local quasi-Monte Carlo (LQMC, ours), all images are equal time. Top: one minute, bottom: one hour. Our stratification pays off
from the start of the rendering process.

Figure 11: LQMC sample density on the eye scene after 160 spp: it adapts to the brightness, exploring the most important regions of the
image. Left to right: caustic paths, all other paths, both combined. Circular splats correspond to breakup point b = 0, square splats to b = 1,
higher ones are decorrelated and have a randomised pattern. Images have been gamma-mapped for display.
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BDPTBDPT MMLTMMLT ERPT/multichain from eyeERPT/multichain from eye LQMCLQMC

Figure 12: In an infinite, homogeneous participating medium, a directed, coloured beam of light is refracted through a smooth dielectric
sphere (equal time renders, 15 minutes). This scene is well handled by light tracing, and MIS robustly detects this for both Monte Carlo
(BDPT) and Markov chain Monte Carlo (in particular, here: MMLT [HKD14]). The two other techniques here (ERPT and LQMC) use
only a uni-directional technique from the eye, always tracing up to the light source. Even starting with suboptimal sampling, our technique
manages to reconstruct the important features of the path space.

5. Discussion and Future Work

Lattice structure As N increases, we start to see lattice struc-
tures in the render (see Fig. 8). A possible workaround might be
to scramble the rank-1 lattice dimensions by randomly permuting
the mapping from primary sample space to rank-1 lattice dimen-
sions. It may also be possible to exploit the clear structure to guide
reconstruction filters.

Trade-offs compared to Markov chains Temporal stability is
governed by stratification over image plane, but the overall sam-
pling efficiency is governed by the acceptance of samples (i.e. it
depends on a large MIS weight): larger tiles stratify better, smaller
tiles lead to higher weights. This is similar to Markov chain-based
methods, only that small step sizes there can lead to clumping ar-
tifacts and large step sizes may lead to uncontrolled fireflies due to
stuck chains. In contrast, in our setting the magnitude of the seed
sample is fixed. In the worst case, when tile sizes are much too
large, the seed path will stand as a single, unexplored Monte Carlo
sample and some computation will be wasted.

One difference to Kelemen Metropolis is when the exploration
takes place. In standard Kelemen MLT the mutation is done on the
whole group of paths in case there are bifurcations (such as for
bidirectional path tracing or next event estimation in combination
with forward scattering). In our current implementation we perform
the perturbations every time a complete path is found, i.e. each time
a full contribution would be added to the pixel. This can yield better
exploration results but comes with a speed impact due to the large
number of these splat events. On the other hand, we don’t explore
paths which are classified as simple, and we don’t always need to
re-trace the whole path, leading to more efficiency.

Parameter choice Gaining control over the sampling process is
a double-edged sword: Taking away automatic mechanisms from
the Markov chain means we need to actively decide for exploration
strategies, which leads to a larger set of parameters to tweak. We
have many possibilities when to explore a path more, given that
the classification can be done as a group decision on the set R. We
can pick tile sizes, breakup points, and number of samples N based
on surface interaction type (transmit vs. reflect) or based on tagged

geometry, for instance. This is very flexible but it may be possible
that future work will find general ways of adapting sampling in this
framework, similar to what was done for KMLT [ZSK13] or, based
on ray differentials, for VMLT [HKD15].

Bidirectional path construction Our current implementation re-
quires the path prefix to be perturbed to be constructed via path
tracing from the eye. Using full generic bidirectional techniques
would be possible, too, by first computing the corresponding ran-
dom numbers from the path using the CDF [Pan17].

Conversely, if desired, the proposed technique also works purely
uni-directionally by just tracing rays from the eye. This may make
implementations in production environments easier, where some
tricks result in non-reciprocal BSDFs or smoothed surface rough-
ness for bounces far away from the eye, or where texture lookups
or level of detail selection depend on pixel footprints from the eye
which are yet unknown when starting at the light source.

6. Conclusion

We presented a simple technique that yields considerable qual-
ity improvements over plain Monte Carlo sampling by adding
in purely deterministic local exploration. Even in hard scenes it
reaches similar levels of quality as the best state-of-the-art algo-
rithms (for instance VMLT or VCM in the ajar door scene). At the
same time, it is simple to implement and to control, and no addi-
tional memory is required. We showed how this framework sub-
sumes previous work such as hero-wavelength sampling and path
reuse for multi-frame rendering. As future work, we think lifting
the restriction on the regular lattice structure will be important, as
well as automatic means to adapt tile sizes and sample counts to
scene features.
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