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Figure 1: Heterogeneous emissive volumes are a challenging form of light source. The images show an equal-time comparison of an explosion,
in two versions that differ in overall density. The thin version (left, 10min) greatly benefits from a line integration estimator that accumulates
emission for path segments and not only at path vertices. In addition, we propose a next event technique called forward next event estimation
(FNEE) that samples the length of next event segments proportional to transmittance. This prevents long segments that do not contribute to the
final image due to high extinction (right, 30min) and increases the efficiency of path tracing compared to regular next event estimation (NEE).

Abstract
Emissive media are often challenging to render: in thin regions where only few scattering events occur the emission is poorly
sampled, while sampling events for emission can be disadvantageous due to absorption in dense regions. We extend the standard
path space measurement contribution to also collect emission along path segments, not only at vertices. We apply this extension
to two estimators: extending paths via scattering and distance sampling, and next event estimation. In order to do so, we unify the
two approaches and derive the corresponding Monte Carlo estimators to interpret next event estimation as a solid angle sampling
technique. We avoid connecting paths to vertices hidden behind dense absorbing layers of smoke by also including transmittance
sampling into next event estimation. We demonstrate the advantages of our line integration approach which generates estimators
with lower variance since entire segments are accounted for. Also, our novel forward next event estimation technique yields
faster run times compared to previous next event estimation as it penetrates less deeply into dense volumes.

CCS Concepts
•Computing methodologies → Ray tracing;

1. Introduction

Rendering realistic images typically requires the inclusion of
heterogeneous participating media. This is often costly, espe-
cially with Monte Carlo rendering. In recent years, significant

† florian.simon@kit.edu

progress has been made in rendering scattering and absorbing me-
dia [KF12,NSJ14,KGH∗14,ZRB14], however, there is considerably
less work on rendering emissive heterogeneous volumes, such as
fire, explosions, or flames.

In principle, one can easily account for emission by accumulating
the contribution at scattering events of Monte Carlo random walks.
However, for thin volumes, like flames, free path sampling accord-
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Figure 2: Path tracing thin emissive media is challenging: path
segments pass through the volume most of the time, resulting in
noisy images (images: path tracing, 128 samples per pixel). De-
terministically collecting all emission along a ray computes better
results (images: deterministic). However, this can be inefficient if
the volume has also dense parts.

ing to transmittance will often choose a next path vertex behind the
volume. Since the emission is only picked up at path vertices, it is
poorly sampled and this results in noisy images (see Fig. 2). Alter-
natively, one can deterministically step through the whole volume
and collect the emission with a quadrature rule. While this determin-
istic approach has no variance, it can be wasteful to access all the
volume data in case the volume contains dense areas, shadowing the
emission behind them.

It has been shown that the rendering efficiency can also be in-
creased by sampling the emission directly using next event esti-
mation (NEE) [VH13]. However, this approach neglects the trans-
mittance between a shading point (path vertex) and the sampled
emissive point.

In dense media, this can lead to many samples with low contribu-
tion, and to high cost as the volume needs to be traversed to compute
the transmittance between possibly distant locations. Accessing vol-
ume data, or evaluating procedural volumes, usually dominates the
render cost, and marching through the entire volume or along long
segments can easily increase render times by a large factor.

In this paper, we propose a novel forward next event estimation
(FNEE) technique which generalizes regular NEE and unifies it with
both transmittance sampling and deterministic integration: first, we
introduce a line integration technique to gather the emission along
entire segments between scattering events, and show how to derive
a correctly weighted measurement contribution function therefor.
Second, we combine this with importance sampling of emission: we
sample an emitting path vertex as in regular NEE, but then discard
the vertex location and only keep the direction into which we trace
a ray. The distance along this ray where emission is gathered is then
determined by sampling proportional to transmittance.

Note that this is not sampling the product of emission and trans-
mittance, but it does consider emission (leading to higher contri-
bution) and transmittance (leading to higher efficiency because it
touches less data). In conjunction with line integration, our tech-
nique can outperform regular NEE in many cases.

2. Background and Previous Work

Radiative Transport A participating medium can be fully charac-
terized by its phase function ϕ along with its coefficients for scatter-
ing µs, absorption µa, emission µe, and extinction µt = µs +µa +µe.
To clearly differentiate between the scattering cross section and

the emitted radiance of a particle, we chose to explicitly model the
source term as the product µeLe of a separate coefficient for emis-
sive particles µe and the emitted radiance Le (which is then in Watts
per square meter, analogous to the surface case). This will let us
reason more clearly about emissive media which are thin (low µe)
and bright (high Le), such as candle lights.

The interaction of light with a volume is formulated with the
radiative transfer equation (RTE) [Cha60, KVH84], which states
that the change of radiance at a point x in direction ω is

(ω ·∇)L(x,ω) = µe(x)Le(x)−µt(x)L(x,ω)

+µs(x)
∫

Ω

ϕ(x,ω,ω′)L(x,ω′)dω
′.

(1)

In practice, the spatially varying coefficients are given in analytic
form (procedurally) or as finite volume elements (voxels). If we
ignore scattering (which is later handled by recursive path tracing),
Eq. 1 simplifies to

(ω ·∇)L(x,ω) = µe(x)Le(x)−µt(x)L(x,ω) (2)

which is a standard first-order differential equation with solution

L(x,ω) = L(x′,ω)e−
∫ t

0 µt (s)ds +
∫ t

0
µe(s)Le(s)e−

∫ s
0 µt (s′)ds′ds, (3)

with reparameterized Le,µe,µt (i.e Le(s) = Le(x − sω)). Here
L(x′,ω) is the radiance at the surface geometry which serves as
boundary conditions. The transmittance term

τ(t) = e−
∫ t

0 µt (s)ds (4)

in the equation describes the transport of an colluded light between
two points in the scene and corresponds to the loss of light along a
distance t in the medium due to extinction. A much more detailed
description of volume rendering and the radiative transport equation
can be found in [HHS96].

Path Tracing In computer graphics, Eq. 1 is most commonly con-
verted to integral form and solved with the Monte Carlo method, in
the simplest case using path tracing [Kaj86].

Monte Carlo rendering requires the sampling of distances to the
next event in the medium. Sampling such free path lengths is usually
done proportionally to the transmittance and thus tends to create
short path segments in dense and long path segments in thin media.
This can be done implicitly by Woodcock tracking [WMHL65,
RSK08] or explicitly by ray marching until the transmittance falls
below a randomly chosen threshold [PH10]. Ray marching with
fixed step sizes is biased which can be undesirable; instead, in our
implementation we march from voxel boundary to voxel boundary,
and optionally account for trilinear interpolation [SKTM11], to
achieve unbiased results.

Sampling distances differently, e.g. according to the product of
transmittance and emission, can be done by constructing a discrete
cumulative distribution function (CDF) as in [KF12]. However, this
can be costly if the volume contains fine high frequency details.

Usually some form of direct light evaluation (next event estima-
tion, NEE, [Kaj86]), which creates endpoints of paths directly on a
light source, is used to increase the efficiency of path tracing. Our
forward next event estimation is similar to [MBJ∗06] in that it
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Figure 3: Path tracing successively samples interaction points with
surfaces or within participating media. The emission is evaluated
only at the interaction points along the resulting transport paths
(left). Therefore, for thin volumes like flames, the emission is poorly
sampled since most path segments pass through the medium, yielding
noisy images. Right: we propose a new Monte Carlo estimator that
takes into account the emission at both the interaction points as well
as along path segments.

creates directions to a light source instead of points on it, but it still
resembles next event estimation because the path is terminated at
the resulting scattering point.

Rendering Participating Media Many rendering algorithms have
been extended to handle participating media. This includes photon
mapping [JC98], bidirectional path tracing [LW96], and Metropolis
Light Transport [PKK00]. Many-lights methods [DKH∗13] create
emissive auxiliary lighting primitives in the scene and thus also in
volumes, and in principle emissive volumes are possible. Various
methods improve the integration with the help of beam estimates,
e.g. [JZJ08, NNDJ12b, NNDJ12a]. These estimators have been uni-
fied with point estimators in the general framework of multiple
importance sampling [KGH∗14]. However, none of these methods
specifically targets the rendering of emissive volumes.

Next Event Estimation in Emissive Volumes Villemin and
Hery [VH13] also focus on handling emissive volumes in the context
of Monte Carlo rendering. They use multiple importance sampling
(MIS) [VG95] to combine emission found by chance using impor-
tance sampling of the scattering function, with emission that was
directly sampled with NEE. However, sampling according to emis-
sion alone, without accounting for the transmittance between the
sampled point and the shading point, can be problematic: it can
result in long path segments through the volume for which the trans-
mittance evaluation is expensive. And in case the transmittance is
low, the effort is wasted as the sample does not contribute much
to the illumination. Furthermore, the emission is only evaluated
for the sampled point; in contrast, we propose to account for both
transmittance and emission along path segments.

3. Computing Volumetric Emission

In this section, we derive the steps leading to our forward next event
estimation technique. This estimator works robustly for both thin
and dense media (and the spectrum in-between), samples according
to emission and transmittance, and gathers emission along the next
event path segments. It is based on the observation that if Le is
stored close to µt or density values, this will result in the same or

Point + NEE Line + NEE Line + FNEE

Figure 4: Equal-sample comparison. Left: regular next event esti-
mation (NEE) yields noisy results in the directly visible thin flame.
Center: integrating emission along path segments improves the ren-
dering of the flame. However, additional noise on the floor arises, as
line integration after BSDF sampling and NEE cannot be combined
using MIS. Right: our forward NEE also accounts for emission
along segments and can thus be combined with line integration.

very similar data accesses as just sampling a free distance, and thus
mostly runs at the same speed (see Sec. 4 for details); we believe
that similar considerations hold for procedurally generated volumes.

We obtain our technique in three steps:

• In a standard Monte Carlo estimator, the volumetric emission is
gathered at randomly chosen points along a ray. We introduce a
line integration technique (Sec. 3.2) which gathers the volumetric
emission along ray segments up to each chosen point (see Fig. 3).
By this we include more information into the estimator, however,
the emission needs to be weighted appropriately to compensate
for the multiple gathering (multiple overlapping segments) and to
yield an unbiased result. A similar concept is known in the field
of neutron transport [SG69].

• We show how to combine the point and line integration estimators
into a unified estimator which is well-suited for both thin and
dense volumes (see Sec. 3.3).

• Line integration for BSDF (or phase function) sampling and NEE
cannot be combined using MIS: line integration can be used for
segments passing through the medium, while NEE cannot create
such paths and the MIS weight would be zero for such cases (see
Fig. 4). To this end, we introduce forward NEE: it importance
samples the volume emission and converts the sample location
into a direction. Along this direction, we use line integration, and
can thus use MIS again. This method also leads to improved next
event efficiency for dense volumes (see Fig. 5).

3.1. Point Integration

Our aim is to compute the incident radiance at a point x in the scene
from a direction ω due to volumetric emission. Ignoring surface
geometry and multiply scattered light (which is handled by the
Monte Carlo path generation), it follows from Eq. 3 that we have to
integrate the emitted radiance Łe(t) = µe(t)Le(t) weighted by the
corresponding transmittance τ(t) along the ray r(t) = x+ tω:∫ ∞

0
Łe(t) τ(t) dt. (5)
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Reference FNEE 2:33minNEE 14:05min

Figure 5: Next event estimation for dense volumes can be wasteful
as only nearby points contribute to a path due to high extinction.
This is reflected in large time differences between regular NEE and
our FNEE. Both images use 32 samples per pixel and have roughly
equal quality. The volume properties are σt = 32, σs = 30, σe = 0.1.

Since this integral has no analytic solution in the general case,
we perform a numerical integration. Using N randomly sampled
distances ti with probability density p(ti), we can compute a Monte
Carlo estimate of Eq. 5 with

1
N

N

∑
i=1

Łe(ti) τ(ti)
p(ti)

, (6)

which we will denote as the point estimator, as the emission is only
evaluated at the discrete points r(ti) along the ray.

The distance sampling probability is usually chosen to be pro-
portional to the transmittance, i.e. p(t) ∝ τ(t). By this, however,
regions with high emission can easily be missed, e.g. in very thin
(low µt and µe, respectively) and bright flames (large Le). Note that
a typical path tracing implementation samples only one distance ti
for the next scattering event and integrates over many light paths
per pixel instead. However, the arguments in the following section
might be more intuitive for one ray and larger N.

3.2. Line Integration

When computing one sample ti of the point estimator (Eq. 6), we
also compute the transmittance along the segment [0; ti]. The moti-
vation for the line integration is to also consider the emission along
that segment to improve the estimator, assuming that the under-
lying data structure allows simultaneously gathering emission at
only little additional cost. However, simply replacing Łe(ti)τ(ti) by∫ ti

0 Łe(t)τ(t)dt in Eq. 6 does obviously not work, as the emission of
closer segments along the ray is gathered multiple times (see also
Fig. 6). To compensate for this, we introduce an emission weight
function, wt(s), whose choice and derivation we discuss in this sec-
tion. Note that t is the parameter which we sample for distances, and
s the ray parameter along one of the segments. We need to choose
wt(s) such that

Eq. 5 !
=

∫ ∞
0

(∫ t

0
wt(s) Łe(s) τ(s) ds

)
dt. (7)

We can now formulate two conditions to be met by the weight
function: first of all, we want wt(s) = 0∀s > t, which means that in
order to compute the emission along a ray segment up to a sampled
location, i.e. [0; t], we do not want to consider emission values at
locations further away than t. Second, wt(s) has to reweight the
contributions properly: if we fix an emissive point s on the ray
(Fig. 6), the weight function needs to be normalized over all possible

x ω

t0 t1 t2 t3 t4

s

Figure 6: Line integration computes the incident radiance due to vol-
umetric emission along a ray x+tω by randomly sampling distances
ti and accumulating the emission along the segments [0, ti]. To ac-
count for multiple gathering of the emission at a point s ∈ [0, ti], we
weight the contribution with a function wt(s) with

∫∞
0 wt(s)dt = 1.

sample points t, i.e. (note wt(s) = 0∀s > t)∫ ∞
0

wt(s) dt =
∫ ∞

s
wt(s) dt = 1. (8)

We can verify that Eq. 7 yields the same result as Eq. 5 by first
extending the interval of the inner integral (wt(s) = 0∀s > t), then
swapping the order of integration, and reordering the terms:

Eq. 7 =
∫ ∞

0

(∫ ∞
0

wt(s)Łe(s)τ(s)ds
)

dt

=
∫ ∞

0

(∫ ∞
0

wt(s)dt
)

Łe(s)τ(s)ds

=
∫ ∞

0
Łe(s)τ(s)ds.

(9)

Choice of Weight Function The above definition allows for differ-
ent weight functions. Choosing wt(s) = δ(s, t), for example, demon-
strates that the line integral formulation in Eq. 7 is in fact a general-
ization of the point integral from Eq. 5 (of course, this choice does
not change nor improve the estimator). We propose to use a weight
function motivated by transmittance sampling: the transmittance
τ(s) is the probability of sampling a location t > s along the ray and
therefore also the probability for accounting for the emission at s. In
order to compensate for the multiple gathering of Le(s) during line
sampling, we want wt(s) ∝ 1/τ(s) for s ≤ t and wt(s) = 0 other-
wise. In addition, we need a normalization term for wt(s) which also
reflects the probability of sampling t > s. The probability density of
sampling a distance t according to transmittance is p(t) = µt(t)τ(t).
Consequently, the probability of sampling a location t > s and thus
accounting for Le(s) again is:∫ ∞

s
µt(t)τ(t)dt = τ(s)⇔

∫ ∞
s

µt(t)τ(t)
τ(s)

dt = 1. (10)

Comparing Eqs. 8 and 10 shows that a valid weight function (with
the aforementioned proportionality) is:

wt(s) =

{
µt(t)τ(t)/τ(s), if s≤ t
0, otherwise.

(11)

If the volume is bounded at a distance T , either because there is
a surface or the volume ends, the remaining weight has to be as-
signed to the case when the sampled distance ti exceeds T . This
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Figure 7: A simple cube-shaped medium with decreasing density
from left to right. The combined point+line estimator performs
better than the point estimator alone (top row). This is best visible
in the thin parts of the volume.

is exactly the same as for the transmittance sampling probability
density function (PDF).

Line Estimator The Monte Carlo estimator for Eq. 7 with a valid
weight function becomes:

1
N

N

∑
i=1

∫ ti
0 wti(s)Łe(s) τ(s) ds

p(ti)
. (12)

Using our weight function from Eq. 11 and transmittance sampling
for the distances ti, the Monte Carlo estimator can be simplified to

1
N

N

∑
i=1

∫ ti

0
Łe(s) ds. (13)

Discussion Eq. 13 yields the same result in the limit as the point
estimator in Eq. 6, but it uses more information for a single sam-
ple by collecting the emission along the line segment. The special
case of the line estimator with transmittance sampling (Eq. 13) is
also known as the track length estimator in neutron transport the-
ory [SG69]. However, Spanier and Gelbard derive only this particu-
lar Monte Carlo estimator whereas we provide a general derivation
using weight functions. Even though we sample distances only ac-
cording to transmittance in this paper, our general line estimator
(Eq. 12) works with other distance sampling methods as well, for
example sampling according to µs instead of µt for highly scattering
media or equi-angular sampling [KF12]. We provide an alternative
derivation of the track length estimator in the supplemental material.

3.3. Combining the Line and Point Estimators

The previously introduced line estimator is superior to the point es-
timator in thin media as it gathers emission even when no scattering
event was sampled inside the volume. However, it does not always
have lower variance than the point estimator. For example, if Łe and
µt are nearly constant along the line segment, the point estimator
will have little variance if transmittance sampling is used:

Łe(ti) τ(ti)
p(ti)

≈ Łe

µt
≈ const.

However, the contribution of the line estimator in this case is∫ ti

0
Łe(s) ds≈ Łe ti,

where the random segment length ti introduces variance.

For this reason, we want to combine the strengths of both esti-
mators: we want the point estimator to have a higher contribution
than the line estimator in dense regions and vice versa. To this end,
we propose weighting their contributions at a particular location in
the medium according to the transmittance along the ray up to that
point. Note that this is not equivalent to a convex combination of
Eqs. 6 and 12 because of the spatially-varying weight. We obtain
the combined estimator by first splitting Eq. 5:∫ ∞

0
(1− τ(t))Łe(t)τ(t)dt +

∫ ∞
0

τ(t)Łe(t)τ(t)dt,

and use the point estimator for the left, and the line estimator for
the right integral. We compute the latter analogously to our previous
derivation with∫ ∞

0
τ(t)Łe(t)τ(t)dt =

∫ ∞
0

∫ ∞
0

wt(s)τ(s)Łe(s)τ(s)ds dt

and obtain the combined estimator as

1
N

N

∑
i=1

(
(1−τ(ti))

Łe(ti)τ(ti)
p(ti)

+

∫ ti
0 wti(s)τ(s)Łe(s)τ(s)ds

p(ti)

)
.

If we sample ti proportional to transmittance, then the combined
estimator conveniently simplifies to:

1
N

N

∑
i=1

(
(1− τ(ti))

Łe(ti)
µt(ti)

+
∫ ti

0
Łe(s) τ(s) ds

)
. (14)

Note the additional spatially-varying transmittance weight inside
the integral of the line estimator. Fig. 7 shows equal-sample results
of the combined estimator compared to the point estimator.

Discussion The combination of the point and line estimator is simi-
lar to MIS when distances are sampled according to transmittance
(the transmittance is part of the PDF in this case). However, MIS
normalizes the contribution of a discrete set of estimators, whereas
we normalize over a continuous domain using a weight function.
We will show in Sec. 5, that our combination is, similar to MIS,
not perfect. We experimented with other combinations and weight
functions, but they were either much more complicated or needed
information along the full ray through the volume. The introduced
weight functions and combination of the point and line estimator
are the most robust and efficient we found, and they proved to work
well for a wide variety of volumes (see Sec. 5).

3.4. Forward Next Event Estimation

With line integration as part of the combined estimator, the emis-
sion along every path segment contributes to the image, even when
there is no scatter event inside the volume. Combining such pass-
through paths with volume NEE [VH13] using MIS is problematic.
Since NEE only samples emissive points it cannot create these pass-
through paths and thus their corresponding MIS-weights become
zero, i.e. MIS becomes useless. For example, consider pass-through
paths from BSDF-sampling as shown in Fig. 4. Here, the volume
subtends only a small solid angle and the probability of hitting the
volume with a random BSDF-sampled direction off the rough floor
is very low and the path cannot be created by NEE. Here NEE means
that an emissive point is sampled inside the volume. For NEE with
other light sources see Sec. 3.5.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



F. Simon, J. Hanika, T. Zirr & C. Dachsbacher / Line Integration for Rendering Heterogeneous Emissive Volumes

x1x0

y1

y0

x1x0

y1

y0

y′1y′0

Figure 8: Left: path tracing with regular NEE constructs paths in
two ways: sampling y via outgoing directions from x and distance
by transmittance, or by sampling a point on a light source. Right:
FNEE provides a third way. At first, a vertex y′ inside the volume
is sampled according to emission. Then, a distance towards y′ is
sampled by transmittance. This process may pass through the volume
and result in a vertex y on a geometric light source. Such paths will
have to be weighted against NEE on surfaces.

To overcome this problem we introduce forward next event esti-
mation (FNEE). The key idea is to reinterpret the point sampling
process of volume NEE as a solid angle direction sampling. For this,
we discard a sampled point but keep the direction to it. Thereafter,
we sample a distance according to transmittance along that direction,
and use the combined estimator from Eq. 14 (as we do for phase
function or BSDF scattering). This technique has three advantages:

• We can again use the combined estimator to gather emission
along segments.
• It can sample pass-through paths and has meaningful MIS weights

for every contributing path.
• Sampling distances according to transmittance avoids deep pen-

etration of dense volumes and thus improves the efficiency of
direct light computation significantly.

The main challenge is that multiple points in the volume result in
the same direction ω from a shading point x. To compute the solid
angle measure probability of the resulting direction, pσ(ω), we need
to integrate the probability over all points, i.e. compute

pσ(ω) =
∫ ∞

0
px(t) t2 dt, (15)

where px(t) is the vertex volume sampling probability of a point
P(t) = x+ tω, and t2 is the transformation Jacobian from volume to
solid angle measure.

This integration is computationally expensive as it requires step-
ping from x in direction ω through the entire volume to accumulate
the point sampling probabilities px(t). Obviously, this would not be
cheaper than gathering the entire emission directly. However, we
can perform point sampling and PDF integration at a low-resolution
version of the volume without noticeable differences in the render-
ing. Even though fine emission details could be missed – which
would have a significant impact on regular NEE – line integration
has a high chance to pick up the high frequency details again. Note
that the distance sampling and line integration are still performed on
the full volume resolution and therefore the estimator is unbiased.
We evaluate this sampling in Fig. 11.

Probabilistic Transmittance for NEE FNEE is faster for dense
volumes because the additional transmittance sampling prevents un-
necessarily deep penetration. The same speed benefit can be acquired

Reference RR NEE FNEE

Figure 9: Equal-time comparison of NEE with probabilistic trans-
mittance sampling (RR, 487spp, left), regular NEE (232spp, middle)
and our FNEE (394spp, right). The quality of all techniques is
roughly the same in the directly visible flame (top row), however,
the noise in the RR version is higher compared to NEE and even
more so compared to FNEE in the illuminated parts (bottom row).
All renders took 3 minutes. The RMSE over the cropped view in the
bottom row are (from left to right): 0.87, 0.65, 0.49.

for NEE with an unbiased probabilistic transmittance approximation.
For this, we sample a distance along the ray to the sampled NEE
point according to transmittance and if the distance sampling stops
before the NEE point, the transmittance will be zero, otherwise one.
This can be viewed as a form of Russian roulette (RR). We found
however, that this approach can actually increase variance resulting
in higher equal-time RMSE (see Fig. 9) compared to regular NEE.
FNEE on the other hand, uses line integration which increases the
likelihood of useful contributions and always outperformed NEE
with and without RR in our experiments. All comparisons apart
from Fig. 9 are with regular NEE since it is the published state of
the art at this time [VH13]. For a comparison where RR is beneficial
compared to regular NEE (but not compared to FNEE) please refer
to the supplemental material.

3.5. Other Light Sources

FNEE can create path segments that pass through the volume and
potentially hit other light sources, e.g. area lights or environmental
illumination (see Fig. 8). Such paths can be constructed by FNEE
in the volume or NEE of the light source. We model this in the
MIS framework by stochastically choosing surface NEE or volume
FNEE via the one-sample MIS model [VG95]. If there are multiple
emissive volumes in a scene, they can all contribute to the combined
PDF of a path. The easiest way to account for this is to treat them as
a single aggregate volume.

4. Implementation

In this section, we provide details on the implementation of for-
ward next event estimation and line integration in a path tracing
framework, and begin with details of the volumetric data structure.

Volumetric Data Structure We use a voxel back end to represent
spatially varying volume properties; in particular, we use a 4D stor-
age similar to [Wre16]. The basic structure is a hierarchical grid
with an 8×8×8 voxel branching factor, similar to the one used in
OpenVDB [Mus13]. For computing the images in this paper, we
stored density d and temperature in every voxel. We use a constant
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phase function and reconstruct the spatially varying scattering pa-
rameters as µ∗ = σ∗ ·d, where σs,a,e are user parameters which can
be changed at run time. A shader is used to compute the emission
Le from the temperature, in most of our results by implementing a
black body emitter.

We construct a full binary tree for every grid to form a light
hierarchy. This enables us to sample a voxel randomly according
to d ·Le (as in [VH13]). Ultimately, we want to sample by µeLe =
σe ·d ·Le, but the scalar user constant σe is factored out as it only
affects normalization.

The concepts derived in this paper are largely independent of the
exact data structure used. We also implemented the technique in a
production renderer using a kd-tree instead of hierarchical grids.

Free Path Sampling To compute the distance to the next scattering
event of a path, we traverse the volume along a ray and accumulate
the transmittance on the leaf level of the voxel hierarchy until it falls
below a randomly chosen threshold [SKTM11]; this is possible as
the transmittance is normalized.

Traversing the voxels makes the evaluation of the segment emis-
sion integral in Eq. 14 straightforward. For our results, we assumed
homogeneous media inside voxels, i.e. constant µe,Le,µt ,µs, which
allows to analytically compute∫ T

0
µeLeτ(s)ds = µeLe

∫ T

0
e−µt sds =

µe

µt
Le(1− e−µt T ), (16)

where T is the length of the ray segment inside the voxel. Pseudo-
code of the free path sampling and the combined estimator can
be found in Alg. 1. Computing segment emission along with the
transmittance between two points works analogously.

We also tested Woodcock tracking in combination with a coarse
grid storing the majorant µmax

t , however, for all volumes in our
scenes it resulted in more memory accesses and longer run times.
Note that in cases where Woodcock tracking jumps over thin homo-
geneous regions (i.e. using fewer memory accesses), it also skips
potentially important emission.

Point sampling for NEE To sample a light vertex for next event
estimation, we use 3D sample warping on a full binary tree around
the voxels of each grid. The target distribution is proportional to
µeLe averaged over wavelength. The intermediate levels sample the
averages over the time domain, intermediate levels coinciding with
the inner nodes of the hierarchical grid, however, also resolve the
probabilities in time.

Forward NEE directional PDF We compute the PDF (in solid
angle measure) for the direction sampling of FNEE by evaluating
the integral in Eq. 15 for homogeneous voxels as shown in Alg. 2.
While free path sampling (also during FNEE) and point sampling
for regular NEE are always performed on the highest resolution of
our voxel data structure, we use a coarser representation for FNEE
direction sampling for efficiency reasons. This simply changes the
list of voxels to traverse in Alg. 2. The term (t3

1−t3
0 )/3 is the analytic

solution of the integral in Eq. 15 for homogeneous volumes after
pulling out the constant PDF px(t).

Algorithm 1 Free Path Sampling with Segment Emission
1: procedure SAMPLEFREEPATH(o,ω,ξ)
2: T ← 1 // transmittance
3: Lc

e← 0 // combined estimate
4: for all voxels along o+ tω do
5: {t0, t1}← distance of voxel entry/exit point
6: {µt ,µeLe}← extinction/emission of voxel
7: d← t1− t0
8: T ′← T · e−µt d

9: if Scatter(ξ,T,T ′) then
10: ts← distance to scatter point in voxel
11: d← ts− t0
12: Lc

e← Lc
e +T ·Le

µe
µt
· (1− e−µt d)

13: T ← T · e−µt d

14: Lc
e← Lc

e +(1−T )Le
µe
µt

15: return {t0 +d,Lc
e}

16: end if
17: Lc

e← Lc
e +T ·Le

µe
µt
· (1− e−µt d)

18: T ← T ′

19: end for
20: return {∞,Lc

e}
21: end procedure

Algorithm 2 Compute direction PDF
1: procedure ACCUMPDF(o,ω)
2: p← 0
3: for all voxels along o+ tω do
4: {t0, t1}← distance of voxel entry/exit point
5: pv← probability of choosing voxel with point sampling
6: p← p+(t3

1 − t3
0 )/3 · pv

7: end for
8: return p
9: end procedure

5. Results

All images in this paper were generated with a custom Monte Carlo
renderer written in C using spectral rendering. The renderer used a
single wavelength per path, but line integration and FNEE would
also work with multiple wavelengths or RGB rendering. The images
are inherently dark, to keep the fine detail in the emissive volumes.
However, that impairs the quality for printing and we recommend to
view the images on a computer screen. The renderings in all images
and equal-time measurements where done using a machine with a
quad-core Intel i7-3770 and 16GB RAM, except for Fig. 13, which
was rendered on a 128-core machine with 4TB of main memory.

We use six volumes in the paper with varying complexity (see
Tab. 1). All volumes use isotropic scattering (i.e. a mean cosine
of zero). Except for the second scene in Fig. 12, which uses a
custom shader to mimic bioluminescence, all volumes are black
body emitters.

5.1. Evaluation of the Individual Estimators

To evaluate the different estimators (point, line and combined) we
rendered the fireball volume for varying densities across four or-
ders of magnitude in Fig. 10. The emission is scaled to produce
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Figure 10: The fireball from Fig. 2 rendered with the point (Sec. 3.1), line (Sec. 3.2) and the combined point+line estimator (Sec. 3.3) for
varying densities. The emission is scaled to maintain roughly the same brightness. The density values are scaled from left to right, σs = 0 for
all cases. The the RMSE after 128 samples per pixel is given for each image. Compared to our integration method, which is robust for several
orders of magnitude of density values, the point integration becomes worse the thinner the medium gets.

Volume Size #Voxels Figure
wedge 10MB ≈ 2 ·106 7
flame 28MB ≈ 3 ·106 2, 4, 12
swirl 150MB ≈ 21 ·106 12
fireball 390MB ≈ 39 ·106 2, 10, 9
explosion 3.5GB ≈ 349 ·106 1, 5, 11
sun 30GB ≈ 6903 ·106 13

Table 1: Size of the volumetric datasets used in this paper.

roughly the same total brightness in each case. We can see that the
line and combined estimators gain advantage over the traditional
point estimator for decreasing thickness of the volume. However,
for very dense volumes the point estimator is better than the line
estimator since the segment length introduces additional variance.
The combined estimator performs better than the line estimator in
this case, although it does not reach the quality of the point estimator
for dense volumes. Please refer to the supplemental material for a
more detailed analysis of the different estimators.

5.2. Forward Next Event Estimation

Comparison to NEE In Fig. 4 a simple test scene shows the prob-
lem arising when line integration is used with regular NEE (middle
image). The high variance paths created by forward BSDF sampling
cannot be combined with next event estimation using MIS in this
case, as NEE cannot create pass-through paths which contribute
due to segment emission. On the other hand, forward next event
estimation is able to create pass-through paths. Combining BSDF
sampling with FNEE using MIS results in an overall superior result,
also compared to point integration with NEE (right image).

Computing the Solid Angle PDF FNEE requires computing the
solid angle PDF for a sampled direction (Eq. 15). As detailed in
Sec. 4 we compute the PDF by integrating along a ray through a
coarser version of the volume. In our implementation we can simply
choose one of the hierarchical grid levels. Next we evaluate the
impact of using coarser levels.

For this test, we computed the irradiance for two locations p0 and
p1, illustrated in Fig. 11, outside a volume where next event estima-
tion is the most useful. Interestingly, the equal-sample comparison

of the first row show that the choice of coarseness does not have a
large impact on the sample quality in this test, even though the solid
angle subtended by the volume differs greatly at these two locations.
The line integration is tolerant to slightly more inaccurate initial
point sampling, and compensates for that by gathering the emission
at high resolution along path segments.

The middle and bottom rows in Fig. 11 show equal-time com-
parisons. FNEE-0 has a larger RMSE because it is much more
expensive than FNEE-1 and FNEE-2. All renders use the second
finest grid (FNEE-1) for forward next event estimation except for the
explosion in Figs. 1 and 5 where FNEE-2 is used. This shows that
even though the explosion dataset has 349M voxels, we can use a
643-version of the volume to perform forward next event estimation.

Volume Density The density of a volume also influences the effi-
ciency of next event estimation. If the volume is dense, then it is
likely that emission at a sampled point is irrelevant because of high
extinction in the medium. The bottom row of Fig. 11 shows the
RMSE after 100ms plotted for varying densities. We can see that
FNEE gains advantage over NEE for increasing σt .

5.3. Test Scenes

We performed equal-time renders for different scenes and compared
next event estimation using point integration and forward next event
estimation using line integration. In all our test cases, FNEE delivers
results with significantly less residual noise than NEE.

In Fig. 1 we rendered a city containing the explosion dataset with
two different values for σt . The scattering parameters are σt = 0.2,
σs = 0.01, σe = 0.1 for the thin version (left, 10min), and σt = 40,
σs = 0.1, σe = 64 for the dense version (right, 30min). The overall
density of the resulting volumes is shown in insets where the volume
is rendered with σe = 0. The image resolution is 1024×576.

The thin version greatly benefits from line integration as can
be seen in the insets showing directly visible parts of the volume.
FNEE is much more efficient than NEE in the dense version: FNEE
rendered more than twice as many samples as NEE in the same time
frame producing a much better result than NEE.

Fig. 12 shows equal-time comparisons between NEE and FNEE
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Figure 11: The irradiance is computed for two locations p0 and p1
outside the volume, where next event estimation is the most useful.
The RMSE is plotted for an equal amount of samples (top) and time
(middle). The notation FNEE-i means that the grid i levels above the
leaf level is used for FNEE (FNEE-0 is the finest). The bottom row
shows the RMSE after 100ms plotted for varying densities showing
the advantage of FNEE for dense volumes. Note how inefficiently
NEE behaves for increasingly dense media. The top and middle row
correspond to σt = 1.

in two scenes (resolution 512× 512). The upper scene contains a
thin flame in a simple closed box. The flame is reflected by the
mirroring back wall as well as the glossy objects. The renders are
equal-time (15min). The insets show that FNEE outperforms NEE
not only in parts where the flame is directly visible, but also in
indirectly lit parts of the scene. In this scene FNEE is slower than
NEE (FNEE: 47spp, NEE: 70spp) because the volume is thin and
FNEE passes through the volume most of the time. Still, the RMSE
compared to a converged reference is greatly reduced (FNEE: RMSE
0.13, NEE: RMSE 0.21). The bottom scene shows a frame of a fluid
simulation where a rotating object mixes two initially separated
layers of fluid with different densities. The volumetric emission in
the fluid is proportional to the velocity, imitating bioluminescence.
The renders took 10min and FNEE again has lower remaining noise
(RMSE 0.05) compared to NEE (RMSE: 0.11) even with lower
sample count (FNEE: 134spp, NEE: 174spp).

FNEE: RMSE 0.128, 43spp NEE: RMSE 0.207, 70spp

Reference NEE FNEE

Figure 12: Two equal-time comparisons of NEE with point integra-
tion (left) to our FNEE with line integration (right). Even though
FNEE results in less samples per pixel the images contain less
residual noise.

Reference NEE FNEE

OverviewOverview

Figure 13: Scalability test on a 30GB volume. These images show
equal sample counts (128spp) with an RMSE of 52.6 for NEE and
36.7 for FNEE. The time for NEE was 7.5 and for FNEE 11.2 core
hours, i.e. the time one core would need to create the image. Most
of the light comes from the relatively thin loop – a case which
works reasonably well with regular NEE. Note that this is a difficult
scenario for FNEE as it creates long segments through the thin
medium, i.e. it has a higher cost per sample than NEE. However,
this is still amortized by collecting the emission along the path
segment: the RMSEs for equal-time (60 core hours) are 14.9 FNEE
(704spp) and 18.6 NEE (1024spp). For larger versions of these
images please refer to the supplemental material.

In Fig. 13, we rendered a 30GB scene to evaluate the cost of FNEE
for larger volumes. As expected, the computational cost increases
(PDF accumulation, longer segments in thin regions), but FNEE still
pays off for equal-time renders. A version with bigger images can
be found in the supplemental material.
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6. Limitations

In this paper, we specifically addressed the challenges with rendering
emissive volumes. Next event estimation in thin scattering fog, for
example, is a different problem and is usually addressed with equi-
angular sampling [KF12] or by creating a CDF along a ray. The
latter approach may also prove useful for emission, e.g. if very bright
lights are hidden behind thick layers of absorbing smoke.

While our techniques would transparently work with Kelemen
Metropolis [KSKAC02], it is not as straightforward for path space
methods derived from Metropolis Light Transport [VG97]. This
might be an interesting direction for future work.

We did not try using segment emission in bidirectional path trac-
ing but it might be interesting to investigate this in future work. For
deterministic connections, the segment emission can be computed in
the same way as we already do for NEE paths to other light sources.
However, MIS may need to be adjusted to account for the fact that
paths sharing a common prefix close to the sensor can result in the
same contributions (similar to when picking up point emission along
all path vertices, not just the end points).

7. Conclusion

We presented a line integration estimator that accumulates emis-
sion for path segments, not only at path vertices. This now allows
Monte Carlo light paths to contribute to the image in cases when no
scattering event inside the volume has been sampled. This greatly
improves Monte Carlo rendering in thin parts of emissive media.

We also proposed forward next event estimation, which combines
sampling points according to emission and segment length according
to transmittance. This prevents long segments that do not contribute
to the final image in volumes with high extinction.

Whereas line integration works best for thin emissive volumes,
FNEE is particularly beneficial for dense media with high extinction.
Used together, they provide robust and efficient rendering of a wide
range of emissive heterogeneous volumes, and we showed that
resulting images can have greatly reduced Monte Carlo noise.
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