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Abstract 
Physically-based image synthesis methods, a research direction in computer graphics (CG), are ca-
pable of simulating optical measuring systems in their entirety and thus constitute an interesting ap-
proach for the development, simulation, optimization, and validation of such systems. In addition, other 
CG methods, so called procedural modeling techniques, can be used to quickly generate large sets of 
virtual samples and scenes thereof that comprise the same variety as physical testing objects and real 
scenes (e.g., if digitized sample data is not available or difficult to acquire). Appropriate image synthe-
sis (rendering) techniques result in a realistic image formation for the virtual scenes, considering light 
sources, material, complex lens systems, and sensor properties, and can be used to evaluate and 
improve complex measuring systems and automated optical inspection (AOI) systems independent of 
a physical realization. In this paper, we describe an image generation pipeline for the evaluation and 
optimization of measuring and AOI systems, we provide an overview over suitable image synthesis 
methods and their characteristics, and we discuss the challenges for the design and specification of a 
given measuring situation in order to allow for a reliable simulation and validation. 
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Introduction 
Current physically-based image synthesis 
techniques constitute a major leap compared 
to previously used, mostly phenomenological 
approaches. The simulation of light transport is 
at the core of physically-based image synthe-
sis methods and crucial to generate images 
that are on par with images made by physical 
image acquisition systems. Light transport 
simulation nowadays is almost exclusively 
computed using Monte Carlo (MC) or Markov 
Chain Monte Carlo (MCMC) methods, which 
can account for complex light-matter interac-
tions and naturally handle spectral emission, 
absorption, and scattering behavior (measured 
or derived from models) described by geomet-
ric optics. (MC)MC methods can also comprise 
the simulation of complex lens systems to ac-
curately compute the resulting irradiance onto 
a virtual sensor. 
Essentially, all (MC)MC rendering methods 
compute an estimate of the light transport by 
sampling, that is, stochastically generating, 
paths on which light propagates from light 
sources to sensors; their main difference being 
the path sampling strategy. Until sufficient 

convergence, the variance of this estimation is 
apparent as noise in the images. Because of 
this, even simplistic realizations of these meth-
ods are versatile and, in principle, capable to 
achieve the desired, and required, results. 
However, their application is only practical 
when an (MC)MC method is used which is 
well-suited for a given scenario; otherwise the 
computation time can easily become prohibi-
tively long, even in seemingly simple cases. 
For example, one would choose different 
methods for computing light transport for com-
plex high-frequency light transport phenomena 
(recognizable by multiple glossy or specular 
reflection) than for highly scattering media. 
Particular attention has to be paid to the simu-
lation of complex lens systems which can in-
crease the computation time by orders of mag-
nitude when implemented naively. We discuss 
the use of a state-of-the-art approach to effi-
cient rendering with realistic lenses in the con-
text of measuring and AOI systems. 
As indicated, many different rendering algo-
rithms and sampling strategies exist in the 
realm of (MC)MC methods, and they all exhibit 
different performance and noise characteris-
tics, which are strongly linked to the type of 



  

light-matter interactions and the geometry con-
figurations occurring in a scene. As such, it is 
not straightforward for the non-expert to select 
the appropriate method. For this purpose, we 
identify light interactions and phenomena con-
stituting different challenges for the image 
synthesis, and discuss state-of-the-art algo-
rithms, as, for example, path tracing, bi-
directional path tracing (BDPT), and others. 

Rendering, rasterization, and ray tracing  
Hughes et al. [8] define the term rendering very 
concisely as referring to the process of integra-
tion of the light that arrives at each pixel of the 
image sensor inside a virtual camera in order 
to compute an image. 
There are two major strategies for determining 
the color of an image pixel: rasterization and 
ray tracing. 
Ray tracing, also sometimes referred to as ray 
casting, determines the visibility of surfaces by 
tracing rays of light from the virtual view point, 
that is, the viewer’s eye or the image sensor, to 
the objects in the scene. The view point repre-
sents the center of origin and the image a win-
dow on an arbitrary view plane. For each pixel 
of the image a view ray is sent originating in 
the view point through the pixel into the scene 
in order to find an intersection with a surface. 
By recursive application of this ray casting one 
can compute complex light interactions and 
global illumination, that is, indirect illumination 
including, among others, reflections and shad-
ows. 
Rasterization, on the other hand, projects   
geometric primitives one by one onto the im-
age window. A depth buffer, also called 
z-buffer, is utilized to determine the closest and 
thus visible primitive for each pixel. 
Usually, the perspective projection is carried 
out in three steps. First, the projection trans-
formation, expressed in homogeneous coordi-
nates, is applied. Afterwards, the projective 
coordinates are dehomogenized by the nor-
malization transformation, mapping the view 
frustum to the unit cube. The resulting device 
coordinates can then be mapped to image 
coordinates by discarding the depth coordi-
nate, as it is done for orthographic projection. 
All primitives can be processed in parallel us-
ing a single instruction multiple data (SIMD) 
approach and minor synchronization via the 
depth buffer. This allows for a very fast pipe-
lined hardware implementation in the form of 
modern graphics processing units (GPUs). 
Simplified, one could say that ray tracing starts 
with the pixels and then determines ray inter-
sections with the scene geometry, while raster-
ization starts with the geometry, projecting it 
onto the image plane. The availability of mod-
ern GPUs makes rasterization feasible for 
interactive real-time application. 

Synthetic images in the context of optical 
inspection 
In [19] we describe the idea of using computer 
graphics methods to allow systematic and 
thorough evaluation of automated optical in-
spection (AOI) systems. Instead of using real 
objects and acquisition systems, computer 
graphics methods are used to create large 
virtual sets of samples of test objects and to 
simulate image acquisition setups. We use 
procedural modeling techniques to generate 
virtual objects with varying appearance and 
properties, mimicking real objects and sample 
sets. Physical simulation of rigid bodies is de-
ployed to simulate the placement of virtual 
objects, and using physically-based rendering 
techniques we create synthetic images. These 
are used as input to an AOI system instead of 
physically acquired images. This enables the 
development, optimization, and evaluation of 
the image processing and classification steps 
of an AOI system independently of a physical 
realization. 
We demonstrated this approach for shards of 
glass, as sorting glass is one challenging prac-
tical application for AOI. In this paper, we focus 
on the aspects of image synthesis. 

Real-time rendering of shard distributions 
Our implementation includes real-time render-
ing of shard distributions by hardware rasteri-
zation on a GPU using OpenGL 4.2 [21]. 
As glass is an optically semi-transparent mate-
rial, a method of transparency rendering is 
necessary. OpenGL itself only provides alpha 
blending that can be used to render transpar-
ent materials. But rendering transparency us-
ing alpha blending implies rendering the ob-
jects in sorted order. As sorting for every 
rendered frame is impractical and even not 
always possible (e.g., for mutually overlapping 
objects) order-independent transparency ren-
dering (OIT) techniques have been invented. 
Our previous implementation as presented in 
[19] used depth peeling (introduced by 
Everitt [2]), a robust hardware-accelerated OIT 
method, but meanwhile we replaced this with 
an implementation of a more powerful OIT 
technique making use of per-pixel concurrent 
linked lists (introduced by Yang et al. [24]). OIT 
rendering using depth peeling can store only a 
quite limited number of material interactions 
per image pixel requiring multiple rendering 
passes in case of many interactions. Per-pixel 
linked list OIT, on the other hand, allows stor-
ing a high number of interactions in a single 
rendering pass, and the realistic rendering of 
the breaking edges of glass shards may re-
quire a high number of interactions as the edg-
es can be quite rough. 
As our previous publications [19] and [20] fo-
cus on the generation of realistic virtual objects 
and scenes based on measured data as well 
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