

fisheye lenses

panoramic cameras

rendering for the imax dome

rendering for virtual reality

photorealistic rendering

flat and boring bokeh

photorealistic rendering

interesting bokeh, distortion, and vignetting to match plate

approximate lens systems with simple polynomial

- collapse complicated ray tracing
- ightharpoonup simple function evaluations $\mathbf{A} = P_a(\mathbf{S})$ and $\mathbf{O} = P_o(\mathbf{S})$

 $P_a(\mathbf{S}): (x_s, y_s, dx_s, dy_s, \lambda) \mapsto (x_a, y_a, dx_a, dy_a, \tau_a)$

 $P_o(\mathbf{S}): (x_s, y_s, dx_s, dy_s, \lambda) \mapsto (x_o, y_o, dx_o, dy_o, \tau_o)$

optics use polynomials to ray trace

- approximate ray tracing using polynomials for lens designers [ZHB10]
- and analyse error in that domain directly

all based on Taylor expansion

- scary formulas for analytic differentiation required!
- not precise in outer rims [HD14]
 - use Taylor configuration, optimise coefficients

Taylor polynomials

- don't like cumbersome analytic Taylor expansions
 - needs pen and paper or computer algebra software
 - expand every lens element, insert, re-truncate polynomials
- want polynomial with only few coefficients (fast evaluation!)
- > and more precision (analytic Taylor expansion hardly tractable for high degree)
 - idea: select from higher-degree terms

$$\cos x = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

$$= f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \frac{f'''(0)}{4!}x^4 + \frac{f''(0)}{5!}x^5 + \cdots$$

fisheye lenses

- precision in periphery is important!
- current lens connections (for light tracing)
 - sample outer pupil uniformly
 - have terrible performance

sampling the outer pupil

- why didn't we bother earlier?
 - not such a bad strategy for long lenses

petzval kodak

sampling the outer pupil

- why didn't we bother earlier?
 - but terrible for fisheyes

fisheye aspherical

- parametrise the light fields for fisheyes
 - no plane/plane 180-degree limit

- parametrise the light fields for fisheyes
 - no plane/plane 180-degree limit
- sparse fitting of high-degree polynomials
 - use orthogonal matching pursuit (OMP)
 - enables trade-off between approximation error and evaluation speed

- parametrise the light fields for fisheyes
 - no plane/plane 180-degree limit
- sparse fitting of high-degree polynomials
 - use orthogonal matching pursuit (OMP)
 - enables trade-off between approximation error and evaluation speed
- aperture sampling for light tracing
 - enable the use in bidirectional path tracing etc.

- parametrise the light fields for fisheyes
 - no plane/plane 180-degree limit
- sparse fitting of high-degree polynomials
 - use orthogonal matching pursuit (OMP)
 - enables trade-off between approximation error and evaluation speed
- aperture sampling for light tracing
 - enable the use in bidirectional path tracing etc.
- fast GPU preview rendering implementation

plane/plane on sensor

- plane/plane on sensor
- plane/plane on aperture

- plane/plane on sensor
- plane/plane on aperture
- hemi-sphere/hemi-sphere on outer pupil

- \triangleright need to specify tangent frame for dx, dy
- avoid the singularity in interesting regions on the outer pupil

polynomial consists of these terms:

$$c \cdot \underbrace{\chi_s^{d_0} y_s^{d_1} d\chi_s^{d_2} dy_s^{d_3} \lambda_s^{d_4}}_{=:T_t} \text{ with degree } \sum_{i=0}^4 d_i \le d$$

polynomial consists of these terms:

$$c \cdot \underbrace{\chi_s^{d_0} y_s^{d_1} d\chi_s^{d_2} dy_s^{d_3} \lambda_s^{d_4}}_{=:T_t} \text{ with degree } \sum_{i=0}^4 d_i \le d$$

- find most closely matching polynomial for given set of ray traced reference samples
 - linear problem, Galerkin projection of function $\mathbf{O} = P_o(\mathbf{S})$ to

$$\mathbf{O} \approx \hat{\mathbf{\Phi}} \cdot \mathbf{c}$$

with

polynomial consists of these terms:

$$c \cdot \underbrace{\chi_s^{d_0} y_s^{d_1} d\chi_s^{d_2} dy_s^{d_3} \lambda_s^{d_4}}_{=:T_t} \text{ with degree } \sum_{i=0}^4 d_i \le d$$

- > find most closely matching polynomial for given set of ray traced reference samples
 - linear problem, Galerkin projection of function $\mathbf{O} = P_o(\mathbf{S})$ to

$$\mathbf{O} \approx \hat{\mathbf{\Phi}} \cdot \mathbf{c}$$

with

$$\hat{\Phi} = egin{pmatrix} T_1 & T_2 & \cdots & T_{N-1} & T_N \ T_1 & T_2 & \cdots & T_{N-1} & T_N \ \cdots & & & & & & \\ T_1 & T_2 & \cdots & T_{N-1} & T_N \end{pmatrix}$$

polynomial consists of these terms:

$$c \cdot \underbrace{x_s^{d_0} y_s^{d_1} dx_s^{d_2} dy_s^{d_3} \lambda_s^{d_4}}_{=:T_t} \text{ with degree } \sum_{i=0}^4 d_i \le d$$

- find most closely matching polynomial for given set of ray traced reference samples
 - linear problem, Galerkin projection of function $\mathbf{O} = P_o(\mathbf{S})$ to

$$\mathbf{O} \approx \hat{\mathbf{\Phi}} \cdot \mathbf{c}$$

with

$$\hat{\Phi} = \begin{pmatrix} T_1 & T_2 & \cdots & T_{N-1} & T_N \\ T_1 & T_2 & \cdots & T_{N-1} & T_N \\ \cdots & & & & \\ T_1 & T_2 & \cdots & T_{N-1} & T_N \end{pmatrix}$$

each row in $\hat{\Phi}$ corresponds to one input sample ($10 \times N$ ray traced references)

polynomial consists of these terms:

$$c \cdot \underbrace{x_s^{d_0} y_s^{d_1} dx_s^{d_2} dy_s^{d_3} \lambda_s^{d_4}}_{=:T_t} \text{ with degree } \sum_{i=0}^4 d_i \le d$$

- find most closely matching polynomial for given set of ray traced reference samples
 - linear problem, Galerkin projection of function $\mathbf{O} = P_o(\mathbf{S})$ to

$$\mathbf{O} \approx \hat{\mathbf{\Phi}} \cdot \mathbf{c}$$

with

$$\hat{\Phi} = \begin{pmatrix} T_1 & T_2 & \cdots & T_{N-1} & T_N \\ T_1 & T_2 & \cdots & T_{N-1} & T_N \\ \cdots & & & & \\ T_1 & T_2 & \cdots & T_{N-1} & T_N \end{pmatrix}$$

- each row in $\hat{\Phi}$ corresponds to one input sample ($10 \times N$ ray traced references)
- N depends on the max degree d as $N(d) = \binom{n+d}{d} = 4368$ (for 5 variables and degree d = 11)

polynomial consists of these terms:

$$c \cdot \underbrace{x_s^{d_0} y_s^{d_1} dx_s^{d_2} dy_s^{d_3} \lambda_s^{d_4}}_{=:T_t} \text{ with degree } \sum_{i=0}^4 d_i \le d$$

- find most closely matching polynomial for given set of ray traced reference samples
 - linear problem, Galerkin projection of function $\mathbf{O} = P_o(\mathbf{S})$ to

$$\mathbf{O} \approx \hat{\mathbf{\Phi}} \cdot \mathbf{c}$$

with

$$\hat{\Phi} = \begin{pmatrix} T_1 & T_2 & \cdots & T_{N-1} & T_N \\ T_1 & T_2 & \cdots & T_{N-1} & T_N \\ \cdots & & & & \\ T_1 & T_2 & \cdots & T_{N-1} & T_N \end{pmatrix}$$

- each row in $\hat{\Phi}$ corresponds to one input sample ($10 \times N$ ray traced references)
- N depends on the max degree d as $N(d) = \binom{n+d}{d} = 4368$ (for 5 variables and degree d = 11)
- standard procedure (linear least squares), but the matrix is too large for our taste!

finding a sparse polynomial

- use orthogonal matching pursuit [TG07]
- $hinkspace iteratively select most important columns in <math>\hat{\Phi}$

$$\hat{\Phi} \cdot \mathbf{c} = \begin{pmatrix} T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \\ T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \\ \cdots & & & & & \\ T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_{N-1} \\ c_N \end{pmatrix} \approx \mathbf{O}$$

finding a sparse polynomial

- use orthogonal matching pursuit [TG07]
- ightharpoonup iteratively select most important columns in $\hat{\Phi}$

$$\hat{\Phi} \cdot \mathbf{c} = \begin{pmatrix} T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \\ T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \\ \vdots & \vdots & \ddots & \vdots \\ T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_{N-1} \\ c_N \end{pmatrix} \approx \mathbf{O}$$

- use orthogonal matching pursuit [TG07]
- htherefore iteratively select most important columns in $\hat{\Phi}$

$$\hat{\Phi} \cdot \mathbf{c} = \begin{pmatrix} T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \\ T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \\ \vdots & \vdots & \ddots & \vdots \\ T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_{N-1} \\ c_N \end{pmatrix} \approx \mathbf{O}$$

- use orthogonal matching pursuit [TG07]
- $hilde{\hspace{-0.1cm}\hspace{-$

$$\hat{\Phi} \cdot \mathbf{c} = \begin{pmatrix} T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \\ T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \\ \cdots & & & & & & \\ T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_{N-1} \\ c_N \end{pmatrix} \approx \mathbf{O}$$

- use orthogonal matching pursuit [TG07]
- htherefore iteratively select most important columns in $\hat{\Phi}$

$$\hat{\Phi} \cdot \mathbf{c} = \begin{pmatrix} T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \\ T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \\ \cdots & & & & & & \\ T_1 & T_2 & T_3 & \cdots & T_{N-1} & T_N \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_{N-1} \\ c_N \end{pmatrix} \approx \mathbf{O}$$

- original just looks for largest impact on residual (fast)
- we got better results by re-fitting all coefficents c of all previously selected columns in the inner loop (somewhat slower)
- details see the paper

- use orthogonal matching pursuit [TG07]
- ightharpoonup iteratively select most important columns in $\hat{\Phi}$

$$\hat{\Phi} \cdot \mathbf{c} = \begin{pmatrix} T_1 & T_3 & \cdots & T_N \\ T_1 & T_3 & \cdots & T_N \\ \cdots & & & \\ T_1 & T_3 & \cdots & T_N \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_3 \\ \vdots \\ c_N \end{pmatrix} \approx \mathbf{O}$$

we use up to 40 coefficients per equation (out of 4368 for degree 11)

- use orthogonal matching pursuit [TG07]
- htherefore iteratively select most important columns in $\hat{\Phi}$

$$\hat{\Phi} \cdot \mathbf{c} = \begin{pmatrix} T_1 & T_3 & \cdots & T_N \\ T_1 & T_3 & \cdots & T_N \\ \cdots & & & \\ T_1 & T_3 & \cdots & T_N \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_3 \\ \cdot \\ c_N \end{pmatrix} \approx \mathbf{O}$$

- we use up to 40 coefficients per equation (out of 4368 for degree 11)
- works transparently for aspheric and anamorphic lens elements
 - in particular no analytic Taylor expansion required!

- use orthogonal matching pursuit [TG07]
- $ilde{f \Phi}$ iteratively select most important columns in $\hat{f \Phi}$

$$\hat{\Phi} \cdot \mathbf{c} = \begin{pmatrix} T_1 & T_3 & \cdots & T_N \\ T_1 & T_3 & \cdots & T_N \\ \cdots & & & \\ T_1 & T_3 & \cdots & T_N \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_3 \\ \cdot \\ c_N \end{pmatrix} \approx \mathbf{O}$$

- we use up to 40 coefficients per equation (out of 4368 for degree 11)
- works transparently for aspheric and anamorphic lens elements
 - in particular no analytic Taylor expansion required!
- \triangleright we also fit Fresnel transmittance τ to support coatings

use polynomials for path tracing

- we know how do do this for path tracing from the camera
- efficiently by sampling the aperture [HD14]:
 - sample point on aperture
 - iteratively find position and direction on sensor
- require derivatives of polynomial
 - Newton's method

use polynomials for light tracing

- light tracing/deterministic camera connection?
 - sample point on aperture
 - keep point in scene fixed
 - iteratively find position and direction on sensor
- transform probability densities for multiple importance sampling
 - details see the paper

aperture sampling via 2-step Newton iteration

- initial guess: straight on optical axis
- ▶ aperture error ⇒ update sensor direction
- ▶ error in outgoing direction ⇒ update sensor position

results: aperture sampling for light tracing (512spp)

results: aperture sampling for light tracing (closeup)

results: accuracy of sparse polynomials

- almost always better than Taylor or full polynomials (use higher degree terms!)
 - Taylor and complete: same degree (2, 3, 4)
 - Taylor and sparse: same number of coefficients
 - analytic Taylor expansion past degree 4 becomes very hard

results: accuracy of sparse polynomials

- almost always better than Taylor or full polynomials (use higher degree terms!)
 - > Taylor and complete: same degree (2, 3, 4)
 - > Taylor and sparse: same number of coefficients

	coeffs	fisheye	aspheric	anamorphic	double-gauss
Taylor 2	4	4.97 · 10 -1	$2.17 \cdot 10 - 1$	6.18 · 10 -2	6.03 · 10 -2
Complete 2	21	4.97 · 10 -1	2.17 · 10 -1	6.17 · 10 -2	6.02 · 10 -2
Sparse	4	8.21 · 10 -2	5.07 · 10 -2	4.85 · 10 −2	3.43 ⋅ 10 −2
Taylor 3	16	2.26 · 10 -3	1.54 · 10 -2	4.63 · 10 -4	8.76 · 10 -5
Complete 3	56	2.25 · 10 -3	1.54 · 10 -2	4.62 · 10 -4	8.69 · 10 -5
Sparse	16	2.40 · 10 -3	1.34 · 10 -2	3.25 ⋅ 10 −4	8.22 · 10 -5
Taylor 4	28	1.86 · 10 -3	1.52 · 10 -2	2.52 · 10 -4	7.07 · 10 -5
Complete 4	126	1.85 · 10 -3	1.49 · 10 -2	2.50 · 10 -4	6.98 · 10 -5
Sparse	28	9.72 · 10 -4	6.26 · 10 -3	4.40 · 10 -5	4.02 · 10 -5

real time implementation

- works on deep image buffer data (here from [ZKP13])
- evaluate generated polynomial code in GLSL shader
- proof-of-concept implementation
 - 137 ms, 1080x720 px, 144 spp, AMD Radeon R9 390
 - limited by texture fetches more than by lens evaluation
- performance can probably be improved a lot by doing something smarter
 - e.g. Deferred Image-based Ray Tracing/HPG talk on Tuesday...
 - or with rasterisation (Comparison of Projection Methods for Rendering Virtual Reality)

conclusion

- more precise polynomials
 - higher degree terms, still sparse (fast)
- simpler construction
 - no Taylor expansion (which becomes untractable for higher degrees)
- now also practical for bidirectional/Metropolis
 - aperture sampling for light tracing
- proof of concept GPU implementation
- source code available

