Sparse high-degree polynomials for wide-angle lenses
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motivation

fisheye lenses
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panoramic cameras




motivation

rendering for the imax dome

Imax Dome




motivation

rendering for virtual reality




motivation

photorealistic rendering

» flat and boring bokeh




motivation

photorealistic rendering

interesting bokeh, distortion, and vignetting to match plate




state of the art

approximate lens systems with simple polynomial

» collapse complicated ray tracing
» simple function evaluations A = P,(S)and O = P,(S)
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state of the art

optics use polynomials to ray trace

approximate ray tracing using polynomials for lens designers [ZHB10]
and analyse error in that domain directly
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state of the art

all based on Taylor expansion

» scary formulas for analytic differentiation required!
» not precise in outer rims [HD14]
» use Taylor configuration, optimise coefficients




state of the art

Taylor polynomials

- don't like cumbersome analytic Taylor expansions
» needs pen and paper or computer algebra software
» expand every lens element, insert, re-truncate polynomials

- want polynomial with only few coefficients (fast evaluation!)

- and more precision (analytic Taylor expansion hardly tractable for high degree)
» idea: select from higher-degree terms
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state of the art

fisheye lenses

» precision in periphery is important!
current lens connections (for light tracing)
» sample outer pupil uniformly

» have terrible performance
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state of the art

sampling the outer pupil

» why didn't we bother earlier?
» notsuch a bad strategy for long lenses

petzval kodak




state of the art

sampling the outer pupil

» why didn't we bother earlier?
» butterrible for fisheyes

fisheye aspherical




technical contributions

- parametrise the light fields for fisheyes
» no plane/plane 180-degree limit
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technical contributions

parametrise the light fields for fisheyes

» no plane/plane 180-degree limit
- sparse fitting of high-degree polynomials

» use orthogonal matching pursuit (OMP)

» enables trade-off between approximation error and evaluation speed
- aperture sampling for light tracing

» enable the usein bidirectional path tracing etc.
- fast GPU preview rendering implementation




parametrisation suitable for fisheye lenses
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parametrisation suitable for fisheye lenses

» plane/plane on sensor




parametrisation suitable for fisheye lenses

» plane/plane on sensor
» plane/plane on aperture




parametrisation suitable for fisheye lenses

» plane/plane on sensor
» plane/plane on aperture
» hemi-sphere/hemi-sphere on outer pupil
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parametrisation suitable for fisheye lenses

hemi-sphere/hemi-sphere on outer pupil

optical axis

- need to specify tangent frame for dx, dy
- avoid the singularity in interesting regions on the outer pupil
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finding a polynomial

» polynomial consists of these terms:

4
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finding a polynomial
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- find most closely matching polynomial for given set of ray traced reference samples
» linear problem, Galerkin projection of function O = P,(S) to
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finding a polynomial

polynomial consists of these terms:
4

c - x% yfl dx® dyf3 A% with degree Z d <d
%,—/ i=0

=:1;
- find most closely matching polynomial for given set of ray traced reference samples
» linear problem, Galerkin projection of function O = P,(S) to

O~d-c
with
Iy 1p - Iy Iy
. T T .. T T
|1 12 N—1 Iy
Iy 1, - Iy Iy

> eachrow in ® corresponds to one input sample (10 X N ray traced references)
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finding a polynomial

polynomial consists of these terms:
4

c - x% yfl dx® dyf3 A% with degree Z d <d
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=:1;
- find most closely matching polynomial for given set of ray traced reference samples
» linear problem, Galerkin projection of function O = P,(S) to

O~d-c
with
Iy 1, - Iy Iy
. T T .. T T
| 1 N—1 Iy
Iy 1, - Iy Iy

> each rowin @ corresponds to one input sample (10 X N ray traced references)

> N depends on the max degree d as N(d) = (”;d) = 4368 (for 5variables and degreed = 11)

- standard procedure (linear least squares), but the matrix is too large for our taste!




finding a sparse polynomial

use orthogonal matching pursuit [TGO7]
iteratively select most important columns in 0
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finding a sparse polynomial

use orthogonal matching pursuit [TGO7]
iteratively select most important columns in 0
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original just looks for largest impact on residual (fast)

we got better results by re-fitting all coefficents ¢ of all previously selected columns in the inner loop
(somewhat slower)

details see the paper
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finding a sparse polynomial

use orthogonal matching pursuit [TGO7]
iteratively select most important columns in 0
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- we use up to 40 coefficients per equation (out of 4368 for degree 11)
- works transparently for aspheric and anamorphic lens elements

» in particular no analytic Taylor expansion required!
- we also fit Fresnel transmittance 7 to support coatings




use polynomials for path tracing

» we know how do do this for path tracing from the camera
efficiently by sampling the aperture [HD14]:

» sample point on aperture

» iteratively find position and direction on sensor
require derivatives of polynomial

» Newton's method
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use polynomials for light tracing

» light tracing/deterministic camera connection?
» sample point on aperture
» keep pointin scene fixed
» iteratively find position and direction on sensor
» transform probability densities for multiple importance sampling
» details see the paper




aperture sampling via 2-step Newton iteration

» initial guess: straight on optical axis
» aperture error = update sensor direction
» error in outgoing direction = update sensor position

e




results: aperture sampling for light tracing (512spp

reference next event estiion
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results: aperture sampling for light tracing (closeup)

reference next event estimation

light tracing (ours




results: accuracy of sparse polynomials

» almost always better than Taylor or full polynomials (use higher degree terms!)
» Taylor and complete: same degree (2, 3, 4)
» Taylor and sparse: same number of coefficients
» analytic Taylor expansion past degree 4 becomes very hard
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results: accuracy of sparse polynomials

almost always better than Taylor or full polynomials (use higher degree terms!)
» Taylor and complete: same degree (2, 3, 4)
» Taylor and sparse: same number of coefficients

coeffs fisheye aspheric anamorphic double-gauss
Taylor 2 4 497-10-1 2.17-10-1 6.18-10-2 6.03-10-2
Complete 2 21 497-10-1 2.17-10-1 6.17-10-2 6.02-10 -2
Sparse 4 821-10-2 5.07-10-2 4.85-10-2  3.43-10-2
Taylor 3 16 2.26-10-3 154-10-2 4.63-10-4 8.76-10-5
Complete 3 56 2.25-10-3 1.54-10-2 4.62-10-4 8.69 10 -5
Sparse 16 240-10-3 1.34-10-2 3.25-10-4 8.22-10-5
Taylor 4 28 186-10-3 1.52-10-2 2.52-10-4 7.07-10-5

Complete 4 126 1.85-10-3 149-10-2 2.50-10-4 6.98-10 -5
Sparse 28 9.72-10-4 6.26-10-3 4.40-10-5 4.02-10-5




real time implementation

works on deep image buffer data (here from [ZKP13])

evaluate generated polynomial code in GLSL shader
proof-of-concept implementation

» 137 ms, 1080x720 px, 144 spp, AMD Radeon R9 390

> limited by texture fetches more than by lens evaluation

performance can probably be improved a lot by doing something smarter

» e.g. Deferred Image-based Ray Tracing/HPG talk on Tuesday..

» or with rasterisation (Comparison of Projection Methods for Rendering Virtual Reality)




conclusion

more precise polynomials
» higher degree terms, still sparse (fast)

» simpler construction
» no Taylor expansion (which becomes untractable for higher degrees)

now also practical for bidirectional/Metropolis
» aperture sampling for light tracing
proof of concept GPU implementation

» source code available




thank you for listening!

source code at
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