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Sparse high-degree polynomials for wide-angle lenses
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aspherical fisheye
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Figure 1: We accurately model the optical properties of lens systems and show efficient rendering of lens effects using physically-based path
tracing as well as interactive previews. The figure shows two different fisheye lens designs at wide open aperture f/2.8 (one is using aspherical
elements). The grid on the floor has about 1/3 meter spacing. While they both deliver sharp images in the centre, they show very different,
distinct aberrations in lateral and out of focus areas: the spherical fisheye is slightly brighter but has strong coma resulting in overall contrast
loss and shallow depth of field. The aspherical lens is better corrected and thus sharper, but shows subtle chromatic aberrations.

Abstract
Rendering with accurate camera models greatly increases realism and improves the match of synthetic imagery to real-life
footage. Photographic lenses can be simulated by ray tracing, but the performance depends on the complexity of the lens
system, and some operations required for modern algorithms, such as deterministic connections, can be difficult to achieve.
We generalise the approach of polynomial optics, i.e. expressing the light field transformation from the sensor to the outer
pupil using a polynomial, to work with extreme wide angle (fisheye) lenses and aspherical elements. We also show how sparse
polynomials can be constructed from the large space of high-degree terms (we tested up to degree 15). We achieve this using a
variant of orthogonal matching pursuit instead of a Taylor series when computing the polynomials. We show two applications:
photorealistic rendering using Monte Carlo methods, where we introduce a new aperture sampling technique that is suitable
for light tracing, and an interactive preview method suitable for rendering with deep images.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

1. Introduction

In photography the lens used to take a shot greatly influences the
overall appearance of the result. For instance the bokeh of a lens,
i.e. the quality of the out of focus blur, contributes much to how the
subject can be separated from the background and the perceived
impression of the blur. Similar holds for vignetting or blur caused
by spherical aberration.

† schrade@kit.edu

If such footage is to be combined with synthetic images, e.g. in
visual effects work, it is important to maintain the overall look of
the lens which has been used to take the real-world images. Re-
cently, creating content for virtual reality headsets has spawned
renewed interest in fisheye lenses with field of view around 180
degrees. One approach is to use a near-distortion free lens for the
live shoot and simulate the lens effects on both rendering and live
footage in post-production. This may require to shoot with more
than one camera at once to cover the full 180 degree field of view.
The other approach is to closely model the real lens and use this
model in rendering.
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S = (xs,ys,dxs,dys,λ)

O = (xo,yo,dxo,dyo,τo)

A = (xa,ya,dxa,dya,τa)

Figure 2: Schematic of a fisheye lens with aspherical elements
(JP,2014-052503,A). The light field in plane/plane parametrisation
with wavelength at the sensor (xs,ys,dxs,dys,λ) is transformed to
another plane/plane light field with Fresnel transmittance at the
aperture (xa,ya,dxa,dya,τa), and further to the outgoing light field
on the outer pupil (the last lens element) (xo,yo,dxo,dyo,τo) which
we parametrise as sphere/sphere to support outgoing angles devi-
ating from the optical axis by up to 180 degrees.

Our method is applicable in both scenarios through a simple and
powerful model for the transformation of the 5D light field at the
sensor (2D position, 2D direction, wavelength) to a 5D light field at
the outer pupil of the lens system (2D position, 2D direction, trans-
mittance). This transformation maps rays on the sensor to the outer
pupil and includes aberrations that appear in the lens system. Since
the light field transformation achieved by photographic lenses is
smooth, polynomials have a long tradition of being used as the nat-
ural basis to describe them [Sei57].

In this paper, we extend polynomial optics for computer graph-
ics [HHH12, HD14] to support more generic lenses, while at the
same time improving precision, simplifying the procedure, and
bounding computational complexity. In particular, we

• re-parametrise the light field to support extreme wide angles
(fisheye lenses) (Sec. 3.1) and integrate attenuation due to in-
ternal reflection to our model.
• show how to find a high-degree, sparse polynomial model of the

lens system (Sec. 3.2) to support for example aspherical ele-
ments without the need of an analytic series expansion.
• introduce an aperture sampling method suitable for light tracing

(Sec. 4.1) that can be used to connect light path vertices in the
scene to the sensor.
• show an algorithm to compute a preview of lens effects from

deep images at interactive rates (Sec. 4.2).

We provide source code to produce the lens model including ray
tracing, polynomial fitting, and the interactive visualisation.

2. Background and Previous Work

Photographic objectives are typically described as tables with cur-
vature radii and distances to the next element along the optical
axis, as well as material parameters including information about
the spectral index of refraction [Sch16]. Such lens schematics can
be obtained from books [Met48], databases [ODS10], or individual
patents, and the full lens geometry can be reconstructed from this
(see Fig. 2).

Optics There is a large body of literature on optics [Hec01,Kin92]
and lens design [Smi00,Smi05]. The foundation of our work is geo-
metrical optics, i.e. we ignore diffraction and interference. We also
assume that the index of refraction is piecewise constant and only
changes at the interface in between materials. Extending our ray
tracing to support other cases is possible [BG12, ABW14] but we
did not explore it.

Matrix Optics Linear (or matrix) optics has been introduced al-
most two centuries ago [Gau41]. In matrix optics a ray is defined
by its distance y to the optical axis and by the angle α between the
ray’s direction and the optical axis. The calculations can be simpli-
fied using the paraxial approximation, i.e. it is assumed that y and α

are close to zero. With these assumptions a first-order Taylor series
expansion around (y,α) = (0,0) can be used to construct matrices
describing, e.g. the refraction at a spherical element or the prop-
agation within a medium with constant refractive index. A matrix
describing a whole lens system can be calculated by simply multi-
plying the appropriate matrices for each refraction and propagation.
With this system matrix many rays can be transferred through the
lens system by multiplying their vector representation to the ma-
trix. In computer graphics, ray traced lens flares [HESL11] have
been extended using matrix optics to obtain a fast, practical algo-
rithm with lower precision [LE13].

The transformation of a lens system can also be quickly evalu-
ated using polynomial optics which we discuss next.

Polynomial Optics Seidel [Sei57] showed that interesting aber-
rations only arise for non-linear approximations, i.e. higher order
coefficients are required. Hullin et al. [HHH12] approximated lens
systems through polynomials to calculate lens flares. They derive
polynomials for refraction and reflection of rays with spherical and
cylindrical interfaces through Taylor series expansion. As in matrix
optics, the polynomial for the complete lens system can be built by
inserting polynomials into each other. The resulting polynomials,
however, are quite approximate when evaluated far from the point
of expansion (the optical axis) and can contain many coefficients
when constructed to high degree (degrees higher than 5 or 7 are
hardly manageable in a Taylor expansion).

There are simple sparse polynomials used in practice to model
lens distortions, e.g. the polynomials by Chen et al. [CJC∗10] or
the ones used in the open-source library lensfun [ZBK07]. They
operate on 2D images, i.e. the position on the sensor, and thus do
not transform the full light field.

Work in the area of lens design includes calculating the Tay-
lor polynomial to obtain correction polynomials modelling the er-
ror of an aberrated ray compared to linear optics, for instance see
Buchdahl [Buc68]. These polynomials can not only be used for ap-
proximating aberrations of a lens system [Hop76] but also for lens
design [ZHB10]. For use in rendering these polynomials are im-
practical, as many terms have to be evaluated per ray.

Lenses in Physically-based Rendering In rendering, the simplest
model is the pinhole camera; or the thin lens model (where the
aperture and the outer pupil coincide) which simulates a single,
infinitely thin lens without aberrations.

c© 2016 The Author(s)
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Kolb at al. [KMH95] introduced a more sophisticated model in-
cluding distortions and identified the problem of guiding rays from
the sensor through the aperture such that a large fraction of the
samples actually reaches the outer pupil. Their approach has been
improved by tabulated pupil sampling [SDHL11] which, however,
requires significant precomputation and storage for every focus dis-
tance and aperture stop. Wu et al. [WZHX13] propose a technique
to efficiently render spectral bokeh effects by explicit ray tracing
through the lens system.

Hanika and Dachsbacher [HD14] refine the Taylor expansion by
introducing a fitting step for higher precision when evaluating the
polynomial far from the optical axis. The polynomial is then used
in Monte Carlo path tracing, for which they introduced an aper-
ture sampling technique. It ensures that most rays (well above 90%
for real lenses) find the way through the aperture. This technique,
however, cannot be used for the other direction (light tracing), i.e.
when connecting path vertices in the scene to the outer pupil. In
such cases, many connections get rejected due to absorption inside
the lens system.

Hanika and Dachsbacher parametrise light fields in plane/plane
space. That is, rays store their intersections with two planes sepa-
rated by dz = 1 orthogonal to the optical axis. In this representation
the free space propagation of rays can be described exactly through
a linear polynomial, and enables precise refocusing of the lens by
moving the sensor without the need to recompute the polynomial.
We will make use of this parametrisation for the sensor light field.

Lenses in Interactive Rendering Effects such as depth of field
or chromatic aberrations can be rendered by rasterising and accu-
mulating the scene multiple times with different camera parame-
ters [HA90] or projection matrices [HSS97]. A different approach
is to apply lens effects as a post-processing step on a single image
with depth information [MH14]. Occluded regions are not part of
such an image, but a layered representation [LES10] of the scene
can greatly enhance the resulting image. Lee et al. even model ef-
fects like spherical and chromatic aberration by tracing several rays
per pixel through the scene layers.

As ray tracing an entire lens system is costly for real-time ren-
dering, most previous work considers only single lenses. Especially
when only first-order aberrations like depth of field are of interest,
it is easy to calculate the circle of confusion, i.e. the size of a ray
bundle originating in one point in the scene on the sensor from the
depth of the scene point.

3. Sparse Polynomials for Lightfield Transformation

Polynomials have proven to be a good mathematical tool to accu-
rately model lens aberrations in optics, and we also use this rep-
resentation in our work. As previous work [Sei57, Buc68, HHH12,
HD14] we treat a lens system as a black box with an incident light
field at one side (the sensor), and an outgoing light field on the
other side (outer pupil). For different focus distances, we move the
sensor away from the lens system to focus distances closer to the
outer pupil.

To construct the polynomials, we fit them to a set of ray traced
ground truth samples which we obtain by brute force random walks

through the lens system†. Our ray tracing supports both anamorphic
(cylindrical) and aspherical elements.

In particular, we construct two 5×5 polynomial systems (see Fig.
2 for illustration and notation):

Pa(S) : (xs,ys,dxs,dys,λ) 7→ (xa,ya,dxa,dya,τa) (1)

Po(S) : (xs,ys,dxs,dys,λ) 7→ (xo,yo,dxo,dyo,τo) (2)

computing respectively an aperture light field Pa(S) and the out-
going light field Po(S) from the sensor light field S. A ray with
wavelength λ goes through points (x{s,a,o},y{s,a,o}) with direc-
tions (dx{s,a,o},dy{s,a,o}) on the sensor, aperture, and outer pupil
respectively. τ{a,o} is the product of Fresnel transmittances along
the path through the lens system. The polynomial Po(S) is suffi-
cient to transform a ray through the lens system however, Pa(S) is
needed for aperture clipping / sampling. (see Sec. 4.1 / Fig. 5)

For high accuracy, we want to employ polynomials of high de-
gree. Since this results in a combinatorial explosion of coefficients
(requiring us to deal with tens of thousands of terms), we need to
find a sparse solution (Sec. 3.2).

3.1. Coordinate Spaces

In the following we briefly discuss the different coordinate spaces
which we need to be able to focus the image on the sensor, and to
parametrize directions of up to ±180◦.

Camera and World Space First, we transform from world space
into camera space, where the z-axis is aligned with the optical axis
and the origin is at the outer pupil, i.e. the sensor is set back by
the lens length; we measure lengths in millimetres. The transform
is essentially a rotation and, if world space lengths are measured in
millimetres, too, incurs no Jacobian determinant.

Light Fields We deal with three light fields in a lens system: at the
sensor, the aperture, and the outer pupil. As previous work [HD14]
we use the plane/plane parametrisation for the ones at the sensor
and the aperture. This enables us to quickly transform the sensor
light field for refocusing, since a constant offset along the optical
axis can be expressed accurately with a linear transform.

Fig. 3 illustrates the sphere/sphere parametrisation we use for
the light field at the outer pupil. We chose this to support a field of
view up to 360◦. The position (xo,yo) is encoded by projecting the
point on the outermost lens element onto the (x,y) plane perpendic-
ular to the optical axis. We assume this last lens element (the outer
pupil) is spherical in our implementation. The direction (dxo,dyo)
is projected down from the normalised hemisphere defined by the
intersection point of the ray with the sphere.

We choose a tangent frame such that there is no singularity in
the hemisphere facing the scene (see Fig. 3, left). The poles of this
parametrisation are at ±y instead.

† We restrict the ray tracing to transmission events; only for simulating
lens flares (not of interest in this work) it would be necessary to calculate
the reflection at each interface as well and to find suitable polynomials.
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optical axis

ray

(xo,yo)
(dxo,dyo)

Figure 3: Spherical coordinates on the outer pupil. A ray is
parametrised as position projected perpendicular to the optical
axis (xo,yo) and the normalised direction is similarly projected to
a disk centred around the normal at the point of intersection, yield-
ing (dxo,dyo). The tangent frames are oriented as shown on the left
(blue: normal, red: tangent in x-z-plane, green: bitangent orthogo-
nal to the other two vectors), to avoid a singularity on the optical
axis. The three vectors are basis vectors in our local coordinate
frame used for representing ray directions.

More precisely, to transform a vector to this local coordinate sys-
tem, we compute the matrix T(n) for a normal n on the sphere:

T(n) =

 nz/l −nxny/l nx
0 l ny
−nx/l −nynz/l nz

 , l :=
√

n2
x +n2

z (3)

One tangent vector (left column) is orthogonal to the normal n
(right column) in the x-z-plane and the other is calculated through
a cross product (middle column).

Since the output of the lens polynomial is in this local coordinate
system, we need to transform each ray to camera space and then
world coordinates for path tracing for instance.

Vector Space of Polynomial Coefficients Our polynomials con-
sist of terms of the form

c · xd0
s yd1

s dxd2
s dyd3

s λ
d4
s with degree

4

∑
i=0

di ≤ d. (4)

The coefficients c (together with the standard + and · operations)
form a vector space c∈P , which is isomorphic toRN(d) for degree
d. For instance degree d = 11 will result in N(d) =

(n+d
d
)
= 4368

coefficients for n = 5 variables and we are interested in finding a
sparse solution c′ = (c′0,c

′
1, . . . ,c

′
s−1) ∈Rs with s nonzero coeffi-

cients such that the sum of squared errors

∑
(S, O)∈Samples

∥∥O−Po(S)
∥∥2

2 (5)

is minimal for the ray traced reference samples (S,O). A sparse
solution makes storage and evaluation more efficient.

3.2. Normalised Orthogonal Matching Pursuit

Higher-degree polynomials Naturally, better polynomial fits can
be achieved by including coefficients for terms with higher degree.
As we have to find polynomial terms for five output variables in
five input variables, going to high degree causes a combinatorial

explosion and many more coefficients will have to be considered
(5 ·N(d) for odd degrees d from 5 to 15: 1260, 3960, 10010, 21840,
42840, 77520). This can quickly become a problem in the whole
processing pipeline: when constructing the polynomial, during fit-
ting, storage, or evaluation of the resulting model later on.

We observe that we can get more precise fits when including
terms of higher degree, even when employing an overall lower
number of coefficients. We use a maximum of 40 coefficients per
output variable, i.e. a maximum of 200 total which gives a good
trade-off between the number of terms to evaluate and small error
(Sec. 6). To obtain such fits, we use a simple approach which avoids
the Taylor series altogether.

Since finding the best coefficients for the vector space of all
(mixed) powers of (x,y,dx,dy,λ) is a linear problem, we use lin-
ear least squares to directly compute the optimal fit. This enables
fast fitting of high-degree polynomials (we tried up to degree 15)
with tens of thousands of coefficients. Next we show how to pick
the most important coefficients for an efficient evaluation of the re-
sulting polynomials later on.

Finding a Sparse Coefficient Vector We start from the full con-
figuration of a degree d polynomial in the variables of the light field
at the sensor (xs,ys,dxs,dys,λ).

We construct one polynomial for every output variable. For this,
we initialise a dense M×N(d) matrix, where M is the number of
ray traced reference light field samples (S,O):

Φ̂ =


x1 y1 · · · λ

d−1
1 dy1 λ

d
1

x2 y2 · · · λ
d−1
2 dy2 λ

d
2

· · ·
xM yM · · · λ

d−1
M dyM λ

d
M

 , (6)

with the evaluation of each of the mixed terms (columns in Φ̂) for
each of the samples (rows in Φ̂). We want to find a sparse co-
efficient vector c such that

∥∥∥Φ̂ · c−b
∥∥∥

2
is minimal for ray traced

references on the outer pupil stored in b. (i.e. b stores the outgo-
ing light field). We use ten times more ray tracing samples than
coefficients , to make the system overdetermined and to sufficiently
sample the light fields (i.e. M = 10 ·N(d)). We will solve this sys-
tem once for each of the ten equations: five for the light field at the
aperture A, and five at the outer pupil O (see Fig. 2).

Obtaining a sparse solution c′ for the problem Φ̂ · c′ = b is not
trivial. For instance just dropping the smallest coefficients does not
work well. Thus, we employ a variant of orthogonal matching pur-
suit (OMP), which has been found to yield good results and to be
simple to implement [TG07]. Although OMP is tailored towards
input corrupted by noise – which is not the case for our ray traced
input as transmission through the lens system is deterministic – the
algorithm is still a good match because the polynomial approxima-
tion may result in some smoothing of details. The procedure (out-
lined in Alg. 1) takes the full matrix Φ̂ and the ray traced target
vector b, and returns a sparse matrix Φ and a corresponding coeffi-
cient vector c′. The number of nonzero coefficients s can be set as
a user input, thus giving us control over precision and the ability to
bound the required computation when evaluating the polynomial.

The particular changes we made to the original algorithm to yield
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better results is to calculate the exact sum of squared errors with
fitted coefficients (Alg. 1, line 3) instead of approximating the error
through a dot product. After adding s vectors the error is still not
minimal so that we allow for replacing vectors afterwards (similar
to [ARN06, JTD11]) if this reduces the error (Alg. 1, line 7).

Algorithm 1 Orthogonal Matching Pursuit with replacement

Require: Φ̂,b,s . full matrix, target, number of nonzero
coefficients

1: c′← 0, Φ← 0, r← b
2: for i = 1 . . .N(d) do
3: am = argminam

{‖(Φ∪am) · c′−b‖2}, am = Φ̂·,m
4: if i < s then
5: Φ←Φ∪am // add column
6: else // look for best replacement
7: Φ·,k← am, argmink{‖(Φ\ak ∪am) · c′−b‖2}
8: end if
9: // linear least squares

10: c′← argminc′{‖Φ · c
′−b‖2}

11: r← b−Φ · c′
12: if ‖r‖2 < ε break
13: end for
14: return Φ,c′

4. Applications

4.1. Physically-based Rendering

In Monte Carlo light transport we handle paths starting at the sensor
in the same way as Hanika and Dachsbacher [HD14]: by sampling a
point on the aperture, solving for position and direction on the sen-
sor S, and then simply evaluating the polynomial. For the reverse
direction, i.e. when connecting a transport path started at a light
source to the camera, they compute an approximation to the inverse
polynomial S = P−1

o (.) to transport a ray from the outer pupil to
the sensor. Next, they iteratively evaluate the forward polynomial,
compute the error on the outer pupil, and propagate it back until
they find the point on the outer pupil that was given as an input. This
procedure ensures that path tracing and light tracing yield the same
result, but it is not an efficient sampling technique because many
of the constructed rays will be obstructed by the aperture. This is
because the procedure requires sampling the connecting point on
the outer pupil instead of the point on the aperture.

We deviate from this in two main aspects. Firstly, we sample the
aperture instead of the outer pupil. This is a big improvement as we
will see later, especially for fisheye lenses. Secondly, we only use
the forward polynomials and their derivatives. While simplifying
the implementation, this also ensures identical results for path and
light tracing. Given a point on the aperture and in the scene, we
solve for a position and direction S on the sensor and again eval-
uate the polynomial. This solve operation, however, is completely
different to the path tracing case, since we have a 2D constraint far
away from the outer pupil (the first path vertex in the scene) and on
the other side of the polynomial’s evaluation direction.

The aperture sampling routine for light tracing is summarised in
Alg. 2. We start with a given wavelength λ, a point ô in the scene

Algorithm 2 Aperture Sampling from the Light

Require: ô, Âxy . 3D scene point, 2D on aperture
1: S = (xs,ys,dxs,dys,λ)← (0,0,0,0,λ)
2: for i = 1 . . .100 do
3: // aperture point from current sensor estimate
4: Axy← Pa(S)
5: // error vector on aperture
6: ∆Axy← Axy− Âxy
7: // Jacobian aperture point 7→ sensor direction
8: Ja← dAxy/dSω

9: // 1) update direction based on aperture position
10: Sω← Sω + J−1

a ·∆Axy
11: O← Po(S) // full outer pupil ray
12: o← project O to plane at target point ô
13: ∆Oω← direction offset to point to target
14: // Jacobian sensor position 7→ outer pupil direction
15: Jo← dOω/dSxy
16: // 2) update position based on outer pupil direction
17: Sxy← Sxy + J−1

o ·∆Oω

18: if ‖∆Oω‖2 < ε and ‖∆Axy‖2 < ε break
19: end for
20: return S

and a sampled point Âxy on the aperture. We search for a posi-
tion and direction S on the sensor such that the ray goes through
the specified aperture point and such that, after leaving the outer
pupil, the ray intersects the point ô in the scene. To achieve this,
we employ a two-stage Newton method: the first stage (Alg. 2,
line 10) updates the sensor direction based on the difference be-
tween the sampled aperture position Âxy and the current estimate
Axy. The second stage (Alg. 2, line 17) updates the sensor position
based on the difference in outgoing direction. It is important to note
that the difference in direction ∆Oω is computed in camera space
first and then transformed to the sphere/sphere parametrisation of
the outer pupil light field. The algorithm terminates when both er-
rors, in aperture and outgoing direction, are smaller than a defined
threshold ε (we use 1e-4 in our implementation).

Transforming Sampling Densities To transform sampling densi-
ties between measure spaces, we need to compute Jacobian deter-
minants [Kol33], [HD14, Sec. 4.1]. These will also need to respect
the Jacobian of the transformation to sphere/sphere space. Note that
for path tracing, most implementations are interested in an outgo-
ing direction density in projected solid angle which is the same as
the direction in sphere/sphere parametrisation; in this case no addi-
tional density transformation has to take place.

For light tracing, we need to adjust the Monte Carlo estimator as
we now sample a point on the aperture. Starting from the sample
contribution for path tracing:

cpt =
f
p
=W (S)/

(
p(Axy)

∥∥∥∥ dSω

dAxy

∥∥∥∥
)

(7)

where f is the measurement contribution, p the probability den-
sity function (PDF), W (S) the sensor responsivity, and the Jacobian∥∥dSω/dAxy

∥∥ signifies the change in direction at the sensor Sω with
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respect to change of position on the aperture Axy. For light tracing
this becomes:

clt =
f
p
=W (S)/

(
p(Axy) · ‖Jv‖ ·

∥∥∥∥dOxy

dAxy

∥∥∥∥
)

(8)

where the Jacobians here transform vertex area measure at the aper-
ture to the spatial part on the outer pupil Oxy. Note that an addi-

tional Jacobian ‖Jv‖ = cosθ =
√

R−O2
x −O2

y/R, where R is the
curvature radius of the last lens element, is needed to transform the
projected hemisphere position measure of Oxy to vertex area mea-
sure on the actual spherical surface of the last lens element. We
compute this via the shared measurement space dSω, as∥∥dOxy/dAxy

∥∥= ∥∥dOxy/dSω

∥∥ ·∥∥dSω/dAxy
∥∥ (9)

from 2×2 sub-matrices in the analytic Jacobians of the polynomials
Po(S) and Pa(S), respectively. Next event estimation for light trac-
ing can then proceed, in the same way as with a thin lens model,
by evaluating the geometry term from the point on the outer pupil
to the scene point. The normal needs to be the geometric normal
on the outer pupil lens element, and both cosines have to be in-
cluded in the geometry term since the outgoing direction is given
in projected solid angle.

4.2. Interactive Rendering

The evaluation of the final polynomial is fast enough for use in
interactive applications. Compared to previous work (e.g. [MH14]
or [LES10]) we do not have to intersect rays with lenses, neither are
we limited to lower order aberrations as long as the necessary terms
are included in the polynomial. Using the aperture polynomial and
its derivatives, we can generate rays that go through sampled points

Algorithm 3 Interactive Preview
Require: tex,(sx,sy),n . RGB-D texture, sensor position, number

of samples
1: for i = 1 . . .n do
2: (xa,ya)← sample_aperture(i/n)
3: // find (dxs,dys) s.t. ray goes through (xa,ya)
4: S← solve_aperture((xs,ys),(xa,ya))
5: O′← toWorldspace(Po(S))
6: // (rx,ry) ∈ [0,1], rz ∈ [zmin,zmax] from mipmap
7: r← toTextureSpace(O′)
8: l← levelmax // start with lowest resolution
9: while no intersection found do

10: (dmin,dmax)← tex((rx,ry), l)
11: d← 0 // distance for ray propagation
12: if rz < dmin then
13: d← (dmin− rz)/rdz, l← l−1
14: else if rz < dmax then
15: if dmax−dmin < ε return intersection
16: l← l +1
17: end if
18: d←min(d, distance to next texel at level l)
19: Propagate r by a distance of d
20: end while
21: end for

on the aperture. We can trace these rays through the scene for ex-
ample by ray marching an RGB-D texture. We calculate the min
max mipmap of the depth values stored in the texture, allowing us
to propagate the ray in larger steps for areas farther away from pos-
sible intersection points. Larger step sizes accelerate the algorithm
through a decreased number of texture accesses and a reduced num-
ber of iterations for finding an intersection. The complete algorithm
of our GLSL shader is given in Alg. 3.

5. Implementation Details

We implemented the orthogonal matching pursuit and least squares
fitting using the library Eigen. Due to the high degree of our poly-
nomials the matrices and vectors we use for calculating the sparse
polynomial (Sec. 3.2) contain so many terms that single-precision
floating point variables are not precise enough. We observed this
through an increasing error of the fitted polynomial when increas-
ing the degree and hence, the number of coefficients. We ran most
experiments with degree 11. Note that going much higher than that
will result in ill-conditioned polynomials and radial basis function
interpolation may be better suited for even higher precision. This
will result in much longer run times during evaluation, however.

6. Results

Aperture sampling Since aperture sampling from the light starts
with the initial guess on the optical axis (i.e. S = (0,0,0,0,λ)), we
need slightly more iterations to reach convergence than in the path
tracing case which has a more reasonable initial guess. Actual num-
bers depend a lot on the error threshold ε, viewing direction and
lens, but in most cases Alg. 2 converges in less than 20 iterations.
The path tracing case needs only about 4 iterations.

It is essential to fit the polynomials Po and Pa to the same set
of light field sample rays, to ensure consistency for the two-stage
Newton method. Also, as the allowed fitting error is increased or
the number of coefficients pushed too low (below ≈10 per output
variable), the method will take more iterations and start to converge
to a slightly biased solution.

Fig. 4 shows an equal sample comparison of path tracing and
the two light tracing methods: via pupil sampling [HD14] and via
aperture sampling (Alg. 2). The second method is far superior, even
for wide open apertures. Fig. 5 illustrates why: it visualises the set
of visible samples as well as the set we obtain via aperture sampling
on the full pupil. Especially for fisheye lenses, the image of the
aperture is very small on the outer pupil and will result in a lot of
absorbed samples if not sampled carefully.

Accuracy of sparse polynomials We compare the precision and
number of coefficients of our sparse polynomial to the Taylor poly-
nomial and to the complete polynomial containing all terms up to
a defined degree (Tbl. 1). All results were calculated with the same
15,000 reference rays. We used the same rays for error evaluation as
for fitting. For the Taylor polynomial the average sum of squared er-
rors per ray decreases with increasing degree, as higher-order terms
help to model the lenses aberrations more precisely. The error of the
complete polynomial is in most cases slightly smaller but the poly-
nomial contains many more coefficients. Fig. 6 shows the error on
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reference pt nee: 4:54 min lt outer pupil sampling: 15:23 min lt aperture sampling: 9:13 min

Figure 4: Equal sample comparison (512 spp) between rendering algorithms for the aspherical fisheye lens (pt nee: path tracing with next
event estimation, lt: light tracing). The light tracer with outer pupil sampling [HD14] performs very badly, as expected when looking at the
fraction of visible samples on the outer pupil (see Fig. 5). Background image from hdrlabs.com.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

aperture sampling
visible samples

outer pupil
-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

aperture sampling
visible samples

outer pupil

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

aperture sampling
visible samples

outer pupil
-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

aperture sampling
visible samples

outer pupil

Figure 5: Sampling efficiency illustrated as convex hulls of samples
on the outer pupil (normalised to outer pupil housing radius). The
lenses are (left to right, top to bottom): very fast double Gauss lens
(large aperture), classic double Gauss, the aspherical fisheye lens,
an anamorphic lens. The aperture has six-blades and was as wide
open as possible. The benefits of aperture sampling increase with
higher f-stop. Previous work [HD14] samples the outer pupil (grey
circle) for light tracing.

the outer pupil for different lenses for both the Taylor polynomial
and the complete polynomial.

With our sparse polynomials we can define the number of co-
efficients per equation exactly for fast evaluation later on. In most
cases our fitting algorithm finds the best terms from the degree 11
polynomial so that the average error is smaller than the one of the
Taylor polynomial with the same number of coefficients. (Tbl. 1)
Adding even more terms to the polynomial has only a minor influ-
ence on the error. (see Fig. 6)

Fig. 7 shows the average transmittance of the outgoing light field
O plotted vs. the distance to the optical axis on the outer pupil.
For most long or moderately wide angle lenses this plot is almost
constant, as for the 100mm lens on the right. The left plot shows
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Figure 6: Errors of the Taylor polynomial and the complete polyno-
mial for four different lenses for degrees 1–8. For sparse polynomi-
als with small numbers of terms the error first gets reduced greatly
but changes only slowly afterwards when adding more terms.

fisheye- canon- double-
fisheye-ii aspherical anamorphic gauss

Taylor 1 (2) 5.07 ·10−1 2.29 ·10−1 1.11 ·10−1 6.06 ·10−2

Complete 1 (6) 5.07 ·10−1 2.28 ·10−1 1.11 ·10−1 6.06 ·10−2

Sparse (2) 5.07 ·10−1 2.28 ·10−1 1.11 ·10−1 6.06 ·10−2

Taylor 2 (4) 4.97 ·10−1 2.17 ·10−1 6.18 ·10−2 6.03 ·10−2

Complete 2 (21) 4.97 ·10−1 2.17 ·10−1 6.17 ·10−2 6.02 ·10−2

Sparse (4) 8.21 ·10−2 5.07 ·10−2 4.85 ·10−2 3.43 ·10−2

Taylor 3 (16) 2.26 ·10−3 1.54 ·10−2 4.63 ·10−4 8.76 ·10−5

Complete 3 (56) 2.25 ·10−3 1.54 ·10−2 4.62 ·10−4 8.69 ·10−5

Sparse (16) 2.40 ·10−3 1.34 ·10−2 3.25 ·10−4 8.22 ·10−5

Taylor 4 (28) 1.86 ·10−3 1.52 ·10−2 2.52 ·10−4 7.07 ·10−5

Complete 4 (126) 1.85 ·10−3 1.49 ·10−2 2.50 ·10−4 6.98 ·10−5

Sparse (28) 9.72 ·10−4 6.26 ·10−3 4.40 ·10−5 4.02 ·10−5

Table 1: The average of the sum of squared errors per ray of our
sparse polynomial is in almost all cases smaller than the error of
both the complete polynomial and the Taylor polynomial with com-
parable numbers of coefficients per equation.

a fisheye with slightly above 180 degree field of view, with clearly
visible vignetting due to Fresnel transmittance. This is frequently
reduced by applying lens coatings and is thus important to model.

Timings Since it is impossible to compare a fisheye render to a
thin lens base line, we used a double Gauss lens instead. While a
single evaluation of a camera sample or connection is significantly
more expensive than the thin lens counter part, we found that in a
setting with moderate complexity for visual effects work the over-
head becomes negligible (see Fig. 8).
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Figure 7: Fresnel transmittances for two lenses: a fisheye and a
100mm prime, plotted versus position on the outer pupil and aver-
aged over all other dimensions. While this can be reasonably as-
sumed to be constant for long lenses, there is significant vignetting
for fisheye lenses.

Figure 8: The test scene [Nic15] we used to evaluate the speed
impact of our camera model over the thin lens model in a produc-
tion complexity setting (33M primitives). Bidirectional path trac-
ing took 185s for one sample/pixel in a 2048×1152 render with the
shown double Gauss lens (top), and 184s using the thin lens with
a closely matching field of view (bottom). The speed difference is
mainly due to the slightly different set of paths to be traced.

fisheye- canon- double-
fisheye-ii aspherical anamorphic gauss

original OMP 1.69 ·10−3 1.15 ·10−2 1.59 ·10−3 6.51 ·10−5

(18 s) (24 s) (21 s) (22 s)
with fit 1.36 ·10−3 9.25 ·10−3 6.75 ·10−5 5.85 ·10−5

(1:02 min) (1:02 min) (0:58 min) (1:03 min)
with replacement 9.58 ·10−4 5.40 ·10−3 3.85 ·10−5 3.61 ·10−5

(42:11 min) (44:18 min) (37:10 min) (40:10 min)
replacement 8.55 ·10−4 6.27 ·10−3 4.04 ·10−5 3.86 ·10−5

and fit (6:58 min) (6:01 min) (3:37 min) (5:56 min)

Table 2: Comparison of the errors and execution times of the
different variants of the orthogonal matching pursuit algorithm.
(28 terms per equation from a degree 8 polynomial fitted single
threaded to 2000 samples on an Intel Core i7-4790k processor)

Figure 9: Our preview shows lens effects applied on RGB-D cube-
maps (source: [ZKP13]) at interactive rates (137 ms per 1080x720
image with 144 samples per pixel on a AMD Radeon R9 390 graph-
ics card) when the scene is in focus (left), out of focus (middle) and
out of focus with a smaller aperture (right).

Orthogonal Matching Pursuit While the original orthogonal
matching pursuit algorithm is fast, the error can be reduced further
by allowing the replacement of terms. In our implementation this
includes an exhaustive search for the least important terms in the
current sparse solution. By spending more time on choosing im-
portant terms (e.g. through fitting the coefficients and calculating
the squared error we want to minimize) we can speed-up the algo-
rithm (see Tbl. 2). Our goal is to calculate a polynomial with few
coefficients and small error and it is hence acceptable to spend more
time once for finding a solution, as it saves time when evaluating
the polynomial. The errors for sparse polynomials in Tbl. 1 were
obtained allowing replacements and calculating the least squares
fit for every term to be added (fourth row in Tbl. 2).

Interactive preview Evaluating our sparse polynomials can be
used as a post-process working on images with depth information.
While there exist more elaborate algorithms on interactive as well
as real-time rendering lens effects, our implementation is usable as
an interactive preview. (Fig. 9)
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7. Conclusion and Future Work

We presented a polynomial model to describe the light field trans-
formation happening in photographic lens systems, which is suit-
able to describe extreme wide angle systems such as fisheye lenses.
We showed how to create a sparse model for fast evaluation and
how to use the derivatives of the polynomials to perform aperture
sampling for deterministic connections to the sensor. This is useful
for bidirectional path tracing and variants of Metropolis light trans-
port which move the first path vertex after the camera. We also
demonstrated how the sparse polynomial model is useful in inter-
active applications as it can be evaluated very quickly on the GPU.

When trying to match footage of a certain lens, it can be hard
to obtain the exact lens description table. If it is available, it can
be even harder to obtain data for potentially applied coatings.
Our current implementation describes the outgoing light field in
sphere/sphere coordinates, regardless of the last lens element. For
cylindrical or aspherical outer pupils, this could be changed to more
closely represent the actual lens geometry, to simplify the geometry
term handling for path tracing. Furthermore, we do not treat zoom
lenses so far. If required, this can be handled as an additional input
variable of the polynomials.

The performance of the OMP fitter we employ can be time con-
suming (see Tbl. 2). On the other hand, standard OMP does not
yield the best results out of the box. We see room for future im-
provement here.

As our implementation of the interactive preview is straight-
forward it would be interesting to see how large the overhead for
evaluating the lens polynomial is in an existing framework for ex-
ample the one by Lee et al. [LES10].
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