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Figure 1: A dielectric plate with textured GGX roughness (α = 0 . . . 1, η = 1.5). (Left) Traditional BSDFs consider only single scattering
on microsurfaces, thereby neglecting significant energy where roughness is high. (Middle) Our new BSDF includes all orders of multiple
scattering on microsurfaces and achieves 100% energy conservation with only 19% more render time in this scene. (Right) Visualization of
the energy in the middle image that arises from paths that have at least one multi-microsurface interaction.

Abstract

Modeling multiple scattering in microfacet theory is considered an
important open problem because a non-negligible portion of the
energy leaving rough surfaces is due to paths that bounce multi-
ple times. In this paper we derive the missing multiple-scattering
components of the popular family of BSDFs based on the Smith
microsurface model. Our derivations are based solely on the origi-
nal assumptions of the Smith model. We validate our BSDFs using
raytracing simulations of explicit random Beckmann surfaces.

Our main insight is that the microfacet theory for surfaces with the
Smith model can be derived as a special case of the microflake the-
ory for volumes, with additional constraints to enforce the presence
of a sharp interface, i.e. to transform the volume into a surface.
We derive new free-path distributions and phase functions such that
plane-parallel scattering from a microvolume with these distribu-
tions exactly produces the BSDF based on the Smith microsurface
model, but with the addition of higher-order scattering.

With this new formulation, we derive multiple-scattering micro-
facet BSDFs made of either diffuse, conductive, or dielectric mate-
rial. Our resulting BSDFs are reciprocal, energy conserving, and
support popular anisotropic parametric normal distribution func-
tions such as Beckmann and GGX. While we do not provide closed-
form expressions for the BSDFs, they are mathematically well-
defined and can be evaluated at arbitrary precision. We show how
to practically use them with Monte Carlo physically based render-
ing algorithms by providing analytic importance sampling and un-
biased stochastic evaluation. Our implementation is analytic and
does not use per-BSDF precomputed data, which makes our BS-
DFs usable with textured albedos, roughness, and anisotropy.
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1 Introduction

The rendering of photorealistic images is based on two main pil-
lars: a global illumination method for computing light transport in
a scene, and reflection or scattering models to reproduce the appear-
ance of real materials. This paper advances in the latter field, where
microfacet theory constitutes a powerful and widely used means to
describe the interaction of light with rough surfaces.

The concept of modeling rough surfaces with randomly ori-
ented microfacets was developed in the 1960s [Beckmann and
Spizzichino 1963]. Microfacet light reflectance theory began
shortly thereafter in physics [Smith 1967; Torrance and Spar-
row 1967] with practical single-scattering microsurface reflectance
models first introduced to graphics by Cook and Torrance [1982]
and later generalized [Stam 2001] to consider both reflection and
transmission, forming the combined bidirectional scattering distri-
bution function (BSDF). This microfacet framework is quite gen-
eral, permitting a variety of facet distributions such as Beckmann
and GGX [Walter et al. 2007]. Nearly all parametric BSDFs in ren-
dering today use or have been inspired by microfacet theory [Hill
et al. 2015].

Despite the prevalance of microfacet theory—especially in physi-
cally based rendering—nearly all popular parametric BSDFs con-
sider only single scattering from the microsurface, i.e. they ac-
count for self-shadowing and masking of reflected/refracted light,
but omit the outgoing light that would scatter multiple times be-
tween microfacets (Fig. 1). However, accurately accounting for mi-
crosurface multiple scattering events is required to ensure energy
conservation and to exhibit important aspects of appearance, such
as strong color saturation in highlights on rough conductors, or to
accurately predict transmission through dielectric plates (Fig. 1).
Thus, modeling multiple scattering is considered an important un-
solved problem in microfacet theory.

In this paper, we show how to model multiple scattering with the
Smith microsurface model. Our key insight is that—subject to its
assumptions—scattering from surface microfacets can be formu-
lated as a volumetric scattering process using a new variant of mi-
croflake theory [Jakob et al. 2010]. Given a microfacet distribution
(Beckmann, GGX) and a material property (conductor, dielectric,
diffuse) we derive free-path distributions and phase functions for
a new variety of volumes. Further, because the microfacets are
not uniformly oriented in the volumes, the phase function is of the



anisotropic-media (microflake) kind. By generalizing volumetric
scattering in this way, we produce a microvolume whose plane-
parallel reflectance is identical to the reflectance from the origi-
nal microsurface model. However, in contrast to the surface-based
approach, the volumetric scattering framework enables us to find
practical ways to model multiple scattering.

In practice, we express surface scattering as the plane-parallel
scattering from a microvolume, computed efficiently using a low-
variance Monte Carlo estimator (a random walk). The distribution
arising from the single-scattering component of this random walk
has an analytic expression: it exactly produces the single-scattering
Smith BSDFs [Walter et al. 2007]. For surfaces with plausible
roughness, the random walks are very short and can be included
directly inside of Monte Carlo rendering algorithms. Note that our
volume-scattering process models the interaction with a surface, but
its application in rendering is virtual in that no displacements occur,
i.e. the incident and exitant location are the same and the resulting
plane-parallel radiometry produces a BSDF.

Our derivations are general and support a variety of anisotropic mi-
crofacet distributions. Our volume scattering model relies only on
the original physical assumptions of the Smith model. For further
physical validation we compare the single and multiple scattering
predicted by our model to Monte Carlo simulations of explicit ran-
dom anisotropic Beckmann surfaces.

In summary, our paper makes the following contributions:

• Deriving the free-path distributions for volumetric media that
correspond to the Smith microsurface (Sec. 5).

• Deriving the phase function for the volumetric-scattering in-
terpretation of the Smith microsurface (Sec. 6).

• Introducing a random-walk approach to microsurface scatter-
ing based on the volumetric free paths and phase functions
(Sec. 7).

• Defining the multiple-scattering BSDF of the Smith model
based on the statistical expectation of the random walks
(Sec. 8).

• Explaining how to implement the multiple-scattering BSDF
as a classic material plugin in a rendering engine with impor-
tance sampling, stochastic evaluation, and optimizations that
reduce the variance of the stochastic estimate.

2 Previous Work

There is an enormous body of work on reflectance from rough sur-
faces. Our focus here is limited to parametric BSDFs.

Microsurface Multiple Scattering in Graphics Very few works
in graphics consider microsurface multiple scattering.

The BRDF proposed by Kelemen et al. [2001] could be consid-
ered the first to move beyond the non-physical linear combination
of specular and Lambertian lobes by proposing a specular-albedo-
modulated diffuse term derived with reciprocity and energy conser-
vation in mind. By design, this BRDF enforces an azimuthally in-
variant multiple-scattering lobe, which our ground-truth simulation
shows to be inaccurate. Further, anisotropic materials and trans-
mission were not treated. Jakob et al. [2014] introduced a general
framework for multilayer materials with rough interfaces, includ-
ing scattering between layers. In this work, they generalize (in
the Fourier domain) the heuristic of Kelemen et al. to transmission.
This approach reintroduces much of the missing energy of previous
BSDF models, but inherits the unphysical azimuthal invariance of
the multiple scattering. Furthermore it requires an involved imple-
mentation with precomputed tables of Fourier coefficients and has

limited application for textured materials. The fundamental differ-
ence with our work is that these BRDFs are not associated with
microsurface models, i.e. they do not make predictions regarding
the light transport emerging from a microsurface defined by spe-
cific assumptions. Hence, they can be regarded as techniques used
to enforce energy conservation in BSDFs. In contrast, we are inter-
ested in deriving the multiple scattering predicted by the assump-
tions of the Smith microsurface model; energy conservation comes
naturally as a side effect of the model.

For the case of V-groove microsurfaces with Lambertian proper-
ties, a double-scattering model was proposed by Oren and Na-
yar [1995]. In the specific case of spherically shaped surface dents,
interreflections for either mirror or diffuse properties have analytic
solutions [Koenderink et al. 1999]. In this paper, we investigate
the Smith model, which is known to be the most physically real-
istic geometric-optics model and regarded as the state of the art in
computer graphics [Hill et al. 2015].

Microsurface Multiple Scattering in Physics Several works in
physics [Bourlier and Berginc 2004; Li et al. 2011; Li et al. 2013; Li
et al. 2014] focus on the albedo of rough surfaces with consideration
of multiple scattering, but do not derive a full BSDF. To the best
of our knowledge, we are the first in either graphics or physics to
derive and validate the complete radiometry of Smith microsurface
scattering. In physics, microfacet models are often validated against
numerical simulations on explicit surfaces (e.g. noise functions).
We apply the same validation methodology to our model.

Relation to Volumetric Scattering Our novel variant of partic-
ipating media is related to several previous works. The scattering
phase functions of our volume-scattering model involve a gener-
alization of sampling from the distribution of visible normals and
thus our phase function sampling builds on Heitz and d’Eon [2014].
Because the phase function depends on the incident direction, our
volume-scattering model is typically referred to as anisotropic me-
dia [Kuščer and Summerfield 1969; Williams 1978] and described
in graphics by microflake theory [Jakob et al. 2010; Heitz et al.
2015]. Plane-parallel reflectance from anisotropic media has been
well studied in physics, particularly for the purpose of describing
light transport in tree canopies [Furfaro and Ganapol 2007]. Our
use of infinite densities to model a surface, together with meth-
ods for treating transmission for dielectrics, are (to the best of our
knowledge) new.

3 Review of Microfacet Theory

In this section, we introduce the notations that will be used through-
out this paper. For an exhaustive review of microfacet theory we
refer the reader to [Heitz 2014].

Ω spherical domain (4π steradians)
(θ, φ) spherical coordinates:

ω = (cosφ sin θ, sinφ sin θ, cos θ)
ω1 · ω2 dot product
|ω1 · ω2| absolute value of the dot product
〈ω1, ω2〉 dot product clamped to 0
χ+(a) Heaviside function: 1 if a > 0 and 0 if a ≤ 0
U uniform random number in [0, 1]

Table 1: Mathematical notation used in this paper.



ωg = (0, 0, 1) geometric normal
ωm = (xm, ym, zm) microfacet normal
ωi = (xi, yi, zi) incident direction (ωi · ωg > 0)
ωo = (xo, yo, zo) outgoing direction
τ microsurface abscissa in (x, y)-plane
h microsurface height on z-axis
P 1(h) distribution of heights
C1(h) cumulative distribution of heights
C−1(U) inverse of C1

D(ωm) distribution of normals (NDF)
Dωi(ωm) distribution of visible normals (VNDF)
Λ(ω) the Smith Lambda function
G1(ωi,ωm) masking (height-averaged)
Glocal

1 (ωi,ωm) masking (local)
Gdist

1 (ωi) masking (distant & height-averaged)
Gdist

1 (ωi, h) masking (distant) at height h
Gdist

1 (ωi, h, τ) masking (at distance in [0, τ ]) at height h
G2(ωi,ωo,ωm) masking-shadowing
fm(ωi,ωo,ωm) material micro-BSDF
f(ωi,ωo) rough material BSDF
p(ωi,ωo) rough material phase function

Table 2: Physical quantities used in microfacet models.

3.1 The Smith Model

A statistical model of a random microsurface is described by its
distributions of heights P 1(h) and normals D(ωm), where h is the
displacement of the surface at some position measured from the av-
erage plane of the surface at h = 0. The main assumption of the
Smith model [Smith 1967] is that these distributions are indepen-
dent (heights and normals are uncorrelated) as illustrated in Fig. 2
and can thus be chosen independently. In order to satisfy the as-
sumptions of the Smith model, it turns out that the final reflectances
are independent of the particular choice of height distribution. For
instance, using either the uniform or the Gaussian height distribu-
tion results in the same BSDF.

D(ωm)P 1(h)

Figure 2: The Smith microsurface model. The normals of the
microsurface are independent of their heights.

The Distribution of Heights The elevations h of a microsurface
are distributed according to the distribution of heights P 1(h). It
is a probability density function (PDF) and we denote the cumu-
lative distribution function (CDF) of heights as C1(h) and the in-
verse CDF as C−1. In our supplemental material, we implement
our model with the uniform and Gaussian distributions of heights.

The Distribution of Normals The distribution of normals
D(ωm)—commonly referred to as the normal distribution func-
tion (NDF)—describes the statistical distribution of the micro-
facets’ orientations. In our supplemental material, we implement
our model with the anisotropic Beckmann and GGX distributions.

The Smith Masking Function A corollary of the Smith assump-
tion is that the visibility of a non-backfacing point on the microsur-
face depends only on its height h and not on its normal ωm. Hence,

the probability that a point is visible from a direction ωi is the prod-
uct of the local masking function Glocal

1 (ωi,ωm) = χ+(ωi · ωm)
(omitting back-facing orientations) and the distant masking func-
tion

Gdist
1 (ωi, h) =

(
C1(h)

)Λ(ωi) , (1)

which is the probability that the ray does not intersect the microsur-
face. We provide more details on the function Λ in Section 5. The
visibility of a point on the microsurface is then [Heitz 2014]:

G1(ωi,ωm, h) = Glocal
1 (ωi,ωm)Gdist

1 (ωi, h). (2)

The distant masking function averaged over all heights is

Gdist
1 (ωi) =

∫ +∞

−∞
Gdist

1 (ωi, h)P 1(h) dh =
1

1 + Λ(ωi)
(3)

and the masking function averaged over the heights is

G1(ωi,ωm) = Glocal
1 (ωi,ωm)Gdist

1 (ωi). (4)

The Masking-Shadowing Function The masking-shadowing
function is often obtained by neglecting correlations arising from
the heights and using the product of two masking functions:
G2(ωi,ωo,ωm) = G1(ωi,ωm)G1(ωo,ωm) [Walter et al.
2007]. However, considering the correlation of heights is necessary
in order to model multiple scattering using a random walk on the
microsurface. Thus we use the height-correlated distant masking-
shadowing function [Heitz 2014]

G2(ωi,ωo,ωm) = Glocal
1 (ωi,ωm)Glocal

1 (ωo,ωm)Gdist
2 (ωi,ωo),

(5)

which is obtained by integrating the masking and shadowing func-
tions over the heights

Gdist
2 (ωi,ωo) =

∫ +∞

−∞
Gdist

1 (ωi, h)Gdist
1 (ωo, h)P 1(h) dh. (6)

If ωi and ωo are on the same side of the microsurface (i.e. reflec-
tion), it has the closed form

Gdist
2 (ωi,ωo) =

1

1 + Λ(ωi) + Λ(ωo)
. (7)

If ωi and ωo are on opposite sides of the microsurface (transmis-
sion) it is [Pinel et al. 2005]

Gdist
2 (ωi,ωo) = B(1 + Λ(ωi), 1 + Λ(ωo)), (8)

where B is the Beta function. We provide a proof in Appendix A.

The Distribution of Visible Normals It is often useful to con-
sider the distribution of normals visible to a uniform set of incom-
ing rays along direction ωi. In the Smith model with heights and
normals being independent, the statistical distribution of normals
ωm visible from the incident direction ωi does not depend on the
height but only on the cosine factor of the normals:

Dωi(ωm) =
〈ωi,ωm〉D(ωm)∫

Ω
〈ωi,ωm〉D(ωm) dωm

. (9)

From this equation, we can see that the distribution is normalized,
i.e.

∫
Ω
Dωi(ωm) dωm = 1. An important property of the Smith

model is that, because heights and normals are independent, the
average distant masking function from Eq. (3) is also the normal-
ization factor of the distribution of visible normals from Eq. (9):

Dωi(ωm) =
Gdist

1 (ωi) 〈ωi,ωm〉D(ωm)

cos θi
=
〈ωi,ωm〉D(ωm)

cos θi (1 + Λ(ωi))
.

(10)



3.2 The Single-Scattering BSDF

In order to complete the overview of microfacet theory, we briefly
recall the equations of the classic single-scattering BSDFs based on
the Smith model.

Generic Rough Materials A single scattering rough BSDF f is
obtained by integrating the product of the distribution of visible nor-
malsDωi , the micro-BRDF fm of the microfacets (i.e. the material
of which the microsurface is made), and the probability that ωm is
visible for ωo given that it is visible for ωi (i.e. G2(ωi,ωo,ωm)

G1(ωi,ωm)
):

f(ωi,ωo) =
1

cos θo
(11)∫

Ω

fm(ωi,ωo,ωm) 〈ωo,ωm〉
G2(ωi,ωo,ωm)

G1(ωi,ωm)
Dωi(ωm) dωm.

Rough Dielectric If the material is dielectric, then the distribu-
tion of visible normals is transformed into a distribution of outgo-
ing directions ωo by specular reflection and specular transmission.
The micro-BSDF of the material is [Walter et al. 2007]

f diel
m (ωm,ωi,ωo) =

F (ωi,ωhr ) δωhr
(ωm)

4 |ωi · ωhr |

+
η2
o (1− F (ωi,ωht)) δωhr

(ωm)

(ηi(ωi · ωht) + ηo(ωo · ωht))
2 , (12)

where ωhr and ωht are the half vectors of reflection and transmis-
sion, respectively, F is the Fresnel factor, and ni and no are the in-
dices of refraction of the incident and opposite sides, respectively.
The rough dielectric BSDF is the sum of the BRDF f diel

r (reflection)
and BTDF f diel

t (transmission):

f diel(ωi,ωo) =f diel
r (ωi,ωo) + f diel

t (ωi,ωo), (13)

f diel
r (ωi,ωo) =

F (ωi, ωhr)G2(ωi,ωo, ωhr)D(ωh)

4 |ωi · ωg| |ωo · ωg|
, (14)

f diel
t (ωi,ωo) =

|ωi · ωht| |ωo · ωht|
|ωi · ωg| |ωo · ωg|

·

n2
0 (1− F (ωi, ωht))G2(ωi,ωo, ωht)D(ωht)

(ni(ωi · ωht) + no(ωo · ωht))2 . (15)

Rough Conductor Rough conductors are modeled using the
same BRDF as rough dielectrics f cond

r = f diel
r , but without a trans-

missive component, i.e. f cond
t = 0.

Rough Diffuse If the material is diffuse, then the distribution of
visible normals is transformed into a distribution of outgoing direc-
tions by a diffuse reflection with the micro-BRDF

f diff
m (ωm,ωi,ωo) =

a

π
〈ωo,ωm〉, (16)

where a ∈ [0, 1] is albedo of the microsurface. The rough diffuse
BRDF then becomes

f diff(ωi,ωo) = (17)

a

π

1

cos θo

∫
Ω

〈ωo,ωm〉
G2(ωi,ωo,ωm)

G1(ωi,ωo,ωm)
Dωi(ωm) dωm.

Note that, in general, this equation has no analytic solution. Heitz
and Dupuy [2015] propose an unbiased estimator computed by gen-
erating samples ωm from Dωi and evaluating the diffuse micro-
BRDF for these normals.

4 Insight and Overview
In this section, we develop an intuition for establishing the link be-
tween the Smith shadowing function, microsurface multiple scatter-
ing, and volumetric scattering in microflake volumes. We imagine
a scattering volume enclosing the random surface and consider how
to trace explicit depths, microfacets, reflections and subsequent in-
tersections within the volume so as to produce transport that is con-
sistent with the Smith model. We begin by recalling why multi-
ple scattering is missing from most BSDFs and how the shadowing
function is related to attenuation in classical volumetric transport.

Shadowing and Multiple Scattering in Microfacet Theory Mi-
crofacet BSDFs represent the set of outgoing directions for a ray
after leaving the microsurface. Hence, they have to model all inter-
sections and scattering on the microsurface. Because multiple scat-
tering is difficult to model, classic models simply set the multiple-
scattering contribution to 0 by using a shadowing function (Fig. 3).

Shadowing Multiple scattering

Figure 3: The shadowing function on microsurfaces.

Shadowing and Multiple Scattering in Microflake Theory An
interesting observation is that microflake phase functions incorpo-
rate a “Smith-like” masking function through the normalization of
the distribution of visible normals Dωi (as in Eq. 10), but do not
incorporate shadowing [Heitz et al. 2015]. This is because multi-
ple scattering inside the microflake medium is accounted for by the
volumetric integrator, as illustrated in Fig. 4. Hence, microflake
phase functions represent the distribution of outgoing directions di-
rectly after one interaction and before leaving the medium and be-
fore considering further intersections and scattering in the medium.
The shadowing function on microsurfaces is thus equivalent to the
volumetric attenuation that is sampled by the volumetric integrator.

Intersections Phase function

Figure 4: Multiple scattering in microflake volumes.

Our Smith Multiple-Scattering Model The primary observation
behind our model is that the Smith microsurface model is equiva-
lent to an inhomogeneous microflake volume with a free-path dis-
tribution (Sec. 5) and a phase function without shadowing (Sec. 6).
Our model accounts for multiple scattering on microsurfaces anal-
ogous to volumetric scattering, by repeatedly tracing rays until an
exit event is sampled (Fig. 5). We define the multiple-scattering
BSDF as the expectation of these random walks (Sec. 7 and 8).

Intersections (Sec. 5) Phase function (Sec. 6)

ω1 = −ωi

h1
ω2 h2

ω3
p(−ω1, .)

p(−ω2, .)

Figure 5: Multiple scattering on microsurfaces (Sec. 7 and 8).



5 Intersection with the Microsurface

The first milestone of our multiple-scattering model is the ability to
track the heights hr of the multiple intersections on the microsur-
face, as illustrated in Fig. 6. In this section, we show that the scat-
tering on a Smith microsurface can be modeled with the equation of
volumetric scattering, i.e. by means of an extinction coefficient σt
(Sec. 5.1) and a free-path distribution that depends on it (Sec. 5.2).
We will see that the resulting medium has all of the properties ex-
pected of a heightfield (Sec. 5.3).

Configuration In this section, we derive the intersection model
for a ray traveling in direction ωr of slope cot θr , starting at ab-
scissa τ = 0 and height hr , and a target height hr+1, as illustrated
in Fig. 6.

hr
hr+1ωr

0 τ
Figure 6: Intersection with the microsurface.

5.1 The Microsurface Extinction Coefficient

In this section, we propose a construction of the Smith volumetric
extinction coefficient σSmith

t based on microflake theory [Jakob et al.
2010; Heitz et al. 2015] with an additional constraint to enforce a
surface-like interface.

Non-Uniform Microsurface Density In a microflake volume,
the presence of matter at some point is described by density
ρmicroflake. Similarly, the presence of the microsurface at some height
is described by the height PDF P 1. However, in the Smith model,
we assume a heightfield microsurface that is always below the ray.
For a ray at height h, we know that the microsurface is located in
(−∞, h] and the microsurface density is thus given by the condi-
tional height PDF

ρSmith(h′) = P 1(h′ | h′ ≤ h)

=
χ+(h′ ≤ h)P 1(h′)

C1(h)
. (18)

producing an inhomogeneous microsurface density at a given ray
height h,

ρSmith(h) =
P 1(h)

C1(h)
. (19)

Microfacet Projected Area In a microflake volume, a ray trav-
eling towards direction ωr can intersect only microflakes such that
〈−ωr,ωm〉 > 0. The probability of interaction increases with the
projected area σmicroflake(ωr) of the microflakes onto −ωr:

σmicroflake(ωr) =

∫
Ω

〈−ωr,ωm〉D(ωm) dωm. (20)

Note that σmicroflake(ωr) = σmicroflake(−ωr) because microflake dis-
tributions are symmetric, i.e. D(ωm) = D(−ωm). However, this
is not the case for microfacet distributions. In Appendix B, we show

that the function Λ from the Smith model is such that

σSmith(ωr) =

∫
Ω

〈−ωr,ωm〉D(ωm) dωm

= Λ(ωr) cos θr, (21)

σSmith(−ωr) =

∫
Ω

〈ωr,ωm〉D(ωm) dωm

= (1 + Λ(ωr)) cos θr. (22)

Microsurface Extinction Coefficient In the volumetric mi-
croflake framework, the extinction coefficient is proportional to the
volume density and the projected area of the microflakes

σmicroflake
t (ωr) = ρmicroflake σmicroflake(ωr). (23)

For the same reason, the extinction coefficient in the Smith micro-
surface model is given by the density of the microsurface multiplied
by the projected area of the microfacets:

σSmith
t (ωr, h) = ρSmith(h)σSmith(ωr)

= Λ(ωr) cos θr
P 1(h)

C1(h)
. (24)

Fig. 7 illustrates σSmith
t for different incident directions.

P 1(h) σSmith
t (ωr, h) σSmith

t (ωr, h) σSmith
t (ωr, h)

h h h h

ωr ωr ωr

Figure 7: The microsurface extinction coefficient for varying inci-
dent directions ωr .

5.2 The Microsurface Free Path

Microsurface Intersection Probability Being a classical mi-
croflake volume, the intersection probability densities at distances
τ and τ + dτ are uncorrelated. Consequently, the probability that
there is no intersection in [0, τ ] decreases exponentially with the
integral of the extinction coefficient:

Gdist
1 (ωr, hr, τ)

= exp

(
−
∫ τ

0

σSmith
t (ωr, hr + τ ′ cot θr)

∣∣∣∣∣∣∣∣∂d∂τ
∣∣∣∣∣∣∣∣ dτ ′)

=

(
C1(hr)

C1(hr + τ cot θr)

)Λ(ωr)

=

(
C1(hr)

C1(hr+1)

)Λ(ωr)

, (25)

where
∣∣∣∣ ∂d
∂τ

∣∣∣∣ is the Jacobian of the abscissa parametrization1. This
probability Gdist

1 (ωr, hr, τ) is the masking function at distances in
the interval [0, τ ]. The masking function from Eq. (1) is the limit at
∞:

Gdist
1 (ωr, hr,∞) = Gdist

1 (ωr, hr). (26)

1The distance d traveled by the ray depends on the angle θr :
d =

√
τ2 + (τ cot θr)2 = τ

sin θr
. We account for this in the density inte-

gral by multiplying by the parametrization Jacobian
∣∣∣∣∣∣ ∂d∂τ ∣∣∣∣∣∣ = 1

sin θr
. Note

that the Smith [1967] g function is the product g = σSmith
t

∣∣∣∣∣∣ ∂d∂τ ∣∣∣∣∣∣.



Free-Path Distribution The free-path CDF C1
hr,ωr

(hr+1) can
be regarded as the microsurface CDF C1 modified by the visibility
due to the ray starting at position hr and traveling in direction ωr .
It is defined by the probability that there is an intersection in [0, τ ]
and is given by

C1
hr,ωr

(hr+1) =

 0 if τ < 0
1−Gdist

1 (ωr, hr, τ) if 0 ≤ τ <∞
1 if τ =∞, (27)

where τ = ∞ represents the ray leaving the microsurface without
intersecting it. In Appendix C, we provide the derivation of the
associated free-path PDF

P 1
hr,ωr

(hr+1) =


0 if hr+1 < hr and θr < π

2
0 if hr+1 > hr and θr > π

2

|Λ(ωr)| P 1(hr+1) C1(hr)Λ(ωr)

C1(hr+1)1+Λ(ωr)

+ Gdist
1 (ωr, hr,∞) δ∞(hr+1), (28)

which can also be called the distribution of visible heights.
The Dirac delta distribution δ∞ accounts for the probability
Gdist

1 (ωr, hr,∞) that the ray does not intersect the surface. An
example of this PDF is illustrated in Fig. 8.

P 1(h) P 1
hr,ωr

(hr+1)

hr = 1, θr = 0.5

Figure 8: The free-path PDF (or “distribution of visible heights”).

Free-Path Sampling To sample an intersection between the mi-
crosurface and a ray starting from height hr+1 and traveling in di-
rection ωr , we generate a sample in the PDF P 1

hr,ωr
. To achieve

this, we invert the CDF from Eq. (27). The first observation is that
there is a probability Gdist

1 (ωr, hr,∞) that the ray will leave the
microsurface without intersecting it. We generate a uniform ran-
dom number U and if U ≤ Gdist

1 (ωr, hr,∞) then the ray leaves the
microsurface and τ =∞. Otherwise, we find τ such that

U = C1
hr,ωr

(hr+1) = 1−Gdist
1 (ωr, hr, τ). (29)

By multiplying the distance τ by the slope cot θr of the ray direc-
tion we obtain the next height

hr+1 = C−1

(
C1(hr)

(1− U)1/Λ(ωr)

)
. (30)

We provide a proof of this result in Appendix D. Our height sam-
pling procedure is summarized in Alg. 1.

Algorithm 1 Sample height hr+1(ωr, hr,U)

if U ≥ 1−Gdist
1 (ωr, hr,∞) then . Leave the microsurface

hr+1 =∞
else . Intersect the microsurface

hr+1 = C−1
(

C1(hr)

(1−U)1/Λ(ωr)

)
end if
return hr+1

5.3 Properties of the Microsurface Intersection Model

Table 3 highlights several important properties of our medium’s
path sampling and we can see that they match properties expected

from a heightfield. For instance, rays traveling downwards (θr >
π
2

) always intersect the microsurface and they cannot go below the
lowest point of the surface at heightC−1(0), while there is always a
probability for rays to escape finite, classic volumetric media, even
with high density. Another example is that rays traveling perfectly
upwards (θr = 0) always leave the microsurface without intersect-
ing it, which is expected from a heightfield.

θr ωr ρSmith hr+1 interpretation
σSmith
t

0 ↑ 0 ∞ the ray leaves
the microsurface

< π
2
↗ decrease

with τ [hr, C
−1(1)] or∞ the ray moves away

from the microsurface

= π
2
→ constant hr

the ray stays
at the same height

> π
2
↘ increase

with τ [C−1(0), hr]
the ray approaches
the microsurface

Table 3: Properties of the microsurface intersection model.

6 Phase Function of the Microsurface

The second milestone of our multiple-scattering model is to com-
pute how the light is scattered by the microsurface at the intersec-
tion points. In the previous section, we computed the intersections
with the microsurface using the volumetric microflake framework.
We now continue with this analogy and model how light is scattered
by the visible microflakes (Sec. 6.1). This results in a microflake
phase function (Sec. 6.2) similar to the generic microfacet BSDF
from Eq. (11) and with all of the expected properties of microflake
phase functions (Sec. 6.3).

Configuration We now model how light traveling along a di-
rection ωr is scattered at an intersection point, as illustrated in
Fig. 9. In order to use the common notation for phase functions
p(ωi,ωo) = p(−ωr,ωo) (without reversing signs), we now set
ωi = −ωr . Note that in all other sections, ωi denotes the first
incident direction ω1 = −ωi.

−ωi = ωr

p(−ωr,ωo)

Figure 9: Phase function on the microsurface.

Observations It is important to note that p does not represent the
scattering at exactly one point on the microsurface (i.e. of only one
microfacet), but instead the average scattering at all microfacets
that can potentially be intersected by the ray at this point of the
microsurface. As normals are independent of heights on the Smith
microsurface, there is no a priori information regarding the nor-
mal ωm at an intersection point besides that it is visible to the ray,
i.e. ωi · ωm > 0.

Another observation is that p is a microflake phase function and
not a microfacet BSDF. Unlike a BSDF, it does not represent the
scattering of a geometric surface patch. In the example shown in
Fig. 6, the ray is going upwards (θi > π

2
) and a BSDF model cannot

be defined for such a configuration.



6.1 Distribution of Visible Normals

In the microflake framework, the definition of the distribution of
visible normals (VNDF) is [Heitz et al. 2015]:

Dωi(ωm) =
〈ωi,ωm〉D(ωm)

σSmith(−ωi)
. (31)

Using σSmith(−ωi) from Eq. (22), the distribution of visible nor-
mals for any θi ∈ [0, π) becomes

Dωi(ωm) =
〈ωi,ωm〉D(ωm)

cos θi (1 + Λ(ωi))
, (32)

which is the classic form of Eq. (10) defined for θi ≤ π
2

. This con-
firms that the distribution of visible normals for the microsurface—
derived within the microflake framework—yields the same result
as the classic microfacet derivations. Furthermore, as we have ver-
ified that the definition of σSmith(−ωi) is valid for any θi ∈ [0, π)
(Sec. 5.1), we can now also use this definition of the VNDF for
configurations where the ray goes upwards (θi > π

2
).

6.2 Derivation of the Phase Functions

Starting from the VNDF, we derive the microflake phase functions
associated with different microsurface materials.

Generic Phase Function As shown by Heitz et al. [2015], the
phase function for a distribution of visible normals Dωi and a
micro-BSDF fm(ωi,ωo,ωm) is

p(ωi,ωo)=

∫
Ω

fm(ωm,ωi,ωo) 〈ωo,ωm〉Dωi(ωm) dωm, (33)

which is the cosine-weighted BSDF of the generic, rough mate-
rial from Eq. (11) without the shadowing function. The generic
procedure to importance sample the phase functions is to sample
a normal ωm from Dωi , and an outgoing direction ωo from the
cosine-weighted micro-BSDF fm(ωi,ωo,ωm) cos θo.

Algorithm 2 Sample generic phase function
ωm ← sample Dωi

(w,ωo)← sample fm(ωi,ωo,ωm) cos θo

Dielectric Phase Function Inserting the dielectric micro-BSDF
from Eq. (12) into Eq. (33), and expanding Dωi from Eq. (32)
yields

pdiel(ωi,ωo) =
F (ωi,ωhr )Dωi(ωhr )

4 |ωi · ωhr |

+ 〈ωo,ωm〉
η2
o (1− F (ωi,ωht))Dωi(ωht)

(ηi(ωi · ωh) + ηo(ωo · ωh))2 . (34)

To importance sample pdiel, we sample a normal ωm from Dωi ,
then choose to perform either a specular reflection or refraction
with a probability equal to the Fresnel term [Walter et al. 2007];
the weight of the sample is w = 1 (Alg. 3).

Algorithm 3 Sample dielectric phase function
ωm ← sample Dωi

if U < F (ωi,ωm) then
ωo ← reflect(ωi, ωm) . outgoing direction

else
ωo ← transmit(ωi, ωm) . outgoing direction

end if
w ← 1 . weight

Conductor Phase Function Conductor materials can be han-
dled similar to dielectrics but without transmission:

pcond(ωi,ωo) =
F (ωi,ωhr )Dωi(ωhr )

4 |ωi · ωhr |
. (35)

To importance sample pcond, we sample a normal ωm from Dωi ,
apply the reflection operator, and the weight of the sample is w =
F (ωi,ωm) (shown in Alg. 4).

Algorithm 4 Sample conductor phase function
ωm ← sample Dωi

ωo ← reflect(ωi, ωm) . outgoing direction
w ← F (ωi,ωm) . weight

Diffuse Phase Function By inserting the diffuse micro-BSDF
from Eq. (16) into Eq. (33) and expanding Dωi from Eq. (32) we
obtain

pdiff(ωm,ωi,ωo) =
a

π

∫
Ω

〈ωo,ωm〉Dωi(ωm) dωm, (36)

which has no closed-form evaluation. An unbiased estimator is
obtained by sampling a normal ωm from Dωi and evaluating
a
π
〈ωo,ωm〉 as proposed by Heitz et al. [2015] (Alg. 5).

Algorithm 5 Stochastic evaluation of diffuse phase function
ωm ← sample Dωi

return a
π
〈ωo,ωm〉

To importance sample f diff
p , we sample a normal ωm fromDωi and

next a diffusely reflected direction ωo in the hemisphere of ωm
(shown in Alg. 6).

Algorithm 6 Sample diffuse phase function
ωm ← sample Dωi

ωo ← diffuse(ωi, ωm) . outgoing direction
w ← a . weight

6.3 Properties of the Phase Functions

Since we derived the phase function p from the equations of the mi-
croflake framework, it inherits the expected, associated properties.

Reciprocity Microfacet BSDFs are reciprocal, i.e. all terms asso-
ciated with ωi have their counterpart associated with ωo. However,
we have seen that p accounts for masking towards ωi (which is the
normalization factor ofDωi ), but it does not incorporate shadowing
towards ωo. It is thus non-reciprocal in the sense of microfacet BS-
DFs, but it is reciprocal in the sense of microflake phase functions,
which satisfy the following reciprocity constraint:

σmicroflake(ωi) p(ωi,ωo) = σmicroflake(ωo) p(ωo,ωi). (37)

As explained in Sec. 5.1, the function σSmith is not symmetric and
we need to account for the sign:

σSmith(−ωi) p(ωi,ωo) = σSmith(−ωo) p(ωo,ωi). (38)

By expanding σSmith(−ωi) from Eq. (22) we obtain the Smith phase
function reciprocity constraint:

(1 + Λ(ωi)) cos θi p(ωi,ωo) = (1 + Λ(ωo)) cos θo p(ωo,ωi).
(39)

The phase functions pdiel, pcond and pdiff derived in Sec. 6.2 satisfy
this property.



Energy Conservation A microflake phase function is energy
conserving, i.e. ∫

Ω

p(ωi,ωo) dωo = 1, (40)

if the micro-BRDF fm from which it is derived represents a non-
absorptive material. A dielectric microsurface is always non-
absorptive because all of the energy is either reflected or transmitted
and pdiel is energy conserving. A conductor microsurface is non-
absorptive only if all of the energy is reflected (i.e. if the Fresnel
term equals 1), and a diffuse microsurface is non-absorptive if the
albedo equals 1.

7 Random Walk on the Microsurface

In this section, we explain how to simulate a random walk on a mi-
crosurface using the height sampling procedure of Sec. 5.2 and the
phase function sampling of Sec. 6.2. We first focus on reflective
microsurfaces (conductor and diffuse), then discuss transmission
(dielectric). The random walk is implemented by Alg. 7 and illus-
trated in Fig. 10.

sample height h1

starting from
- height h0 = +∞
- direction ω1 = −ωi
- energy e1 = 1

h1

ω1 = −ωi

sample direction ω2

and weight w2

with phase function
p(−ω1, .)

ω2 = ?

sample height h2

starting from
- height h1

- direction ω2

- energy e2 = w2 e1

h1
ω2 h2

sample direction ω3

and weight w3

with phase function
p(−ω2, .)

ω3 = ?

sample height h3

starting from
- height h2

- direction ω3

- energy e3 = w3 e2

h3 =∞, stop

h2

ω3

h3 =∞

Figure 10: Illustration of a random walk on a statistical micro-
surface. The ray scatters on the microsurface until it leaves. Each
scattering event is defined by its height hr and its direction ωr .

Variables and Initialization During the random walk, our algo-
rithm tracks the following variables for each intersection point n:

• the height of the intersection point hr ,

• the direction of the ray before the intersection ωr ,

• and the energy throughput of the ray er .

The initial energy throughput is e1 = 1, the initial height, before
the first intersection, is set to h0 = ∞, and the initial ray direction
is the incident direction ω1 = −ωi.

Multiple Scattering Loop After initialization, the algorithm per-
forms the random walk until the ray leaves the surface. In each
iteration, the following steps are executed:

• sample height: we use Alg. 1 to sample a height hr given the
previous height hr−1 and the ray direction ωr .

• leaving the microsurface: if hr = ∞, the ray leaves the
microsurface and the loop is terminated.

• sample direction: we use the sampling algorithm associated
with the phase function p(−ωr, .) (Sec. 6.2) to determine the
new ray direction ωr+1 and its sampling weight wr+1.

• update throughput: the energy throughput of the light path is
updated by multiplying it by the weight of the sample: er+1 =
wr+1 er .

Algorithm 7 Random Walk
h0 ←∞ . initial height
e1 ← 1 . initial energy
ω1 ← −ωi . initial direction
r ← 1 . initial index

while true do
hr ← sample (hr−1, ωr) . next height
if hr =∞ then . leave microsurface?

break
end if
(ωr+1, wr+1)← sample p(−ωr, .) . next direction
er+1 ← wr+1 er . next energy
r ← r + 1

end while

Note on Dielectrics The above description assumes that rays al-
ways scatter above the interface, i.e. outside the material. However,
if the material is dielectric, the ray can cross the interface and scatter
inside. If P 1 is symmetric, we account for the correct intersection
probabilities when the ray scatters inside by flipping the configura-
tion vertically, as shown in Fig. 11.

before transmission: hr after transmission: −hr
outside

hr
0

+∞

−∞ outside

−hr
0

−∞

+∞

Figure 11: Vertical flip. After each transmission event, we verti-
cally flip the configuration to track the correct values.



8 The Multiple-Scattering BSDF

In this section, we define the properties associated with one random
walk (Sec. 8.1). We then define the multiple-scattering BSDF of
the Smith model as the expectation of random walks (Sec. 8.2) and
we show that this BSDF model has all of the physical properties
expected from a BSDF (Sec. 8.3).

8.1 Properties of One Random Walk

Definition A random walk is described by a sequence of
N heights, directions and energy throughputs [(ω1, h1, e1), ...,
(ωN , hN , eN )]; an example is illustrated in Fig. 12.

directions phase function

ω1 = −ωi
ω2

p(−ω1, .)

p(−ω2, .)

energy throughputs phase function scaling

e1
e2

e1 e2

heights shadowing

h1
h2 G

dist
1

(ωo,
h1)

G
dist
1

(ωo,
h2)

Figure 12: Random walk description.

Distribution We use Er(ωo) to denote the contribution of the
r-th bounce to the energy scattered outside the microsurface, i.e. in
direction ωo. It depends on the energy throughput er , the phase
function p(−ωr,ωo) and the probability that the point at height hr
is not shadowed from direction ωo, i.e. on the shadowing function
Gdist

1 (ωo, hr):

Er(ωo) = er p(−ωr,ωo)Gdist
1 (ωo, hr). (41)

The total scattered energy by a random walk of lengthN is the sum
of the energies contributed at each bounce (Eq. (41)):

E1,..,N (ωo) =
N∑
r=1

Er(ωo)

=

N∑
r=1

er p(−ωr,ωo)Gdist
1 (ωo, hr). (42)

Properties As expected from a single sample generated with a
Monte Carlo technique, the distribution of scattered energy of a
single random walk E1,...,N is not a BSDF nor a phase function
and it is non-reciprocal and non-energy conserving. However, in the
next section we will see that the expectation of the random walks is
the physically correct multiple-scattering BSDF.

8.2 Definition of the Multiple-Scattering BSDF

In this section, we define the multiple-scattering BSDF. Intuitively,
a multiple-scattering BSDF represents how energy is distributed af-
ter scattering on the microsurface on a macroscopic scale (“on aver-
age”). This average is the BSDF of our multiple-scattering model.

Definition The multiple scattering BSDF f is the average of the
random walk distributions E1,..N from Eq. (42):

f(ωi,ωo) cos θo = E

[
N∑
r=1

E1,..,N (ωo)

]

= E

[
N∑
r=1

er p(−ωr,ωo)Gdist
1 (ωo, hr)

]
, (43)

where E[] denotes the expectation over the space of the random
walks, which is parameterized by the random numbers used to gen-
erate the random walks in Alg. 7.

8.3 Properties of the Multiple-Scattering BSDF

In this section, we show that the multiple-scattering BSDF from
Eq. (43) is a valid BSDF with all of the expected physical proper-
ties.

Reciprocity The BSDF in Eq. (43) is reciprocal:

f(ωi,ωo) = f(ωo,ωi). (44)

Since the microsurface light transport modeled in Sec. 5 and 6 is
reciprocal, the emerging light transport is also reciprocal by con-
struction. Please refer to our supplemental material where we pro-
vide our implementation for experimental verification.

Energy Conservation If the surface is non-absorptive then the
multiple-scattering BSDF from Eq. (43) is energy conserving, i.e.∫

Ω

f(ωi,ωo) cos θo dωo = 1. (45)

In Sec. 8.1 we discussed that individual random walks E1,..,N can
potentially integrate to values greater than 1 as they can account for
the energy of a multitude of interactions. On average, however, this
is exactly counterbalanced by the energy loss due to the shadow-
ing, Gdist

1 , which is a factor in Er (Eq. (41)): the energy loss due to
shadowing for one direction is 1−Gdist

1 and after each interaction,
the probability of intersecting the microsurface in the same direc-
tion again and obtaining an additional distribution Er is precisely
1 − Gdist

1 . Hence, the energy loss at one interaction due to shad-
owing exactly corresponds to the energy surplus of random walks
with further interactions. Again, this property can be verified exper-
imentally using our implementation in the supplemental material.

Consistency with Closed-Form Single Scattering The formu-
lation of the multiple-scattering BSDF from Eq. (43) is a direct ex-
tension of the classic single-scattering model reviewed in Sec. 3.2.
In fact, if we compute the average over the random walks forN = 1
(one interaction only) we get the classic single-scattering BSDF
model from Eq. (11):

f(ωi,ωo) cos θo = E [E1(ωo)]

= E
[
e1 p(−ω1,ωo)G

dist
1 (ωo, h1)

]
. (46)



9 Implementation in a Rendering Engine

Integrating a material into a rendering system typically requires the
implementation of three functions: evaluation, importance sam-
pling, and the PDF of the importance sampling procedure, which
is required when Multiple Importance Sampling (MIS) is used to
reduce variance.

Importance Sampling We directly use Alg. 7 to importance
sample the BSDF, i.e. to determine an outgoing direction when the
ray scatters on the microsurface until it leaves it. Note that the
PDF of the generated sample is not required to evaluate the impor-
tance sampling weight: the weight is by definition the final energy
throughput er of the random walk. Hence, our importance sam-
pling technique is unbiased. If the material is non-absorptive, then
er = 1 and the importance sampling technique is perfect.

Evaluation There is no closed-form evaluation of our BSDF. In-
stead, each time the evaluation is required, we compute a new ran-
dom walk and evaluate E1,..,N from Eq. (42). This provides an
unbiased estimate of the BSDF.

Multiple Importance Sampling Classic BSDF plugins require
the PDF of the importance sampling in order to compute the MIS
weights that are used to combine the evaluation and importance
sampling strategies. However, evaluating the PDF of the impor-
tance sampling causes similar difficulties as the evaluation, as there
is no closed-form evaluation. Furthermore, unlike for the BSDF,
we cannot resort to a stochastic evaluation: computing an unbiased
stochastic estimate of the PDF does not work as it is used in the de-
nominator of the MIS weights. Indeed, division does not commute
with averaging and doing so introduces bias in the result computed
by MIS. Fortunately, for MIS weights to be unbiased, there is no
need to return the exact PDF of the importance sampling. We eval-
uate the classic PDF of the first scattering event and add a small dif-
fuse contribution to account for the multiple scattering. This yields
a valid quantity for computing unbiased MIS weights.

9.1 Reducing Variance in the Stochastic Evaluation

We present optimizations that considerably lower the variance of
the stochastic estimate of the BSDF.

Closed-Form for the Single-Scattering Term To improve the
variance reduction, we replace the contribution of the first bounce
E1 = e1 p(−ω1,ωo)G1(ωo, h1) by the closed-form evaluation
of the single-scattering term. This is equivalent to replacing the
masking and shadowing functions evaluated at height h1 by the av-
erage height-correlated masking-shadowing function G2 and thus
reducing the variance introduced by the sampling of h1. Note that
this does not bias the results as the expectation of E1 is effectively
the closed-form single-scattering contribution.

Integrating Intersection Probability In Alg. 7, the intersec-
tion heights are sampled stochastically with probability 1 −
Gdist

1 (ωr, hr,∞). To remove the variance due to this stochastic
sampling, it is possible to enforce the intersections and weight the
path with their probabilities. To do so, we use a random number
U ∈ [0, 1−Gdist

1 (ωr, hr,∞)] to sample the height of the next in-
tersection given that there is an intersection. Doing so enforces
the random walk to continue and we compensate for this by multi-
plying the energy of the sample by the probability of the intersec-
tion, i.e. we update: er+1 ← er+1 (1−Gdist

1 (ωr, hr,∞)). Note
that with this modification we need a criterion to terminate the ran-
dom walk. We terminate it when the remaining energy is below a

small threshold or when the maximal number of bounces has been
reached.

Bidirectional Random Walks Since the BSDF is reciprocal, the
expectation is the same if we start the random walks from either
ωi or ωo for the stochastic evaluation of the BSDF f(ωi,ωo).
However, the variance of the stochastic evaluation can significantly
change depending on the starting direction. We take advantage of
this and compute bidirectional random walks on the microsurface:
we randomly choose ωi or ωo as the starting direction of the ran-
dom walks. Hence, the same path can be discovered by two strate-
gies. We compute weights in the spirit of Multiple Importance Sam-
pling (MIS) that compensate for high contributions and limit the
variance of the estimate: we assign a low weight to the strategy
with the highest contribution and a high weight to the strategy with
the lowest contribution. This bidirectional stochastic evaluation re-
mains unbiased and has significantly reduced variance. We provide
more details on this technique in our supplemental material.

9.2 Limitations

Stochastic Evaluation The stochastic evaluation in the model
is well-suited for Monte Carlo rendering but it introduces addi-
tional variance. However, as the closed-form evaluation can be used
for the single-scattering contribution (as proposed above), variance
is only introduced for the higher-order interactions. In our sup-
plemental material, we benchmark the impact of noise due to the
stochastic evaluation for different materials and roughnesses. We
found that the addition of the multiple-scattering component adds
about 20% more variance to the image. Nevertheless, our model
is unsuitable for real-time rendering where the shading has to be
smooth with one sample per pixel.

Global Illumination Integrator Some integrators, most notably
Metropolis Light Transport, may be less efficient with our stochas-
tic random walk as they use a non-deterministic number of random
values.

10 Results

Comparison against Simulated Data We compare the predic-
tion of our model against simulated data. To collect such data, we
create and raytrace instances of Beckmann surfaces, as illustrated
in Fig. 13. We generate the Beckmann surface instances using the
method of Heitz [2015]. In Fig. 14, we compare the predictions
of our free-path PDF from Eq. (28) with the intersection distribu-
tions computed explicitly by the raytracing simulation. In Fig. 15,
we compare the predictions of our multiple-scattering BSDF from
Eq. (43) with the sets of outgoing directions computed explicitly
by the raytracing simulation. For a large variety of roughnesses,
anisotropy and inclinations we found our BSDF model to accu-
rately predict both the albedo and angular distribution of exitant
energy. Note that double scattering can account for 20% of the
total reflectance or transmittance in some cases, making multiple
scattering an essential component of microfacet BSDFs.

Beckmann surface raytracing simulated
instance simulation data

→ →

Figure 13: Collecting simulated data for comparison against our
free-path model (Fig. 14) and multiple-scattering BSDF (Fig. 15).
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Figure 14: Comparison of our microsurface free-path model
against simulated data. We obtained this data by raytracing a Beck-
mann surface instance (α = 1). More results are available in our
supplemental material.
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Figure 15: Comparison of our multiple-scattering BSDF model
against simulated data. We obtained the data by raytracing an
anisotropic Beckmann surface instance (αx = 0.1, αy = 1.0). The
incident angle is θi = 1.5. Er and Et denote the total amount of
reflected and transmitted energies, respectively. More results are
available in our supplemental material.

White Furnace Tests In Fig. 16, we provide renders of different
microsurface materials lit by a constant white environment map, to
demonstrate the energy conservation. Under this illumination, the
object disappears if the albedo is one. This is the case for all of our
microsurface materials if the microfacet material is not absorbing
energy.
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Figure 16: White furnace test for different microfacet materials.

Numerical Validation In our supplemental material, we describe
a tutorial implementation and a set of unit tests we used to nu-
merically validate the properties of the model: energy conserva-
tion, reciprocity, agreement between height sampling and masking-
shadowing, agreement with the classic single-scattering BSDF,
etc. We also show a comprehensive breakdown of the multiple-
scattering interactions into groups based on the sequence of reflec-
tion (R) and transmission (T) events, such as TRT and TTR lobes,
which are individually simple but sum to produce the complex lobes
seen in the complete rough dielectric BSDF.

Practical Rendering We tested our new family of materials in
a practical rendering setup and evaluated the visual contribution
of multiple scattering. Fig. 17 shows a collection of bottles with
different microfacet materials. Rough dielectrics in particular ex-
hibit a large contribution from indirect bounces. Without multiple
scattering, rough transmittance appears unnatural, which is hard to
compensate for by tuning parameters, especially in the presence of
textured roughness (see Figs. 1 and 20). Note that since we do not
depend on any precomputed data, we fully support textured input,
which is important for creating visually rich images. Also multiple
scattering on rough conductors shows a significant impact on sur-
face appearance, clearly visible in the difference image in Fig. 17
and in Fig. 18.

Performance The performance impact of using multiple scatter-
ing within the microsurface is significant and can almost double the
render time, especially in the bottles scene (Fig. 17). Note that this
depends on the roughness of the material as higher roughness will
typically lead to more indirect bounces (also see the supplemental
material for more information). Also, the difference image shows
that a significant portion of the indirect light transport between dif-
ferent bottles is caused by multiple scattering within a microsur-
face. This reduced attenuation of light can lead to longer paths,
since Russian roulette will not terminate these earlier.

Saturation Effects Since the absorption spectrum of the micro-
facet material is repeatedly multiplied by the illumination spectrum,
multiple scattering within the microsurface saturates the color of the
reflected radiance. This can be seen for a conductor in Fig. 18 and
for diffuse microfacets in Fig. 19.



single scattering single + multiple scattering 1× difference

Figure 17: Rough bottles with microfacet materials. The difference image has been computed in linear color space and converted to Adobe
RGB, the same way as the multiple and single scattering renders. Most materials use a GGX slope distribution with α = 0.5, the shinier
ones use α = 0.3. Computing the additional light transport seen in the difference image results in an increase in the render time of 87%.

single scattering single + multiple scattering 1× difference

Figure 18: A rough conductor with a GGX normal distribution α = 0.3 and a spectral gold Fresnel. The color saturation increases notably
with the addition of multiple scattering. The overall speed impact of the multiple-scattering BRDF was 24% total render time in this case.
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Figure 19: Rough diffuse and dielectric materials with GGX normal distribution. The cost of the diffuse multiple-scattering BRDF is 6%,
50%, and 62% additional render time for roughnesses α = 0.1, 0.5, and 1.0, respectively. Instead of the typical darkening for rough single
scattering materials, we observe color saturation at higher roughness. The albedo of the diffuse microfacet material used here in RGB is
(0.9, 0.5, 0.2). The performance for the dielectric is about the same for α = 0.05 and all of the multiple-scattering images, and the single
scattering α = 0.4 and α = 1.0 are about 2× and 3× faster, respectively, due to paths with low contribution terminating early.

single scattering single + multiple scattering 1× difference

Figure 20: A conductor with a GGX normal distribution, textured roughness, and a spectral gold Fresnel. With single scattering only, the
surface albedo appears to be textured too, which is undesirable. Our analytic model allows for textured roughness and/or anisotropy and
preserves the shiny appearance. The overall speed impact of the multiple-scattering BRDF was 27% total render time in this case.



11 Conclusion

We have extended microfacet theory based on the Smith model to
include microsurface multiple scattering at rough material inter-
faces for reflectance and transmission. We compared the predic-
tions made by our model with results obtained by simulating mul-
tiple scattering on explicit microsurfaces generated with a noise
primitive and they showed good agreement. In contrast to previ-
ous parametric BSDFs that considered only single-surface scatter-
ing, our new model is energy conserving and exhibits important
saturated reflections for rough conductive surfaces. The core of
our model is the derivation of a volumetric random walk model
for Smith random surfaces. This model readily supports anisotropy
and common normal distributions such as Beckmann and GGX. We
have presented practical importance sampling and related methods
for incorporating our model into a physically based renderer and
have presented results demonstrating the visual impact of support-
ing microsurface multiple scattering in image synthesis.
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A Height-Correlated Masking-Shadowing
for Transmission

We demonstrate the result of Eq. (8), i.e. that the height-correlated
masking-shadowing function with transmission is the Beta func-
tion [Pinel et al. 2005]. If ωo is transmitted, then it is on the other
side of the microsurface. The masking function is obtained by ver-
tically flipping the configuration, i.e.

Gdist
1 (ωo) = (1− C1(h))Λ(−ωo).

The height-correlated masking-shadowing function is

Gdist
2 (ωi,ωo) =

∫ +∞

−∞
Gdist

1 (ωi, h)Gdist
1 (−ωo,−h)P 1(h) dh

=

∫ +∞

−∞
C1(h)Λ(ωi) (1− C1(h))Λ(−ωo) P 1(h) dh.

If we substitute H = C1(h) then dH = P 1(h) dh and since
H = C1(h) ∈ [0, 1] the integral becomes

Gdist
2 (ωi,ωo) =

∫ 1

0

HΛ(ωi) (1−H)Λ(−ωo) dH

= B(1 + Λ(ωi), 1 + Λ(−ωo)).

The Beta function B is available in e.g. the C++11 math library.

B Projected Area

We demonstrate the result of Eq. (22). From Eq. (9) and (10) we
obtain Eq. (21):∫

Ω

〈ωn,ωm〉D(ωm) dωm = (1 + Λ(ωn)) cos θn.

Since the signed, projected area of the microfacet is the projected
area of the geometric surface [Walter et al. 2007] we have∫

Ω

(ωn · ωm)D(ωm) dωm = cos θn.

By splitting this integral into its positive and negative components
using the clamped dot products:∫

Ω

(ωn · ωm)D(ωm) dωm

=

∫
Ω

〈ωn,ωm〉D(ωm) dωm −
∫

Ω

〈−ωn,ωm〉D(ωm) dωm,

we get∫
Ω

〈−ωn,ωm〉D(ωm) dωm

=

∫
Ω

〈ωn,ωm〉D(ωm) dωm −
∫

Ω

(ωn · ωm)D(ωm) dωm

= (1 + Λ(ωn)) cos θn − cos θn

= Λ(ωn) cos θn.

C Free-Path PDF

We demonstrate the result of Eq. (28). The PDF is the differential
of the CDF:

P 1
hr,ωr

(hr+1) =
∂C1

hr,ωr
(hr+1)

∂hr+1
.

There are 3 cases in the CDF from Eq. (27):

• The regions behind the ray (hr+1 < hr if the ray is going up
or hr+1 > hr if the ray is going down). In these regions the
PDF is 0.

• The region that can be intersected by the ray is associated with
the main part of the CDF, where

∂C1
hr,ωr

(hr+1)

∂hr+1
=
∂
(
1−Gdist

1 (ωr, hr, τ)
)

∂hr+1

= −
∂
(

C1(hr)

C1(hr+τ cot θr)

)Λ(ωr)

∂hr+1
.

Since the next height is hr+1 = hr + τ cot θr because cot θr
is the slope of the ray direction, we have

−
∂
(
C1(hr)

C1(hr+1

)Λ(ωr)

∂hr+1
= Λ(ωr)P

1(hr+1)
C1(hr)

Λ(ωr)

C1(hr+1)1+Λ(ωr)
.

A subtlety is that if θr > π
2

, the CDF parametrization is
flipped and a minus sign must be introduced in the PDF. In
this case, the value of Λ(ωr) is negative. Hence, in Eq. (27)
we use the absolute value |Λ(ωr)| and the formula is correct
in either case.

• Some of the rays might leave the microsurface without in-
tersecting it and the CDF of Eq. (27) has a special case
C1
hr,ωr

(hr+1) = 1 if τ = ∞. This discrete event is repre-
sented in the PDF by a Dirac delta distribution δ∞(hr) whose
amplitude is the probability of leaving the microsurface with-
out intersection Gdist

1 (ωr, hr,∞).

The PDF of Eq. (28) is always positive and integrates to 1.

D Height Sampling

We demonstrate the result of Eq. (30). Sampling heights implies
inverting the CDF of Eq. (27) such that for a given random number

U = C1
hr,ωr

(hr+1) = 1−Gdist
1 (ωr, hr, τ).

With Eq. (25), if U ≥ 1 − Gdist
1 (ωr, hr,∞) the equation has no

solution and the ray leaves the surface (hr+1 = ∞). Otherwise, if
U < 1−Gdist

1 (ωr, hr,∞), we need to find τ such that

1− U = exp

(
−
∫ τ

0

σSmith
t (ωr, hr + τ ′ cot θr)

∣∣∣∣∣∣∣∣∂d∂τ
∣∣∣∣∣∣∣∣ dτ ′) .

This is similar to sampling distances in classic volumetric rendering
(see e.g. [Raab et al. 2008, Eq. (12)]). With Eq. (25) we develop:

1− U =

(
C1(hr)

C1(hr+1)

)Λ(ωr)

⇒ (1− U)1/Λ(ωr) =
C1(hr)

C1(hr+1)

⇒ hr+1 = C−1

(
C1(hr)

(1− U)1/Λ(ωr)

)
.


