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Figure 1: Equal-time comparisons of our three main test scenes. We compare Classical + Point of Entry sampling (left) with our proposed
Classical + Closest Point + Incident Illumination sampling (right).

Abstract
Despite recent advances in Monte Carlo rendering techniques, dense, high-albedo participating media such as wax or skin still
remain a difficult problem. In such media, random walks tend to become very long, but may still lead to a large contribution
to the image. The Dwivedi sampling scheme, which is based on zero variance random walks, biases the sampling probability
distributions to exit the medium as quickly as possible. This can reduce variance considerably under the assumption of a locally
homogeneous medium with constant phase function. Prior work uses the normal at the Point of Entry as the bias direction. We
demonstrate that this technique can fail in common scenarios such as thin geometry with a strong backlight. We propose two new
biasing strategies, Closest Point and Incident Illumination biasing, and show that these techniques can speed up convergence
by up to an order of magnitude. Additionally, we propose a heuristic approach for combining biased and classical sampling
techniques using Multiple Importance Sampling.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism—Raytracing

1. Motivation

Rendering photorealistic characters is important in the entertainment
industry, for instance to create digital doubles for visual effects
in movies. Nowadays this is often done using Monte Carlo (MC)
integration, i.e. by running random walks to form particle trajectories

† meng@kit.edu
‡ jhanika@wetafx.co.nz
§ dachsbacher@kit.edu

connecting the sensor and the light sources. This paper will focus on
simulating sub-surface scattering in materials such as skin or wax.

Many fast approximations to rendering sub-surface scattering are
known, but they tend to show artifacts near concavities and thin
features in the geometry. The reason for this is that most analytic
methods build on the assumption of simplified geometry, such as
semi-infinite slabs. Results will be sub-optimal, and sometimes
visually displeasing, whenever this assumption is violated grossly.

c© 2016 The Author(s)
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Figure 2: Slab orientation using the normal at the Point of Entry (PoE) for different input geometries. The slab (shown in blue) is a good
approximation in large geometries with low curvature (left). It tries to approximate the closest surface point, which can fail in the presence of
thin geometric features (center) or high surface curvature. Additionally, if there is a strong back light, PoE sampling will drag the random
walk away from the light source (right). The slabs used by our proposed techniques are shown in red: Closest Point (center) and Incident
Illumination (right)

Classical Monte Carlo simulation does not suffer from this prob-
lem, but tends to be slow in participating media: uninformed random
walks may scatter many times before exiting the medium. Yet, one
cannot simply terminate random walks just because they are long,
because they may contribute significantly to the image. This is espe-
cially true in high-albedo participating media.

To solve this problem, Křivánek and d’Eon [Kd14] applied the
zero-variance random walk theory by Dwivedi [Dwi82a, Dwi82b]
to rendering. In this method, geometry is also approximated by
semi-infinite slabs to compute an analytic approximation of the light
field. However, this light field is not visualized directly. Instead, it is
merely used to bias the sampling probability distributions employed
for the Monte Carlo random walk. In essence, Dwivedi sampling
will prefer directions towards the slab surface, and will move in
larger steps if the random walk progresses in the direction of the
slab normal. Note that the resulting estimator is unbiased despite
the double use of the word bias in literature.

Křivánek and d’Eon [Kd14] place the semi-infinite slab so that
its normal is aligned with the surface normal at the Point of Entry,
which is the point where the current random walk first entered the
medium (cf. Fig. 2 left). This generally leads to much shorter random
walks, and thus improves convergence considerably.

However, this strategy is not optimal in certain scenarios. The
Point of Entry really is an approximation to the closest surface point,
but this approximation may be misleading. Additionally, in scenes
featuring a strong back light, going back towards the Point of Entry
can lead to most random walks being drawn away from the main
light source. These issues are illustrated in Fig. 2 (center and right).
We observe that in such cases other means of biasing the random
walk can perform much better (see Fig. 1).

As our main contributions,

• we propose replacing the Point of Entry sampling strategy with
Closest Point sampling,
• we propose using Incident Illumination sampling for scenarios

with a strong backlight, and

• we propose a heuristic approach for combining Classical, Closest
Point, and Incident Illumination sampling using Multiple Impor-
tance Sampling [VG95].

2. Previous Work

2.1. Radiative Transfer

Radiation in participating media can be described using the Radia-
tive Transfer Equation (RTE) [Cha60][

d
ds

+µt(x)
]

L(x,ω) =

Le(x,ω)+µs(x)
∫

4π

φ(ω′,ω)L(x,ω′)dω
′.

(1)

In Eqn. (1), L(x,ω) is the radiance at position x that flows into
direction ω, while Le(x,ω) is the emitted radiance. µt(x) and µs(x)
are the extinction and scattering coefficients, and φ(ω,ω′) is the
phase function. The adjoint RTE can be obtained from Eqn. (1)
by replacing radiance L with importance Ψ, and emission Le with
the detector response function Ψ

e. In general, these equations also
depend on the wavelength and time interval, but these are omitted
here for brevity.

2.2. Sub-surface Scattering for Skin

Rendering skin efficiently and accurately has received a fair amount
of attention in literature. The dipole method [JMLH01] in combi-
nation with irradiance caches [JB02] was very popular for a long
time, and scattering parameters have been derived from measure-
ments [DJ05, DJ06]. Fast approximations in form of sums of Gaus-
sians have been researched [dLE07]. Diffusion profiles on the sur-
face have been refined from the theoretical view [dI11] as well as
from the practical side [CB15]. Those have been refined by using di-
rectional dipole models [FHK14]. Production work flows have been
simplified considerably by removing the irradiance caches from the
pipeline and by moving to importance sampling of diffusion profiles
in the ray tracing context [KKCF13]. Such a ray tracing scheme,
however, does not simulate the full transport inside the tissue but

c© 2016 The Author(s)
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only samples a new exit point on the surface, under the assumption
of locally flat geometry, leading to problems with high curvature and
near concavities. For example, light bleeding may occur or diffusion
profiles may be distorted. To avoid such problems, it is possible
to use these closed form solutions to guide Monte Carlo sampling,
which we will detail in the next section.

2.3. Dwivedi Sampling

In this section, we review the main concepts of Dwivedi sam-
pling [Dwi82a, Dwi82b] and its foundation, zero variance random
walk theory.

The concept of zero variance random walks has been explored by
various authors, e.g. [Dwi82a,Dwi82b,Boo87], but a good overview
is given in a work by Hoogenboom [Hoo08]. The idea is appealing:
compute a solution to the RTE (1) with Monte Carlo random walks,
but in such a way that the estimator has no variance.

This can be done by modifying, or biasing, the sampling distri-
butions for position and direction in the random walk. Note that
the word bias is overloaded in this context: even though sampling
distributions are biased, the resulting estimator is still unbiased in
the sense that it has the correct expected value. This is similar to
importance sampling the free path for the time dimension in the
context of transient rendering [JMMn∗14].

Dwivedi [Dwi82b] showed that one can construct zero variance
random walks by sampling a new position x′ and direction ω

′ pro-
portionally to the product of phase function φ, transmittance τ, and
importance Ψ:

p(x′,ω′|x,ω)∝ φ(ω,ω′)τ(x,x′)Ψ(x′,ω′), (2)

where

τ(x,x′) = exp

(
−

∫ x′

x
µt(x∗)dx∗

)
. (3)

Unfortunately, this requires knowledge of the importance function
for every position and direction. This is a far more difficult problem
that determining the sensor response for a given sensor, and so true
zero variance random walks are mainly of theoretical interest.

However, as Dwivedi points out [Dwi82b], they can still be used
to reduce variance. The idea is that an approximate importance
function can be used to reduce variance. Such an importance func-
tion can be computed analytically for slab geometry using Singular
Eigenfunction Expansions.

2.3.1. Singular Eigenfunction Expansions

Singular Eigenfunction Expansions can be seen as representing the
general solution to the RTE or the adjoint RTE in a convenient basis.
This can be done if some assumptions are introduced.

Similar to diffusion techniques, the geometric setup is assumed
to be a semi-infinite slab. As shown in Fig. 3, only the depth in the
medium z and the cosine of the angle between the ray direction and
the surface normal, ωz, are considered in this type of geometry. This
is usually justified by the assumption of uniform external emission.
In the case of the adjoint formulation, one may interpret the slab
surface at z = 0 as a uniform sensor.

n

ωz
z

Figure 3: An illustration of slab geometry. The slab normal is n =
(0,0,1)T . A ray can be parametrized by its depth z and the cosine
of the angle between its direction and the slab normal, ωz.

Additionally, the medium is assumed to be homogeneous, the
phase function is assumed to be isotropic and no emission inside
the medium is considered. Combined, these assumptions lead to the
following adjoint RTE [Cha60]:[

ωz
∂

∂z
+µt

]
Ψ(z,ωz) =

µs

2

∫ 1

−1
Ψ(z,ω′z)dω

′
z. (4)

It can be shown that all solutions to this RTE can be written as the
linear combination

Ψ(z,ωz) = A(ν0)ϕ(ν0,ωz)e−µt z/ν0

+
∫ 1

−1
A(ν)ϕ(ν,ωz)e−µt z/ν dν

+A(−ν0)ϕ(−ν0,ωz)e−µt z/−ν0 ,

(5)

where A(ν) are coefficients, ϕ(ν,ωz) is called an eigenfunction, and
the ν are eigenvalues with ν0 > 1. ±ν0 are the discrete eigenvalues,
while ν ∈ [−1,1] are called the singular eigenvalues.

This is the Singular Eigenfunction Expansion for Ψ(z,ωz). We
show a partial derivation in supplemental material, but the full deriva-
tion can be found in texts such as [CZ67, MK73].

To apply this solution to zero variance random walks, previous
work [Dwi82a, Kd14] now prunes the expansion aggressively.

First, the importance in a slab without detectors must decrease as
the distance to the surface goes to infinity. Consequently, coefficients
of non-decreasing modes in Eqn. (5), where ν < 0, must be 0.

Second, the singular part of the expansion decreases faster than
the discrete part, since ν0 > 1 and the integration domain ends at
1. Thus, assuming z is large, the solution will be dominated by the
discrete part.

This leads to the final approximation

Ψ(z,ωz)∝
1

ν0−ωz
e−µt z/ν0 . (6)

Note that we are only interested in proportionality here because
we are looking for a probability density function. This also means
that the coefficient A(ν0) need never actually be evaluated. The
eigenvalue ν0 is also called the diffusion length, and it can be ap-
proximated numerically. We detail this in supplemental material.

2.3.2. Biased Distributions for Dwivedi Sampling

Combining Secs. 2.3 and 2.3.1, and assuming a constant phase func-
tion, a reduction in variance can be expected by sampling directions

c© 2016 The Author(s)
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Figure 4: The biased sampling distributions used in Dwivedi sampling.

and positions from the distributions

p(ω′z|z,ωz)∝
1

ν0−ωz
(7)

p(z′|z,ωz)∝ τ(z,z′)e−µt z′/ν0 (8)

The normalized directional distribution is

p(ω′z|z,ωz) =
1

log
(

ν0+1
ν0−1

) 1
ν0−ωz

, (9)

which can be sampled using ξ∼ unif(0,1) as

ωz = ν0− (ν0 +1)
(

ν0−1
ν0 +1

)ξ

. (10)

The free path sampling pdf Eqn. (8) can be simplified using the
assumption that the medium is homogeneous, which means that the
transmittance term is a simple exponential in t = ‖z′− z‖. Using
z′ = z−ωzt, we get

p(t|z,ωz)∝ e−µt te−µt (z−ωz t)/ν0 = e−(1−ωz/ν0) µt t (11)

The normalized distribution is a simple exponential distribution:

p(t|z,ωz) = (1−ωz/ν0)µte−(1−ωz/ν0) µt t (12)

This distribution can be sampled as usual. It effectively has a modi-
fied extinction coefficient,

µ′t(ωz) = (1−ωz/ν0)µt . (13)

In Fig. 4, we illustrate that the directional distribution prefers direc-
tions towards the slab normal (ωz = 1), while the free path distribu-
tion has a longer tail (and thus prefers longer paths) if the direction
is oriented along the slab normal.

2.4. Slab Orientation

One of the assumptions used in Dwivedi sampling is that the geom-
etry can be approximated by a semi-infinite slab. In realistic scenes,
this assumption is usually violated in general, but it may hold locally.
It is thus important to consider how exactly a slab can be placed into
a scene for good performance. Since the positional variable is not
present in the final sampling distributions Eqns. (9) and (12), this
amounts to choosing how the slab is oriented, or what its normal is.

Křivánek and d’Eon [Kd14] use the surface normal at the Point
of Entry (PoE) as the slab normal, i.e. the point where the random
walk first enters the medium (cf. Fig. 2, left). The underlying as-
sumption is that the normal at the PoE will usually point away from
the medium. If a random walks is biased into this direction, it will

probably exit the medium quickly. Křivánek and d’Eon show that
this technique can effectively reduce variance in the resulting image.
They employ MIS [VG95] to combine it with Classical (C) sam-
pling, where the unbiased phase function and free path distribution
are used for sampling.

PoE sampling can be problematic in scenes where the medium
surface is not approximated well by a slab (cf. Fig. 2). If the surface
is not really planar, the PoE may not be a good estimate of the
closest surface point, and the normal at the PoE may not be a good
estimate of the overall surface orientation. To alleviate this problem,
we propose biasing the random walk towards the location of the true
closest surface point.

Also, the Point of Entry technique has difficulties in scenarios
where a light source opposite the PoE is strong enough to have a
non-negligible contribution to the image. The biasing draws most
samples away from the light source in this case, which leads to
an increase in variance. We propose to use an additional biasing
technique that shifts the random walk towards a point placed on a
light source.

3. Improving Biased Sampling

In this section, we detail our proposed improvements to the Dwivedi
sampling technique as introduced by Křivánek and d’Eon [Kd14].
We call their technique C+PoE, or Classical + Point of Entry sam-
pling.

3.1. Closest Surface Point

Instead of using the normal at the point of entry as the slab normal,
we propose using the direction towards the Closest Surface Point
(CP) xCP.

We employ a Bounding Volume Hierarchy to efficiently compute
the Closest Point Transform for the current vertex position x. We
then use

nCP =
xCP−x
‖xCP−x‖ (14)

as the slab normal. Note that in contrast to PoE sampling, we do
not use the surface normal at the CP directly, because that can be
problematic in scenes with highly displaced surface geometry.

We search the CP only once per random walk, specifically at the
first vertex inside the medium, and always bias towards the same
surface point. However, the direction nCP is updated at every vertex.
It is possible to also recompute a new xCP at every vertex, but our
tests did not show a benefit that would justify the increase in cost.

c© 2016 The Author(s)
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3.2. Incident Illumination

To handle non-uniform illumination better, one could use next event
estimation from the volume to connect to light sources. However,
this may not be practical due to refractive surfaces such as rough
dielectrics [WMLT07] found on skin [HDF15, Hol15], or because
the medium is so dense that transmittance to the surface is practically
zero.

Instead, we propose sampling one light vertex per random walk,
and biasing towards it at each step. Using importance sampling, we
can choose light vertices proportional to their emission. We ignore
visibility in this step. In scenes with strong backlights, this technique
biases most paths towards the brightest light sources in the scene,
leading to much better convergence in translucent regions.

The slab direction can be computed in a fashion similar to
Eqn. (14) for area lights or point lights. For directional light sources
such as environment maps, we can use the light direction as the slab
normal: nDL = (xDL−x)/(‖xDL−x‖)

3.3. Multiple Importance Sampling

Similar to Křivánek and d’Eon [Kd14], we combine the Classical,
Closest Point and Incident Illumination sampling techniques using
Multiple Importance Sampling with the one sample model and the
balance heuristic [VG95].

This is imperative with biased sampling techniques: since the
transmittance and phase functions do not cancel out of the contribu-
tion function with non-perfect importance sampling, low-probability

Classical
C+CP+II

Fixed Ratio 0.5
C+CP+II
Adaptive

g
=

0.
9

g
=

0.
5

Figure 5: Anisotropic phase functions are problematic with biased
sampling, which may cause strong variance (center). Our adap-
tive heuristic (cf. Eqn. 15) decreases the probability of selecting a
biasing technique as the anisotropy increases, reducing variance
(right).

random walks with a high contribution lead to excessively bright
pixels, or fireflies. Multiple Importance Sampling can detect such
paths, and reduce their weight automatically.

A new sampling technique is selected randomly at every vertex
of the random walk, but biasing techniques have zero probability
before the first volume vertex. This means that the first volume
vertex is always sampled using Classical sampling.

3.4. Selection Probability for Classical Sampling

In Křivánek and d’Eon [Kd14], a fixed percentage of samples is
allocated to Classical sampling. We follow this approach for con-
stant phase functions, where we use a probability of 0.1 for selecting
Classical sampling.

In media with anisotropic phase functions, such as the Henyey-
Greenstein phase function [HG41] with mean cosine g 6= 0, direc-
tional biasing creates random walks with a low probability density
if the slab normal and the ray direction are not aligned. This is
demonstrated in Fig. 5. We use an adaptive criterion that reduces the
probability for selecting a biased sampling technique for anisotropic
scattering. It basically lets the sampling degrade gracefully to pure
Classical sampling. We found that

pc = max
{

0.1, |g|1/3
}

(15)

yields results with low noise over the full range of possible mean
cosines. Note that this may differ if other phase functions are used,
especially complex, highly anisotropic phase functions. However, it
should be noted that biased sampling may generally not be the best
choice for media with such phase functions.

3.5. Selection Probabilities for Biased Sampling

In a medium with extinction coefficient µt , the expected number
of volume events on distance t is µt · t. If a direct random walk of
length t is created using perfect Classical sampling, the contribution
of that random walk will be weighted by a factor of

α
µt ·t . (16)

We use this value to define the probability for selecting one of the
three biasing techniques:

pb
i = (1−wc)

α
Ni

∑
3
j=0 αN j

, (17)

where Ni = µt ·ti is the expected number of events to the slab surface
of technique i. In essence, if the medium has a high single-scattering
albedo α, travelling a large distance and across multiple scattering
events may be worthwhile.

When Incident Illumination biasing is used, random walks tend
to get rather long, since they may traverse the whole medium before
exiting. This is generally more expensive than PoE or CP biasing,
which exit at a nearby surface. However, if the contribution is large
enough, it may still be worth performing such long walks.

Committing to Incident Illumination Sampling. It would be prob-
lematic if the two different types of biasing techniques competed
for the random walk, sending it back and forth. For this reason, we
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Scene BxDF Mean Free Path [cm] α

EAR Diffuse Transmitter (textured) [0.13,0.09,0.671] [0.959,0.764,0.678]
CANDLE Diffuse Transmitter (ρ = 1) heterogeneous [0.631,0.887,0.999]
BUDDHA Smooth Dielectric (η = 1.2) 0.5 [0.98,0.85,0.2]

Table 1: Material parameters for our test scenes. Color vectors are given in linear sRGB.

set the probability of selecting either PoE or CP to zero once II is
selected for the first time. This means that a random walk commits
to biasing towards the light source. We always keep a minimum
probability of sampling using the Classical technique, however.

4. Results

All results were rendered on a Machine with eight Intel Xeon E7-
8867 v3 processors running at 2.5 GHz. We used a total of 256
concurrent threads. Render times are given in thread hours.

We implemented the reference and proposed techniques in our
research renderer, which uses single-wavelength spectral transport.
The ray tracing backend is Embree [WWB∗14]. The renderer does
not impose a maximum length for random walks. Terminating paths
after a given number of bounces will increase performance in prac-
tice, but tends to miss important long, but high-contribution light
paths that occur in the dense scattering scenes we show in our paper.

Our scenes feature a large dynamic range, and so we had to apply
some amount of tone mapping to ensure acceptable printing. Still,
we recommend viewing results on a computer screen. Both tone
mapped and out-of-renderer images are provided in supplemental
material as OpenEXR files.

We will now describe our test scenes, and analyze them after-
wards. Material parameters for our scenes are summarized in Tab. 1.

4.1. EAR Scene

The EAR scene contains three area light sources: two fill lights
illuminate the scene from the front, but are not directly visible. A
strong backlight is visible in frame, and causes visible sub-surface
scattering in the ear lobe. The ear lobe is approximately 5 cm tall.

We show the full rendering and enlarged crops from the cheek
and the ear in Fig. 6. The crops were taken from roughly equal-time
renders, at 12 thread hours each. Convergence is shown in the RMSE
plots in Fig. 7.

4.2. CANDLE Scene

The only source of light in the CANDLE scene is a brightly emit-
ting object approximating a flame. It causes sub-surface scattering
throughout the candle, which is approximately 12 cm tall. The wax
is a heterogeneous volume with spatially varying density, which
results in a pattern of brighter and darker spots.

We show the full rendering and crops from the bottom part of the
candle in Fig. 8 (right). The crops are roughly equal time at about
4.25 thread hours each. Convergence is shown in the plots in Fig. 9.

4.3. BUDDHA Scene

The statuette in the BUDDHA scene is roughly 20 cm tall. Again
there is only one source of illumination, a strong light illuminating
the scene from behind.

Again, we show the full rendering and crops from the bottom part
of the statuette in Fig. 8 (left). The crops are roughly equal time at
about 4.25 thread hours each. RMSE is shown in the plots in Fig. 9.

4.4. Analysis

All scenes highlight a typical failure case of Point of Entry sampling:
large contributions from random walks that cross the medium and
do not return to the PoE. This is especially striking in the crops of
the CANDLE and BUDDHA scenes, where PoE sampling performs
far worse than Classical sampling. The EAR scene is the only one
where PoE performs best in some parts: random walks entering at
the cheek must exit there to have measurable contribution. Because
of the low curvature, PoE and CP are almost identical, but the PoE
can be computed more efficiently.

It is this problem that motivated our work in the first place. Our
first proposed technique, Closest Point sampling, improves matters
slightly. This technique has at least some chance of finding the light
paths that PoE actively tries to avoid: If the first vertex inside the
medium is closer to the back side than the front, CP will bias towards
a back light. Consequently, a slight improvement can be seen in the
EAR and CANDLE scenes. However, CP is no magic bullet. It also
tends to favor turning around to exit the way it entered the medium.

Adding Incident Illumination sampling helps in scenarios where
the illumination is not uniform, and where the light sources happen
to not be in the direction of PoE or CP sampling. We find that bias-
ing using II can speed up convergence by an order of magnitude in
problematic regions when compared to Classical sampling. Com-
pared to PoE biasing, the speed up can be even more dramatic, e.g.
in the CANDLE scene where almost no random walks make it to the
inside of the candle.

5. Discussion and Future Work

In this paper, we demonstrated several practical improvements to
the Dwivedi sampling technique as introduced by Křivánek and
d’Eon [Kd14].

We proposed replacing the Point of Entry biasing technique with a
more accurate Closest Point sampling, and showed that non-uniform
illumination can be handled more robustly with Incident Illumina-
tion sampling. We also proposed a heuristic approach for combining
these biasing strategies with Classical sampling using Multiple
Importance Sampling.
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Figure 6: The EAR scene, which features a strong backlight behind a translucent ear. Equal-time comparisons at roughly 9.9 thread hours
each are shown on the right.
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Figure 7: Root Mean Squared Error for the full EAR scene as shown
in Fig. 6 (top), the cheek crop (middle), and the ear crop (bottom).

Some open questions remain. For example, our current selection
criterion only implicitly considers the strength of incident illumi-
nation by importance sampling light sources. It is conceivable that
using a simple analytic model, such as a diffusion approach, to esti-
mate incident illumination from a given slab direction, could yield
further improvements.

Non-constant phase functions are still difficult to handle with
biased sampling. Our solution is to gracefully degrade to Classical
sampling with increasing anisotropy. However, it would be more
elegant, as suggested by Křivánek and d’Eon [Kd14], to use more
exact analytical expressions that incorporate anisotropy directly.

Dwivedi sampling uses the assumption of a homogeneous
medium. We showed in the CANDLE scene that it can also han-
dle heterogeneous media. However, further applications such as
clouds warrant future investigation.
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Figure 8: The CANDLE and BUDDHA scenes. The enlarged regions show roughly equal-time comparisons at about 4.25 thread hours each.
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Figure 9: Root Mean Squared Error for the CANDLE (left) and BUDDHA (right) scenes as shown in Fig. 8.
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