The Path Tracing Revolution in the Movie Industry

Experiences with path space sampling algorithms in Manuka

Johannes Hanika
Weta Digital
Outline

rendering problems we deal with:
- detailed digi double characters/headshots
- big environments with many lights
- massive (battle) scenes

we need to render movies:
- requirements (vs. stills)

a look at path tracing algorithms

conclusions
[clips]

▶ apes/apes2
▶ thb3
Problem setting

we’re rendering VFX for movies

- requirements:
 - high visual complexity
 - temporal stability
 - motion blur
 - fast turnarounds, typically finals with 100s samples per pixel, not 1000s+

- why physically-based rendering?
 - deliver true detail (e.g. interaction hair/subsurface)
 - less caches
 - this talk: technical experiences with PBR in production
Physical foundation: the rendering equation

measurement contribution and path space

- recursive rendering equation: emission + transport

\[L = L_e + TL \]

- Monte Carlo integration in path space

\[I_j = \int_{\mathcal{P}} f(X) dX \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)} \]

- path \(X = (x_1, x_2, \ldots, x_k) \in \mathcal{P} \) list of vertices \(x \)
- \(p(X_i) \) in product area measure (convert if not)
- create these paths via (bidirectional) path tracing, photon mapping, etc. ..
Measurement contribution function

- measurement contribution f for path X with length k (=7 here)

\[
f(X) = L_e G_{k-1} \left(\sum_{i=1}^{k-2} f_{r,i} G_i \right) W
\]

- unitless

```
\[
\begin{bmatrix}
W \\
\frac{sr}{m^2}
\end{bmatrix}
\begin{bmatrix}
\frac{sr}{m^2}
\end{bmatrix}
\begin{bmatrix}
\frac{1}{sr}
\end{bmatrix}
\]
```

Nodes: $L_e, G_1, G_2, G_3, G_4, G_5, G_6$, with contributions $f_{r,1}, f_{r,2}, f_{r,3}, f_{r,4}, f_{r,5}$. Edge weights associated with W.
Measurement contribution function

intuition: flux Φ through all differential areas dA_i of a path X

$$f(X) = \prod_{i=1}^{k} \frac{d\Phi}{dA_i} = \frac{d\Phi}{dX_k} \quad [W/(m^2)^k]$$
Available tools to create paths

Path tracing algorithms

- roughly ordered from simple to more advanced:
 - path tracing, next event estimation
 - light tracing
 - bidirectional path tracing with multiple importance sampling
 - photon mapping
 - Metropolis light transport/Markov chain Monte Carlo
Choice of algorithm

- we have complicated problems
- so we start with the most complicated algorithm in this talk!
 - (it should be the best fit, right?)
 - quick summary how it works
 - short practical evaluation
Metropolis Light Transport

- Markov chain Monte Carlo (MCMC) method
- find an interesting path (high measurement contribution)
- mutate to explore similar paths
Metropolis light transport (Kelemen style)

- 3min/frame render, no motion blur
- temporal instability/autocorrelation due to random walk behaviour!
Metropolis light transport

1k spp Kelemen Metropolis, still flickering

head scan: infinite realities
MLT: half vector space light transport

- stratification by explicit ray differentials
- problems discovering effects (path configuration and sub-spaces)!
MLT: half vector space light transport

- 64spp, relatively lightweight 5M polygons but strongly varying geometric derivatives
MLT: half vector space light transport

- 64spp, relatively lightweight 5M polygons but strongly varying geometric derivatives

<table>
<thead>
<tr>
<th>Reference</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSLT</td>
<td>20h</td>
</tr>
<tr>
<td></td>
<td>113s</td>
</tr>
<tr>
<td>HSLT 157s</td>
<td></td>
</tr>
<tr>
<td>no displacement</td>
<td></td>
</tr>
<tr>
<td>improved</td>
<td></td>
</tr>
<tr>
<td>HSLT 54s</td>
<td></td>
</tr>
</tbody>
</table>
MLT: half vector space light transport

- 64spp, relatively lightweight 5M polygons but strongly varying geometric derivatives

reference
20h
HSLT
113s
HSLT 157s
no displacement
improved
HSLT 54s
MLT: half vector space light transport

64spp, relatively lightweight 5M polygons but strongly varying geometric derivatives

reference
20h
HSLT
113s
HSLT 157s
no displacement
improved
HSLT 54s
MLT: half vector space light transport

- still has practical drawbacks
 - only starting to be extended for complex geometry
 - no extension to participating media/skin yet
 - MCMC helps exploring modes, not discovering them

- variant for better discovery: **Energy Redistribution Path Tracing (ERPT)**
 - path tracer (discover) with short bursts of Markov chains (explore)
 - surprisingly viable in our field, path tracing is a good starting point!

- parameters **hard to control** (path expression to run on, #chains, #mutations)
 - affect run time/image quality in non trivial ways
 - **not practical** at this point
Photon Mapping

two step algorithm

- launch photons from the light sources
- trace and store on non-specular surfaces
- estimate irradiance by #photons/area
- relatively robust, small bias in practice (will not reduce radius below pixel footprint)
Photon mapping/VCM

- Vertex Connection and Merging (shoots photons to bounding box of head)
 - still inefficient at finding small caustics
 - high storage and kd-tree building overhead
 - photon paths in hair: expensive tracing, no contribution
Photon/Light tracing density

- does not follow importance from the camera
- hard to aim for objects that are expected to cast caustics
- photon attractors? occlusion?
 - MCMC helps explore, not discover
 - careful about temporal stability!
Bidirectional path tracing

- trace from the eye and from the lights [Laforuntne & Willems 1993, Veach & Guibas 1994])

- eye path vertices $e_i (\ldots E)$ and light path vertices $l_i (L\ldots)$

\[n = 4, m = 3 \]

\[k = n + m \]
Bidirectional path tracing

essential in some cases!

images: Toshiya Hachisuka
Bidirectional path tracing

- trace from the eye and from the lights
 [Lafortune & Willems 1993, Veach & Guibas 1994])

- eye path vertices e_i (…E) and light path vertices l_i (L…)
 - and all connections!
 - all of them equally good strategies?
Multiple importance sampling

- sample multiple (imperfect) distributions (BSDF and light sources here)
- optimal combination reduces noise
- does not replace optimal (product) sampling strategy!

BSDF sampling
light source sampling
multiple importance sampling
Bidirectional path tracing

path pyramid: contributions from individual techniques

- inner connections have a big contribution (in this scene)

\[k = 3 \]
\[(l = 1, e = 2) \quad (l = 2, e = 1) \]

\[k = 4 \]

\[k = 5 \]

\[k = 6 \]
\[(l = 5, e = 1) \]

images: Eric Veach
Bidirectional path tracing

path pyramid: contributions from individual techniques
- inner connections have a big contribution (in this scene)

path tracing (next event estimation)

light tracing

images: Eric Veach
BDPT/MIS character headshot

- simple setup: IBL + single key light. Useful connections?
many lights and complicated occlusion?
connections encumbered by *visual complexity* (not scene size)
MIS with even more estimators

- gets worse: *Unifying Points, Beams, and Paths* [Krivanek et al. 2014]
- many estimators => long run times
- MIS `selects’ only the best

images: Jaroslav Krivanek et al.
Keep it simple: path tracing

follow the recursive rendering equation

- importance follows pixels most closely
- light source sampling is difficult/sub-optimal
- do deterministic connections (next event estimation)
Implementation: order of execution

- trace full path first (flat order)
- **one** complete **path** in memory (colour coded)
Implementation: order of execution

- trace similar rays (wavefront order)
- large buffers of fragments of paths in memory at a time (colour coded)
Implementation: order of execution

- ray wavefront vs. flat order
 - locality/SIMD changes the runtime constant
 - full path allows more advanced sampling techniques

- Monte Carlo error is order $\varepsilon \sim \frac{\sigma}{\sqrt{N}}$
 - optimising raw performance tunes N and better algorithms tune σ
 - both may matter at low sample counts
 - need $4 \times N$ or $\sigma/2$ to achieve $\varepsilon/2$
Implementation: order of execution

- error is order $\varepsilon \sim \frac{\sigma}{\sqrt{N}}$
 - raw performance $\Rightarrow N$
 - better algorithms $\Rightarrow \sigma$

- we tried both ordering approaches in Manuka
 - better algorithms are often times a huge gain!
 - Metropolis depends on full path
 - BDPT and complex path expressions to some extent
 - increased locality seems to only pay off when accessing a lot of memory / for out-of-core
 - we support RSL shading for pattern generation which helps reduce memory requirements
Path tracing: production asset

- typical lighting setup of a character with a rim light
- needs careful sampling to converge within the time budget
Careful next event estimation

- path tracing is great to sample importance from camera
- lights aren’t sampled equally well out of the box
- careful next event estimation
 - manifold next event estimation [Hanika et al. 2015]
 - importance sampling of area lights in participating media [Kulla and Fajardo 2011]
 - portals on environment maps [Bitterli et al. 2015]

..
Next event estimation: light source selection

- need to avoid common cases:
 - sample strong rim light even though it is occluded
 - sample dim fill light too often if the rim light is visible
 - sample strong light sources which are too far away
- use a smart light hierarchy similar to:
 [Paquette et al. 1998]
 [Walter et al. 2005]
 [Göppel 2008]
Next event estimation: light source selection

- use a smart light hierarchy similar to [Paquette et al. 1998, Walter et al. 2005, Göppel 2008]

potentially way more light sources!

dim fill light

strong rim light
Next event estimation: light source selection

- use a smart light hierarchy similar to [Paquette et al. 1998, Walter et al. 2005, Göppel 2008]
- do hierarchical culling
- still kind of works with ray wavefronts
- locality/SIMD?

[Diagram of light source with dim fill light and strong rim light]
Manifold next event estimation

- back to the VCM problem case:
- specialised problem, can be solved with a specialised algorithm!
Manifold next event estimation

- back to the VCM problem case:
- specialised problem, can be solved with a specialised algorithm!
Manifold next event estimation

- sample point x_c on light source and create seed path Y
- sample half vector h_3, remember PDF in half vector space
- run (deterministic) Newtonian walk to find admissible path X
- compute measurement contribution
- requires full path in memory!
Careful sampling in general

- hero wavelength sampling [Wilkie et al. 2014]
- on-line learning of mixture models [Vorba et al. 2014]
- gradient domain path tracing [Kettunen et al. 2015]
- ..

- more exciting new algorithms will be coming up in the community!
 - better keep our renderers ready for it!
Future Directions

➤ nothing is a solved problem 😊
 ➤ reliably discover all interesting effects
 ➤ quasi-Monte Carlo?
 ➤ regularisation?
 ➤ optimally explore regions of path space
 ➤ MCMC
 ➤ gradient domain shifts?
➤ memory access times / level of detail
➤ ..and all that in a tiny sampling budget!
Conclusions

- simple path tracing solves simple problems
 - ..but we have complicated problems!
- the remaining 10%-20% of the pixels absolutely need bidirectional/photon maps/Metropolis

- good strategy to design a rendering architecture?
 - maintain freedom to try new algorithms (see `solved problems’)
 - keep full path wherever you can (MNEE, ERPT, MLT, complicated path space expressions, ..)
 - be careful about memory accesses (but don’t build the architecture around this idea)

thank you for listening!