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Figure 1: A Stanford Buddha in a glass sphere showcasing the robustness of our method in the presence of refractive caustics.
Our technique can efficiently sample this transport: the two images are an equal time comparison of our method to bidirectional
path tracing. While the raw speed impact is about 3ˆ, an equal quality comparison would render our method many thousand
times more efficient here.

Abstract

We present manifold next event estimation (MNEE), a specialised technique for Monte Carlo light transport
simulation to render refractive caustics by connecting surfaces to light sources (next event estimation) across
transmissive interfaces. We employ correlated sampling by means of a perturbation strategy to explore all half
vectors in the case of rough transmission while remaining outside of the context of Markov chain Monte Carlo,
improving temporal stability. MNEE builds on differential geometry and manifold walks. It is very lightweight in
its memory requirements, as it does not use light caching methods such as photon maps or importance sampling
records. The method integrates seamlessly with existing Monte Carlo estimators via multiple importance sampling.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Simulating light transport has many applications across dif-
ferent fields of science and the computer graphics industry.
In recent years the movie industry has shown a growing in-
terest in Monte Carlo path tracing, which lead to its deploy-
ment in a number of production renderers both commercially
available (such as Solid Angle’s Arnold, and Pixar’s Render-
Man 19) and internally developed (such as Disney’s Hyper-
ion or Weta Digital’s Manuka).

In contrast to rendering for the architectural or manufac-
turing industries, where the dominant use case is still im-
ages, production renderers in the film industry are mainly

used to produce animations. This imposes stringent con-
straints on the amount of time that can be spent rendering
each frame [Ste05]. For most productions this means ren-
ders generally have to complete overnight and deliver sharp,
low-noise images, with temporal stability being of primary
importance [EW11]. The richness of the visual language
commonly employed in movies (especially in VFX work)
quickly translates into large numbers of highly complex as-
sets, which often make ray tracing very expensive. For this
reason, careful sample placement can yield large benefits.

One path configuration that is particularly hard to sam-
ple in the context of unbiased path tracing are so-called
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specular-diffuse-specular (SDS) paths. These are light trans-
port paths containing a diffuse or broadly glossy vertex be-
tween two specular (or tightly glossy) scattering events (see
Fig. 2). This configuration is problematic because the specu-
lar events impose constraints on the half vectors [KHD14a]
which are hard to satisfy. When sampling, this means simu-
lating the diffuse scattering at the middle vertex (xb in Fig. 2)
is unlikely to produce a connection to a light source subtend-
ing a small solid angle (as seen from xb). Indeed, in this case
the common approach would be to use a different sampling
technique to deterministically connect to a position on the
light source (which is called next event estimation, NEE). It
is easily seen that this cannot be employed for the configu-
ration of Fig. 2 as all paths from xb to the light need to pass
through a refractive interface.

While there are methods in literature which deal with SDS
paths, such as Metropolis light transport (MLT) or photon
mapping, these have drawbacks in terms of either temporal
stability or large memory footprints and as such tend to be
of limited practical use to render animations in a produc-
tion context (see Sec. 2 for further details). This is espe-
cially frustrating for seemingly simple cases, such as water
or sweat droplets on skin, or objects embedded in refractive
media such as glass or water (see Fig. 1). Often admissible
light paths are not deviating by much from the non-refracted
connection which just ignores the interface (dashed line in
Fig. 2). This is the path proposed by next event estimation
and it fails because it violates Fermat’s law.

Our insight is to try and make NEE more “stubborn”,
meaning that it will not give up a connection proposal (a
seed path) quite as quickly, but try hard to get a contribution
out of it transforming the seed path into an admissible path,
which satisfies the half vector constraints. We achieve this
by employing correlated sampling, i.e. randomly perturbing
the seed path while remaining outside the context of Markov
chain Monte Carlo. While on the one side this simplifies cer-
tain aspects of implementation and integration into existing
systems, it also improves noise characteristics in between
frames. The method works for purely specular materials as
well as for rough scattering and through multiple layers of
transmissive interfaces. It extends the next event estimation
technique and integrates well into Monte Carlo path tracers
with multiple importance sampling [VG95] without intro-
ducing bias. The technique is most effective in a range of
simple cases which are relevant and very common in prac-
tice, and successfully combines low memory requirements
and scalability, since its independence from caches lifts any
potential thread synchronisation needs.

2. Background and Previous Work

The purpose of light transport simulations is to solve in-
stances of the problem of radiative transfer [Cha60]. In the
context of computer graphics, this was formulated as the
rendering equation [Kaj86] and is often solved using path

xa“0

x3

xb“2

x1

xc“k

o1
i1

h3

Figure 2: Notation used in this paper for vertices x, incoming
and outgoing directions i,o and half vectors h. Because our
new technique is most useful in the context of path tracing
from the eye, we start numbering the vertices from there.

tracing, which is a Monte Carlo integration technique based
on random walks [Erm75,Sob94]. The fundamental building
block of this algorithm consists in constructing paths of light
in a scene that connect light sources and the eye.

Path space The space of all the light transport paths is
called path space and here denoted Ω [Vea98]. We express
a path in Ω as a list of vertices xi and use the shorthand
Xa,b“ pxa,xa`1, . . . ,xbq to denote sub-paths in it. Likewise,
we denote half vectors [KHD14a] at vertex i as hi and use
the shorthand Ha,b “ pha,ha`1, . . . ,hbq. We use ii and oi for
the incoming (from the eye) and outgoing (to the light) di-
rections at vertex xi, respectively (see Fig. 2). Measures are
denoted dx for the vertex area measure, do for solid angle
and doK “ xo,nydo for projected solid angle. We will write
dh for the domain of half vectors, which is usually projected
solid angle [Jak13, KHD14a].

A path has k` 1 vertices, where xa“0 is on the eye, xb
is where the next event estimation sampler is invoked (i.e.
the last vertex created by extending the path via outgoing
direction sampling) and xc“k is the sampled point on the
light source.

Intuitively, the purpose of light transport simulations is to
detect the flux of photons arriving at a pixel j:

I j “

ż

Ω

f pXqdX, (1)

where dX “
śk

i“0 dxi is the product vertex area measure
over all vertices xi in the path of length k, and Ω is the path
space containing all paths of lengths k P r1,8q.

The measurement contribution function f pXq (used in
product vertex area measure here) intuitively measures how
many photons per second are transported via the differen-
tial areas of the vertices the path traverses. It takes its sim-
plest form in product projected solid angle measure dOK “
dx0

śk´1
i“0 doKi :

fdOKpXq “W px0qLepxkq

k´1
ź

i“1

frpii,xi,oiq. (2)
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The bidirectional scattering distribution function (BSDF)
[NRH˚77] is denoted fr, the eye responsivity is W px0q and
the emitted radiance at the light sources is Lepxkq. Geome-
try terms are used as Jacobian determinants to convert from
dOK to dX. We do not model volume scattering as we will
not be explicitly dealing with it in this paper.

Deterministic connection Next event estimation (NEE) or
computing direct lighting is the simplest and most important
way of performing deterministic connections to construct a
transport path, and much thought has been spent optimising
it [SW91,UFK13]. Bidirectional path tracing [LW93,VG94]
connects not only to the last point of the path on the light
source, but any two vertices on two independent random
walks, one started at the camera and one started at the
lights. This results in many estimators, making it impor-
tant to weight the techniques optimally using multiple im-
portance sampling (MIS) [VG95] to avoid excessive noise.
However, even bidirectional methods fail to connect through
refractive interfaces in the SDS scenario.

Photon mapping One possible way to address this prob-
lem is to employ regularisation: forcefully smoothing the
integrand (introducing bias). Regularisation can be applied
in the angular domain by softening the BSDF [KD13b] or
by using kernel estimation to search through cached pho-
tons [Jen96, HJ09, KD13a, HPJ12, GKDS12]. Algorithms
employing photon mapping must shoot and store large num-
bers of photons, which can be prohibitively costly when ren-
dering complex, slow to ray trace assets, as realistic counts
range in the tens to hundreds of millions in order to attain
the necessary image quality. Further, the efficiency of these
techniques can be very low in practical scenarios, as typi-
cally only caustics need this kind of treatment, and these of-
ten cover only small (although very important) regions of the
final image. A great many photons must be traced in order to
place a small portion of them near the caustics, resulting in
a large proportion of wasted computation. Some have pro-
posed the use of virtual devices such portals or photon at-
tractors: these can indeed help in simple configurations, but
tend to have trouble in situations involving occlusion or indi-
rect sources of illumination, greatly limiting the practicality
of the technique.

Metropolis sampling Adaptive sampling in path space has
most successfully been done in the context of Metropolis
light transport (MLT) [VG97,KSKAC02]. The idea is to run
a Markov chain of paths Xi where the stationary distribution
will lead to a probability density function (PDF) ppXq fol-
lowing a chosen target, most often the measurement contri-
bution normalised by image brightness: ppXq “ f pXq{b.

This is implemented by choosing a tentative proposal path
Xt using perturbations of the current path Xi. Next, the state
of the Markov chain Xi`1 is randomly set to either Xt or Xi,

depending on the acceptance probability [MRR˚53, Has70]

a“min

#

1,
f pXt

q{T pXi
Ñ Xt

q

f pXiq{T pXt Ñ Xiq

+

. (3)

This procedure elegantly explores nearby paths in interesting
regions of path space requiring only the measurement con-
tribution and the pairwise transition probabilities T p.Ñ .q.
However, the characteristic low-frequency noise of MLT is
very objectionable in the context of animations, especially
when only low sample counts are practical. This is partly
because the mixing rates of the Markov chain are limited by
the bidirectional mutation [VG97], which typically has ac-
ceptance rates below 1%.

Energy redistribution path tracing (ERPT) [CTE05] ad-
dresses this issue, but the parameters for the algorithm re-
quire extensive tuning and render times are directly pro-
portional to the product of started chains multiplied by the
desired mutation steps. Another avenue for improvement
is to combine photon mapping and Markov chain tech-
niques [HJ11], to try to deposit more photons where they
will be most useful. While the exploration of SDS paths with
ERPT or the rendering of a caustic using photons can work
very well, both techniques depend on an existing seed path:
ERPT in the context of a Markov chain (the current sample)
and photon mapping by means of a cache that has to be filled
by shooting many light paths. In other words, both methods
fundamentally rely on an event of low probability (finding
a path belonging to a small caustic). We directly sample the
connections of all initiated random walks through transmis-
sive interfaces towards the light sources without relying on
rare events to encounter interesting configurations.

Differential geometry Single scattering through refractive
interfaces [WZHB09] searches for the contribution of direct
light through a single layer of a smooth dielectric interface
by constructing a search tree over the geometry and using a
pruning algorithm based on a half vector formulation. Such
a search requires a dedicated acceleration structure for these
refractive interfaces, is comparatively slow and is limited to
a single interface. Our technique on the other hand works
through multiple layers of potentially rough interfaces.

Manifold exploration [Jak13] and half vector space light
transport [KHD14a] enable efficient exploration of indirect
caustics in the context of path space MLT. This is achieved
by re-parametrising a path in a small environment around a
base path by its start- and endpoint and half vectors for all in-
ner vertices. To mutate a path according to a perturbed set of
half vectors, Newton’s method is used and the required con-
straint derivatives at every vertex xi are found analytically by
means of differential geometry [dC76]. More precisely, for
every vertex xi it is computed how the half vector hi changes
with respect to the adjacent vertices:

Ai “ dhi{dxi´1 Bi “ dhi{dxi Ci “ dhi{dxi`1 (4)

resulting in a block-tridiagonal matrix for the whole
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path [Jak13], which can be inverted efficiently [Sal06]. We
build on the same underlying theoretical foundation and de-
velop a correlated Monte Carlo NEE technique which does
not depend on Markov chains and, while somewhat less
generally applicable, leads to more uniform convergence in
cases of high visual importance.

Gradient Domain Light Transport The mechanism of
manifold exploration has been applied to gradient domain
light transport [LKL˚13, KMA˚15]. This method computes
offset paths from seed paths via shift mappings to compute
image space gradients. These gradients are then used, to-
gether with the noisy image, to reconstruct a smoother image
via a screened Poisson solver. While the underlying theory
is similar to our approach, in their work they depend on a
valid seed path which is usually harder to find than ours.

Correlated sampling There are studies in perturbation the-
ory and correlated sampling in the field of neutron trans-
port [Mat63, Rie84, DGN85], but we note that in that con-
text the focus is on perturbing the input parameters (scat-
tering cross sections) and observing the difference in sensor
response while leaving the transport path constant. In some
sense, the meaning assigned by the neutron transport com-
munity to these phrases is dual to ours, as we perturb the
transport path and the correlation is due to similarity be-
tween the base and perturbed paths.

3. Manifold Next Event Estimation

Our new technique creates sub-paths through transmissive
interfaces. Conceptually, we sample an admissible path X
by perturbing a given seed path Y, and do so outside the
context of Markov chains. As we are in a standard Monte
Carlo context, the probability density of X becomes

ppXq “
ż

YPΩ

ppX|Yq ¨ ppYqdY, (5)

which requires costly integration to obtain the marginalised
distribution ppXq. MLT elegantly avoids computing this in-
tegral by ensuring the equilibrium distribution is correct.
One way to achieve this is to require the acceptance prob-
ability to only be dependent on the current and the tentative
sample (the detailed balance condition).

Computing the Marginalised Distribution In the Monte
Carlo context, we achieve our goal by introducing a few con-
straints. First, we only do a single-step perturbation, where
the seed path Y is always deterministically defined by the
current shading point xb and the point on the light source
xc. As the seed path is solely used to initiate the construc-
tion of the admissible transport path, there doesn’t need to
be any energy balance. Further, we assume that given a set
of half vectors Hb`1,c´1 there exists a bijection between
the seed path Y and the admissible path X. This means
the integrand in Eq. 5 is non-zero only for a single path

Y and ppX|Yq “ δpYq. This renders the evaluation of the
marginalised distribution trivial.

Naturally, to implement our technique in an unbiased path
space renderer, we need to provide routines for sampling and
PDF evaluation to integrate into the MIS framework. The
rest of this section is a high level overview of sampling and
PDF computation. Details specific to our case are expanded
in the following sections.

Sampling Direct Illumination Sampling a path suffix
through transmissive interfaces is summarised in Alg. 1: We
use standard techniques [SW91] to sample from xb a posi-
tion on the light source, potentially doing normal culling and
including distance to the shading point. Next, we construct
the seed path building a straight path from xb towards xc, and
collecting all transmissive events along this line (potentially
on rough transmissive surfaces). Then we sample half vec-
tors for all rough vertices b`1, . . . ,c´1, if any. In the end,
a Newton solver with the constraint derivative matrix (also
called manifold walk [Jak13]) is used to find the admissible
path matching such half vectors (Sec. 3.4). The contribution
of the admissible path is then evaluated using the optimised
measurement contribution in half vector space [KHD14a].

Algorithm 1 Next event estimation sampling.
Require: path prefix Xa,b return full path Xa,c

xc, pdxpxcq Ð sample point on light source
Yb`1,c´1 Ð vertices on straight line pxb,xcq // Sec. 3.1
Hb`1,c´1, pdHpHq Ð sample half vectors // Sec. 3.2
Xb`1,c´1 Ð h_to_positionspHb`1,c´1,Yq // Sec. 3.4
// compute the measurement (Sec. 3.3)
return frpxbq ¨ fdHpXb,cq ¨Lepxcq{

`

pdHpHq ¨ pdxpxcq
˘

Probability Density The PDF evaluation routine receives
an admissible path X and needs to find the seed path Y. This
proceeds as follows: first, the seed path is constructed con-
necting xb to xc. Then the computation proceeds as in the
case for sampling to ensure the Newton solver will actually
converge back to X (see Alg. 2). We do not converge the
walk to machine precision but to some small finite epsilon
for performance reasons. Thus, the PDF of the half vectors
pdHpHq should be evaluated on the half vectors of the in-
put path, not on those the manifold walk converged to, this
ensures MIS will use consistent weights.

3.1. Creating the Seed Path

Creating the sub-path pxb`1, . . . ,xcq is straightforward. The
vertex xc is sampled in the same way as computing direct
lighting. Among other things, this ensures that MNEE de-
generates to regular NEE if there are no refractive vertices
that would block visibility. There are two important details
illustrated in Fig. 3: First, if direct lighting is using any
culling with respect to the surface normal at xb, this needs
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Algorithm 2 PDF evaluation.
Require: path suffix Xb,c return PDF pdxpXb,cq

pdxpxcq Ð PDF of point xc on light source
Yb`1,c´1 Ð vertices on straight line pxb,xcq // Sec. 3.1
pdHpHq Ð PDF of half vectors on input path
X1b`1,c´1 Ð h_to_positionspHb`1,c´1,Yq // Sec. 3.4

if |Xb`1,c´1´X1b`1,c´1| ą ε then
return 0 // fail: found a different path

end if
pdXpXb`1,c´1q Ð pdHpHq ¨

ˇ

ˇ

ˇ

dphb`1..hc´1q

dpxb`1..xc´1q

ˇ

ˇ

ˇ
// Sec. 3.3

return pdXpXb`1,c´1q ¨ pdxpxcq

xa“0

x3x1

xc“k

xb“2

Figure 3: Handling occlusion: normal culling used with
MNEE to sample xc needs special care not to cull light
sources which are only visible for the admissible path
(culling region for xb indicated in orange). Also, the seed
path (dashed in orange) may be occluded, while the admis-
sible path is not. For this reason, self-occlusion is checked
only after determining the admissible positions of Xb`1,c´1.

an additional tolerance margin to handle the configuration
in this figure. Second, the seed path might be blocked by a
heavily displaced surface. We detect such cases and ignore
self-occlusion until the solver has converged and the admis-
sible positions of Xb`1,c´1 are known. General occluders
such as additional objects under the water droplet in our ex-
ample are not a common use case for us, but ignoring them
has a big impact on performance as it causes the Newton
solver to run on paths that will in many cases still be oc-
cluded after convergence, wasting computation.

3.2. Sampling Half Vectors

Sampling is performed in the half vector domain, i.e. we
know pdHpHq. In the MLT context, the path space is ex-
plored well given an approximate step size proposal, e.g.
chosen by assuming the half vector distribution of a surface
point is Gaussian [KHD14a]. In contrast to that, in a pure
Monte Carlo context it is imperative to sample the half vector
distribution of the underlying BSDF very carefully. A good
option is to use the sampling function of the BSDF, assum-
ing that it draws from a global distribution and not from the
visible normals [HD14]. This is because after the walk has

converged, the incoming direction will be different from the
one the half vector was sampled with, which will typically
change the set of visible normals.

3.3. Computing the Measurement and PDF

To evaluate the pixel contribution of a sampled path we need
to evaluate the value of the Monte Carlo estimator, which is
the ratio of the measurement contribution to the PDF (both in
product vertex area measure) Î “ f pXq{pdXpXq. To improve
numerical stability in the evaluation of the measurement, we
compute Î“ fdHpXq{pdHpHq in half vector space [KHD14a,
Eq. (4) and (5)] as this formulation contains no geometry
terms for the sub-path Xb`1,c:

fdHpXb,cq “

ˇ

ˇ

ˇ

ˇ

dob
dxc

ˇ

ˇ

ˇ

ˇ

c´1
ź

i“b`1

frpxiq

ˇ

ˇ

ˇ

ˇ

doi

dhi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xoi,niy

xhi,niy

ˇ

ˇ

ˇ

ˇ

, (6)

where |doi{dhi| is well known from microfacet the-
ory [WMLT07], i.e. 4|xoi,hiy| for reflections. Computing
ˇ

ˇdob{dxc
ˇ

ˇ “ Gpxb,xb`1q|Tb`1| via the determinant of the
transfer matrix Tb`1 pushes the accuracy limits of single-
precision floating point arithmetic: double precision or a
careful eye to implementation and compiler optimization pa-
rameters are recommended here.

Computing the PDF for MIS requires us to convert the
half vector PDF to product vertex area measure

pdXpXq “ pdHpHq
ˇ

ˇ

ˇ

ˇ

dH
dX

ˇ

ˇ

ˇ

ˇ

. (7)

The routine solve_matrix_h_to_x, as outlined
in [KHD14b, Fig. 2], inverts the block-tridiagonal constraint
derivative matrix with the blocks A,B,C for every vertex.
We use the same LU decomposition, and the full Jacobian
determinant

ˇ

ˇdH{dX
ˇ

ˇ can be computed very cheaply
inside this routine. More precisely, we evaluate

ˇ

ˇdH{dX
ˇ

ˇ

during the first LU decomposition step as a product of
determinants [Mol07]:

ˇ

ˇ

ˇ

ˇ

ˇ

dphb`1..hc´1q

dpxb`1..xc´1q

ˇ

ˇ

ˇ

ˇ

ˇ

“

c´1
ź

i“b

|Λi|, (8)

where the difference to the original code listing [KHD14b] is
that our index i runs over the sub-path i P rb,c´1s instead of
the whole path r0,k´1s. In order to reduce numerical issues,
it is worth computing this product in double precision.

Specular Case In the specular case, we sample the half vec-
tors with Dirac deltas pdhphiq “ δdhphiq. When evaluating
the pixel contribution Î, these deltas cancel with the mea-
surement contribution. In our implementation, the BSDF
evaluation returns the BSDF in delta-half vector space (in-
stead of the regular space of outgoing directions do). That
is, a specular dielectric will return κ (the Fresnel term R for
reflection). This avoids computing the per-vertex Jacobian in

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



J. Hanika & M. Droske & L. Fascione / Manifold Next Event Estimation

the half vector space measurement Eq. (6) since

fr,dh “ frpxq
ˇ

ˇ

ˇ

ˇ

do
dh

ˇ

ˇ

ˇ

ˇ

|xo,ny| “ κ ¨δdhphq. (9)

Now that the delta function lives in half vector domain (in-
stead of the commonly used domain for BSDF, do), it can-
cels with the PDF and never needs to be evaluated. For MIS
this means that we do not compute the PDF in vertex area
domain, but lack a factor of δdhphq

ˇ

ˇ

ˇ
dh{doK

ˇ

ˇ

ˇ
for every spec-

ular vertex.

Layered BSDFs with Mixed Specular and Glossy Lobes
This change of measure when moving from glossy to spec-
ular poses a problem for BSDFs which contain both scatter-
ing modes at the same surface point (such as car paint with
a clear coat layer) since we would be comparing different
measure spaces in MIS.

To analyse this, we compare the values of a mollified
specular PDF [KD13b] to a regular glossy PDF and note
how the mollified PDF will outweigh any other values as the
mollification parameter tends to zero. This means that in the
limit the MIS weights will be exclusively determined by the
specular PDF, and the glossy contributions can be ignored.
On the other hand, the glossy lobe will only interfere with
the specular one on a measure zero set and thus the specular
lobe can be ignored in the reverse case.

We extend path space for such cases, so that the class
of scatter mode (glossy or specular) at every vertex is
treated as an additional dimension. That is, we randomly
pre-determine whether to use the specular or glossy com-
ponents, and ignore all BSDF layers of the other class when
doing MNEE.

3.4. Convergence of the Predictor/Corrector

The predictor/corrector method employed to find an ad-
missible path X from the seed path Y and a set of per-
turbed half vectors is very similar to the one employed
in manifold exploration [Jak13] and half vector space
light transport [KHD14a]. First the half vector distance
∆Hi to the target half vectors is transformed to a posi-
tion offset ∆X using the first order approximation pro-
vided by the constraint derivate matrix (using the rou-
tine solve_matrix_h_to_x). The projection Xi`1

Ð

PpXi
`∆Xq used to move the displaced vertex Xi

`∆X back
to the surface could be performed by ray tracing. Our experi-
ments have revealed that using a closest point search instead
(i.e. finding the closest point on the surface of the same shape
which the seed path vertex originally belonged to) makes the
projection robust, as it avoids the problem of missing geom-
etry when intersection testing a ray and a surface which is
nearly parallel to it. Also, it can be faster than casting a ray
for complex geometry since the closest point search can be
limited to a small radius |∆xi| and implemented as a traversal
of the same bounding volume hierarchy used for ray tracing.

iterations: 5 10 20 35 50
time (A) 352 410 527 646 680
time (B) 352 407 501 583 637
avg it. (A) 3.55 4.21 5.41 5.87 5.94
avg it. (B) 3.55 4.39 6.51 8.45 9.50
success (A) 33% 39% 45% 46% 46%
success (B) 33% 41% 52% 58% 59%

Table 1: Performance numbers for Fig. 4, depending on the
maximum allowed number of iterations. We show time in
seconds, average iterations until successful convergence and
success rate of the predictor/corrector. All tests are run both
without (A) and with (B) allowing the error to increase.

Another difference to the use case of manifold walks in
MLT is the starting configuration of the Newton solver: our
seed path Y is in general not admissible and potentially far
away from the admissible solution X whereas in MLT all
accepted iterations start and end on admissible paths. Fig. 4
and Tab. 1 show how this affects the number of required iter-
ations. In areas where Y and X are reasonably close together,
we need very few iterations, typically 2–4. In the dimmer
part of the caustic the seed path is a poor initial guess for the
manifold walk and the solver needs to jump over local min-
ima to reach the required half vectors. This means the seed
path is in a different subspace, and the constraint derivative
matrix at the seed Y is meaningless for a local environment
around the final path X. We can still find X in such cases
by successive over-relaxation, i.e. allowing the step size to
grow above one and allowing the error of Xi`1 to increase
temporarily instead of reverting to Xi. However, this can re-
sult in a very large number of iterations (500 or more for
successful convergence), making some individual samples
very expensive. Our experiments indicate that a maximum
iteration count of 15 works well in practice: depending on
the setup, going from 15 to 50 iterations adds less than 10%
successful convergence, and from 50 to 500 less than 1%.

3.5. Outlier Removal

If noise free images are more important than unbiased re-
sults, it is possible to detect cases where MNEE should have
been more efficient than the other techniques (i.e. paths with
a transmissive suffix to the light source), but failed (because
the walk did not converge or in case of ambiguous paths,
cf. Fig. 7). In such cases, we can discard the contributions
of all other techniques, too, since we know we will not be
able to sample these efficiently. This is similar to the use of
path space regular expressions to discard transmitted caus-
tics from all techniques but MNEE. We implement this in
the MIS weight calculation: a sample from the regular path
tracer computes the probability ppXq of MNEE (see Alg. 2).
If this evaluates to zero even though the class of the path has
a transmissive suffix, the MIS weight of the current tech-
nique is set to zero, too, introducing bias.
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5 iterations 20 iterations 50 iterations

5 iterations + error increase 20 iterations + error increase 50 iterations + error increase

Figure 4: A challenging case for the predictor/corrector method: a caustic where the initial seed path is too far off and the
iteration fails to jump over the bright caustic to find the correct path without increasing the error temporarily. All images are
rendered at 1024 spp, see Tab. 1 for average iteration counts and render times. For better illustration, we only show caustic paths
with 5 vertices found by MNEE and omit the other techniques and reflected caustics. The insets exposure is brighter by 2 stops.

PT, 1040spp

PSNR 12.0

NEE, 562spp

PSNR 19.9

BDPT, 432spp

PSNR 20.0

ERPT

PSNR 30.3

NEE+KMLT, 491spp

PSNR 31.5

MNEE+KMLT, 277spp

PSNR 31.7

HSLT, 529spp

PSNR 33.6

MNEE, 244spp

PSNR 35.3

MNEE biased, 297spp

PSNR 37.9

HSLT, 439kspp

reference

Figure 5: Equal time comparison renders (one minute) of a simple setup showing a water droplet on a flat plane, sorted by peak
signal to noise ratio (PSNR). The closeups show the transmitted caustic (red) and the very subtle reflected caustic (blue). The
scene consists of a diffuse ground plane and a sphere with IOR 1.33 (Abbe number 40) and Beckmann roughness α“ 0.02. See
Fig. 7 for a schematic and Section 4 for details on the nine algorithms used
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Figure 6: A sweaty character from a recent movie produc-
tion demonstrating MNEE on complex geometry. MNEE
was 45% slower than NEE here.

4. Results

We implemented MNEE in two rendering systems: a small
research renderer and Weta Digital’s Manuka (see Fig. 6).
Equal time comparisons were done using 12 threads of
an Intel Core i7-3930K CPU @ 3.20GHz hexacore ma-
chine. We use spectral rendering with continuously sampled
wavelength. We do not use hero wavelength spectral sam-
pling [WND˚14] for easier comparisons between specular
and rough interfaces, showing only the differences caused
by MNEE and not by improved transport of wavelengths for
the rough case.

Fig. 5 shows an equal time comparison of nine Markov
chain- and pure Monte Carlo path space sampling meth-
ods. We compare pure path tracing (PT), path tracing with
next event estimation and MIS (NEE), bidirectional path
tracing (BDPT) [VG94], energy redistribution path tracing
(ERPT) [CTE05], primary sample space MLT [KSKAC02]
both with NEE and MNEE as sampler (NEE+KMLT and
MNEE+KMLT, respectively), half vector space light trans-
port (HSLT) [KHD14a] and MNEE with full MIS and in the
biased variant (see Sec. 3.5).

The Markov chain methods KMLT and HSLT are not suit-
able for animations as discussed previously. KMLT shows
low frequency noise even in these still images. HSLT will
show similar effects for more complex scenes where dis-
covering the interesting sub-regions of path space is a chal-
lenge, even though the distribution for the individual regions
is more uniform due to a step size explicitly governed by ray
differentials. HSLT can use a larger step size than KMLT, be-
cause the half vector space formulation will keep the point xk
on the light source, whereas KMLT depends on small steps
to achieve this. Smaller steps result in obvious blotches when
rendering an animation. Both KMLT and HSLT use simple
path tracing as seed, KMLT with and HSLT without NEE.

ERPT is using 512 mutations per chain and chains are
only started for paths that touch the glossy sphere. ERPT
suffers from sparse seed paths (the highlight has not yet been

Figure 7: Vertical cross section of the water droplet shown
in Fig. 5, with actual rays traced against the same interface
(IOR 1.33). The red ray near grazing angle does not only
compress the density on the plane, but connects to the same
point as the other red ray. This kind of caustic folding onto
itself results in ambiguous paths and MNEE as described in
this paper can only find one of them.

discovered in this time frame because of the high mutation
count) and the fact that the Markov chain is cut off after
a fixed number of mutations. We started enough chains to
bring down the average accumulation value to 0.2. Note that
these parameters (number of mutations, number of chains)
have a big impact on speed and our experiments have shown
PSNR ranging from 14 to 30.

The perturbation used in MNEE to connect a point xb
on a caustic to the light source efficiently reproduces the
light under the water droplet. However, being a specialised
technique, it cannot find all transport paths occurring in this
scene. Reflected caustics (blue inset) are a problem as well
as overlapping caustic paths (red inset, also see Fig. 7). Note
that this means MNEE by itself is not an unbiased rendering
algorithm, but needs to be embedded into a path tracer via
MIS to find the paths for which MNEE has a zero sampling
probability density. Although it is possible to use KMLT on
top of a MNEE sampler to mutate these remaining paths,
doing so will introduce MLT noise, resulting in a drop in
PSNR. While it might be possible in this scene to run ERPT
selectively or use some kind of adaptive sampling to resolve
the remaining noise, using the biased version of MNEE and
just discarding ambiguous paths (one of the red paths in
Fig. 7) results in a clean, temporally stable image (this is
why biased MNEE is a bit dimmer in the red inset). There
are no such complications if the ground plane is moved up
just a little (see dashed horizontal line in Fig. 7).

Fig. 8 shows the behaviour of MNEE with increasing
roughness, in an equal time comparison to NEE. For very
rough interfaces, regular next event estimation becomes
more efficient because it can compute more samples in the
same time, and increasingly rough surfaces make direct con-
nections to the light sources more effective. We note that this
is just an example, the actual difference in efficiency of ei-
ther method depends strongly on the specifics of the scene,
the ray tracing cost, and the relative size of objects on screen
requiring MNEE to resolve caustics. MNEE is most effec-
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α “ 0.01, 229 spp 99 spp

α “ 0.3, 183 spp 75 spp

α “ 0.8, 193 spp 79 spp

Figure 8: The droplet rendered at different roughnesses α,
equal time comparison (20s) NEE (left) vs MNEE (right).

tive in contexts where ray tracing costs are high and there
are not many small objects.

5. Limitations

We would like to underline how MNEE can work extremely
well in difficult cases, while relying very strongly on the as-
sumptions exposed earlier to hold. As is the case for other
methods depending on differential geometry, and especially
in the presence of glossy transport, a quality differential ge-
ometry framework is required, with a differentiable struc-
ture with good numerical stability (see Fig. 9 and 10). This
has a tight relationship with the details of how geometric
primitives are represented in the rendering system, and it
can be easier to achieve for large analytical primitives than
for finely tessellated surfaces, especially when run through
programmable displacement. A number of approaches have
been proposed in various domains that could be useful in
this context: one is the introduction of partial curvature in-
formation as done for example in the case of PN trian-
gles [VPBM01], another, more direct approach to the prob-
lem would be moving to advanced data structures based on
discrete exterior calculus (DEC) theory either in the classical
context following Whitney [Whi57] or in more modern for-
mulations [Hir03, DHLM05]. In any event, for best results
the displacement subsystem should be intimately connected
with the geometric representation, and would need to be able
to operate without corrupting its integrity. Whereas this is
relatively easy to achieve for PN triangles, we are unaware
of research in this domain in the context of DEC theory.

Next, note that the present formulation of MNEE’s imple-
mentation does not consider reflected caustics or refracted

ones which lie outside the shadow of the transmissive object:
this is because in these cases our method does not construct
a seed path to start the process (xb and xc are not occluded
from each other, see Fig. 11). We note that a procedure that
would construct such seed paths is all that is needed to han-
dle these configurations.

Lastly, the manifold walk will fail in two cases: first, if
the base path is in a different subspace, the constraint deriva-
tives will be meaningless. This can still converge but at high
cost (see Fig. 4). It will depend on the complexity of the rest
of the scene setup whether the net rendering efficiency will
be higher or lower. Second, if there are multiple admissible
paths for a given seed path (see Fig. 7) the Newton solver ap-
proach as described in this paper will only converge to one of
them, and the use of a multimodal solver might become nec-
essary. Despite all these limitations, a full implementation
will still be unbiased (up to the notes in Sec. 3.5) because
when MNEE fails to converge the PDF evaluates to zero,
letting MIS hand over completely to the other techniques.

6. Conclusion and Future Work

We presented manifold next event estimation (MNEE), a
technique to compute direct lighting through multiple, po-
tentially rough refractive interfaces by correlated sampling
in a pure Monte Carlo context, without resorting to Markov
chains. The technique is relatively light weight and works
well on important special cases such as water droplets on
skin, and integrates well into the MIS framework for un-
biased path tracing. In the future, we would like to lift the
limitations outlined in the previous section, extend the tech-
nique to work with reflected caustics, and to explore the rich
field of multimodal optimization techniques to improve the
robustness to cases where multiple admissible paths corre-
spond to a single seed path.
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