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1 Implementation Details

We implemented our algorithm as a new mutation strategy in Mit-
suba [Jakob 2010], to be used in the path space MLT framework.
Compared to a naive implementation, the proposed implementation
avoids a lot of unnecessary computational overhead. To this end,
we provide a high level overview of our implementation as well as
details on the required matrix operations.

Computing Ray Differentials in Half Vector Space In this step
it is crucial to avoid a slow full matrix inversion. We take advantage
of the sparse nature of the matrix J and use a stripped-down version
of LU decomposition to solve only for the blocks Di from Eq. 9 in
the paper. Since we would need to solve two times (once for each
basis vector of the 2D ray differential) we directly insert a 2 × 2
matrix Hi for each half vector, and then start the solve algorithm
for block-tridiagonal matrices. Figure 1 shows pseudo code for this.
The matricesA,B, andC in the listing are the matrices from Eq. 11
in the paper’s appendix.

Solving for Vertex Offsets In Sec. 5.1 of the paper we show how
to compute vertex offsets as ∆X = J−1∆H⊥ in the prediction
step of the Newtonian method. Again, there is no full matrix inver-
sion required, and we employ the procedure outlined in Figure 2,
derived from the LU decomposition to compute ∆X.

compute ray differentials(X): (Eq. 9 in the paper)
// compute temporary A′i, Ui,Λ−1

Λ−1 = B−1
0

for i = {1, · · · , k − 1}
A′i = Ai · Λ−1

Ui = Λ−1 · Ci−1

Λ−1 =
(
Bi − A′i · Ci−1

)−1

// compute all Di

for i = {1, · · · , k − 1}
// input matrices H = 0, only Hi = I

H = I

for j = {i + 1, · · · , k − 1} :

H = H − A′j ·H

D = Λ−1 ·H
D−1

i = D−1

// compute transfer matrix T1

T1 = −Λ−1 · Ck−1

for i = {k − 2, · · · , 1}
T1 = −Ui · T1

Figure 1: Computing ray differentials in half vector space from the
constraint derivative matrix J . H is a 2×2 matrix in this listing.
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solve matrix h to x(Ai, Bi, Ci,∆h⊥):

// compute temporary A′i,Λ−1

Λ−1
0 = B−1

0

for i = {1, · · · , k − 1}
A′i = Ai · Λ−1

i−1

Λ−1
i =

(
Bi − A′i · Ci−1

)−1

H0 = (0, 0)

for i = {1, · · · , k − 1}
Hi = ∆h⊥i − A′i ·Hi−1

∆xk−1 = Λ−1
k−1 ·Hk−1

for i = {k − 2, · · · , 1}
∆xi = Λ−1

i · (Hi − Ci ·∆xi+1)

Figure 2: Computing position offsets ∆xi from half vector offsets
∆h⊥i . Note that, unlike in Figure 1, H is a 2D vector here.

Continuous Parameterization of Tangent Frames If a scene
object has a continuous surface mapping (e.g., texture coordinates)
almost everywhere, we always precompute the tangent bundle (tan-
gent space for every surface point) for this object based on this pro-
vided mapping.

However, if an object comes without any on-surface parameteriza-
tion, we use the tangent bases that can be constructed locally based
the local parameterization of the object’s primitives. E.g., for a sin-
gle triangle such a basis can be computed on the fly by orthonormal-
izing any two edges of this triangle. The problem with this approach
is that the half vector, when projected onto such a basis, should be
rotated when walking from one primitive to another in order to keep
the global on-surface orientation. In order to account for such ar-
bitrary orientations of the tangent bases on different primitives, we
construct a line every time we step from one primitive to another.
This line from the source point to the new point, projected onto
both old and new tangent basis, gives us a shared on-surface ori-
entation, which we use to locally orient the projected half vector.
This needs to be done at every iteration of the corrector pass in our
predictor-corrector algorithm in order to keep the global on-surface
orientation of the projected half vector on the objects without any
global continuous mapping.

Anisotropic Half Vector Sampling Instead of resampling each
half vector h⊥ from scratch every time, we are performing a ran-
dom walk in H⊥. This means we have to sample an anisotropic off-
set around a current half vector h⊥ of the current path Xt. Naively
sampling a small disk centered around h⊥ can lead to early re-
jection of Xt+1 due to a potentially asymmetric support of the
mutation (i.e., the reverse walk would be impossible) or due to
sampling outside the unit circle domain. To avoid both cases in
a practical way, we first sample a zero-centered anisotropic Phong
lobe [Ashikhmin and Shirley 2000] and rotate it according to the
orthonormalized axes of the ray differentials. The orthonormaliza-
tion preserves the direction of the longer component of ray dif-
ferentials. We use the step size derived in Sec. 6 of the paper

1



To appear in ACM TOG 33(4) (Proc. of SIGGRAPH 2014).

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

anisotropic phong

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

after moebius transform

Figure 3: Illustration of the anisotropic half vector sampling. First,
an anisotropic Phong lobe is sampled (left) and then transformed
around the pivot point, here at (0.25,−0.3) (right).

(i.e., the minimum of suggested BSDF step and the ray differen-
tial lengths ||∆hu|| and ||∆hv|| along the corresponding axis) and
use Walter’s [2007] approximation to convert Beckmann roughness
to Phong exponent. Then we move this distribution to be centered
around the current value of the half vector constraint h⊥t by apply-
ing a Möbius transformation [Hanika 2011, p.40]. This has the full
disk as support and never samples outside it (see Figure 3). We also
tried to directly sample a 2D Gaussian in plane-plane parametriza-
tion, the native space for Beckmann lobes, but found evaluation of
PDFs in this space numerically instable, especially for large step
sizes.

2 Numerical Validation of Properties of the
Product of Jacobians

To provide a numerical validation of the properties of the product
of Jacobians, we set up a simple test program to trace and visual-
ize a path (see Figure 4, top row). Once a path is found, we can
locally explore it using the Newtonian method described in the pa-
per. For each one of the polar plots in Figure 4 we select only one
half vector h⊥i to preturb and keep all other half vectors of the path
fixed. We step through all pixels on the unit disk, i.e. enumerate
all possible values of the half vector. Then the path is constructed
in world space to keep the start and end points as well as all half
vectors, except the new one h⊥i , fixed. After that, the measurement
contribution f(X) and the BSDFs at the corresponding local vertex
ρ(xi) are computed and the normalized values are plotted in false-
color into the polar plot. That is we visualize these quantities in
half vector domain.

We can observe mostly zero-centered Gaussian-like shapes. The
only other factors to observe are minor contributions from the prod-
uct of Jacobians as well as from a few not microfaced-based terms
(like Fresnel and sensor responsivity), which we visualize as a dif-
ference plot. The contribution of these as the surface becomes more
smooth, but is relatively minor even for diffuse surfaces. The visi-
bility affects the results in form of a binary mask.

3 Numerical Results for Difficult Visibility

Visibility is more problematic, as occlusion by the same object will
appear in all half vector plots. Figure 5 shows an extreme case. The
corresponding polar plots in half vector space (Figure 6) show very
narrow restrictions for all half vectors, at every vertex. This means
that we have to explore this space locally, i.e. by perturbing a path
in the Markov chain Monte Carlo context with a relatively small
step size. This is much the same as MLT would do it in vertex area
measure, only that in our formulation it seems more difficult at first
to keep parts of the path fixed (the part from the light source through
the door for example). Nonetheless, the random walk can explore
path space relatively well even in such difficult situations (see the
AJAR DOOR scene in the paper).

Figure 7: Bidirectional path tracing on the JEWELRY scene, us-
ing 40,000 samples per pixel. Indirect glossy caustics are still not
resolved, so we compute our reference images with MLT instead.

4 Additional Results

We provide more detailed results in this report: Figure 7 shows
that bidirectional path tracing is problematic as a reference in some
scenes. Figures ??–12 provide larger insets of the KITCHEN scene
and results of additional techniques and parameter settings which
have been left out of the main paper. Figure 13 includes a com-
parison with PSSMLT in the AJAR DOOR scene. Figure 14 shows
additional comparisons of the JEWELRY scene, especially sample
counts of the equal-time renders of our technique alone vs. ours in
addition to MLT. Figure 15 is the non-cropped version of Figure 10
in the main paper, and Figure 16 illustrates our choice of the λ pa-
rameter for manifold exploration. Figure 17 shows the importance
of the spectrum-motivated sampling described in Sect. 6.3 in the
paper.
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Figure 4: Top: the images show two different views of a simple scene which we use to analyze the measurement contributions and local
BSDF changes. Bottom: these plots show a numerical evaluation of the changes in the measurement contribution as opposed to the changes
only in the corresponding local BSDF (with respect to every projected half vector of the path); each column corresponds to the perturbation
of a single half vector. The upper three rows use a Beckmann roughness α = 0.3, the bottom part show plots for α = 0.05. Note the
sharp boundaries of the plots are due to occlusion. Note the complete measurement changes very closely to changes in the corresponding
local BSDF, which demonstrates the better decorrelation of the path integral into smaller, more independent subproblems. The insets of this
experiment are shown in Fig. 6 in the paper.
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Figure 5: These images show three different views of a simple scene which we use to analyze the measurement contributions and local BSDF
changes. Compared to the previous example, this scene exhibits very difficult visibility.
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Figure 6: The difficult visibility (Figure 5) is reflected in the visualization of the measurement contribution distribution. Note how the
occlusion due to the geometry close to the light source narrows the domain in all distributions.
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Reference, BDPT (4h)

ERPT (30m) RMSE 0.368

Figure 8: Equal-time rendering of KITCHEN scene with difficult glossy paths.
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BDPT (30m) RMSE 0.411

MEPT (30m) RMSE 0.537

Figure 9: Equal-time rendering of KITCHEN scene with difficult glossy paths.
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HSLT+ERPT (30m) RMSE 0.357

MEMLT (30m)  λ=200 RMSE 0.397

Figure 10: Equal-time rendering of KITCHEN scene with difficult glossy paths.
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PSSMLT (30m) RMSE 0.384

Original MLT (30m) RMSE 0.233

Figure 11: Equal-time rendering of KITCHEN scene with difficult glossy paths.
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MEMLT (30m)   λ=50 RMSE 0.314

HSLT+MLT (30m) RMSE 0.232

Figure 12: Equal-time rendering of KITCHEN scene with difficult glossy paths. Note how efficient the new mutation can estimate the optimal
sampling density of difficult regions and deal with hard features like glossy caustics.
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Reference (12h, PSSMLT)

MEMLT (30m) RMSE 0.244

HSLT+MLT (30m) RMSE 0.176

Figure 13: The AJAR DOOR (reference rendered with PSSMLT for 12 hours is on top) rendered in 30 minutes using MEMLT (with the
original set of mutations) (middle), and MLT with only our mutation and bidirectional mutation (bottom).
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Reference BDPT MLT

MEMLT HSLT HSLT+MLT

Figure 14: Equal-time rendering (10 min) of the JEWELRY scene with difficult glossy and specular paths. The reference image (top left) was
computed with original MLT in 60h. BDPT cannot efficiently explore indirect caustics (see Figure 7). The enlarged insets show: original
MLT shows blotchy artifacts close to glossy edges due to jumping off the constraints. ME classifies glossy vertices as specular or diffuse, thus
reducing the efficiency. Our mutation (HSLT), coupled only with the bidirectional mutation, compares favorably in most difficult areas, yet
is slow to compute in simple regions. Mixing original MLT mutation strategies with ours alleviates this (HSLT+MLT). The average samples
per pixel were: MEMLT 621, MLT 1424, HSLT+MLT 612, HSLT 577, the image resolution is 1024× 768 pixels.
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Figure 15: A simple scene with a diffuse ground plane, a sphere, and a cube with a rough dielectric with different roughnesses (0.01 and 0.1),
rendered with manually chosen step sizes as indicated. Bottom row shows our automatically selected step size for BSDF bandwidth (left)
and the same combined with stratification based on ray differentials (middle), as well as a reference render. The percentage in the corner
indicates the acceptance rate.
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Figure 16: The JEWELRY scene with MEMLT and different values for the parameter λ. From left to right, top to bottom: λ =
{5, 50, 500, 5000} with 1M initial samples (seeding paths) and 256 samples per pixel. The corresponding acceptance rates are 10.88%,
35.7%, 65.5%, and 63.3%, respectively. We used the default λ = 50 due to its uniform distribution of samples in the image plane, to avoid
clumping in the background light. Note that the acceptance probabilities are quite different for importance and radiance transport. In our
method, we dynamically pick the most convenient tracing direction (see Section 5.1, Obtaining Path Vertices in the main paper).
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Figure 17: A simple scene with a rough dielectric cube (α = 0.01) enclosing another (tinted orange) rough dielectric cube (α = 0.1) on
a diffuse ground plane. The illumination comes from a small spotlight in the upper left corner shining onto the small enclosed cube. Using
the sampling density motivated by estimated integrand spectral density (Sec. 6.3 in the main paper) to distribute mutation step size according
to BSDFs’ bandwidths ensures more even perturbations on both different roughnesses occurring on the same path. Stratification (Sec. 6.2 in
the main paper) help to further optimize the sampling. All images except the reference use 1024 samples per pixel on average. The reference
image uses PSSMLT with 10467 samples per pixel.
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