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Figure 1: Equal-time comparison of the JEWELRY scene with difficult glossy paths. Left: Reference computed with the original Metropolis
Light Transport (MLT) in 60 hours. The two closeups show 10 minute renders using original MLT, Manifold Exploration (MEMLT) and MLT
with our proposed mutation (HSLT+MLT). Note that BDPT cannot efficiently explore indirect caustics even at high sample counts. All MLT
variants used 1 million initial samples, MEMLT used λ � 50. There was no special handling of direct illumination. The average number of
samples per pixel: MEMLT 621, MLT 1424, HSLT+MLT 612. Our new mutation estimates the optimal sampling density of difficult specular
and glossy transport and excels at capturing hard features like thin highlights along highly curved rims.

Abstract

The path integral formulation of light transport is the basis for
(Markov chain) Monte Carlo global illumination methods. In this
paper we present half vector space light transport (HSLT), a novel
approach to sampling and integrating light transport paths on sur-
faces. The key is a partitioning of the path space into subspaces in
which a path is represented by its start and end point constraints and
a sequence of generalized half vectors. We show that this represen-
tation has several benefits. It enables importance sampling of all
interactions along paths in between two endpoints. Based on this,
we propose a new mutation strategy, to be used with Markov chain
Monte Carlo methods such as Metropolis light transport (MLT),
which is well-suited for all types of surface transport paths (dif-
fuse/glossy/specular interaction). One important characteristic of
our approach is that the Fourier-domain properties of the path inte-
gral can be easily estimated. These can be used to achieve optimal
correlation of the samples due to well-chosen mutation step sizes,
leading to more efficient exploration of light transport features. We
also propose a novel approach to control stratification in MLT with
our mutation strategy.
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1 Introduction

Rendering photorealistic images has been one of the main goals
of computer graphics. Physically-based simulation of light trans-
port plays a crucial role in this endeavor. And indeed, we can
observe significant progress in the large number of global illumi-
nation methods developed over time. However, the inherent com-
plexity of light transport creates challenges that have not yet been
fully mastered. For example, computing light transport for complex
scenes with glossy materials remains nontrivial due to (nearly) non-
samplable specular-diffuse-specular paths and difficult visibility.

There are two main strategies to address the challenges of light
transport simulation. The first is to strive to improve the underly-
ing mathematical integration method. Second, there is a demanding
effort to provide proper level of detail (LoD) for scene description
data, such as geometry, textures, and even acceleration structures.
In this paper, we focus on the mathematical integration of the trans-
port problem which is particularly challenging in scenes with com-
plex illumination, geometry and materials.

The path integral formulation of light transport [Veach 1998] and
numerical integration and sampling techniques, such as (Markov
chain) Monte Carlo methods, form the basis of nowadays global
illumination methods. In all their diversity, these methods share
the concept of stochastically creating paths, connecting the sen-
sor to the lights. With limited computational budgets, i.e., finite
sample (path) count, the sampling strategy is of utmost importance.
Metropolis light transport (MLT) [Veach and Guibas 1997] was the
first application of Markov chain Monte Carlo (MCMC) sampling
to this problem. This class of approaches samples the path space
by mutating paths and concentrates on samples with high contribu-
tions to the image. MLT is able to locally explore regions of the
path space that are otherwise difficult to sample, e.g. pure glossy
interactions that are important for natural images.

In this paper we show how light transport on surfaces (in the ab-
sence of participating media) can be solved in a domain that is bet-
ter suited for these difficult phenomena. Consider for example a
perfect specular reflection: in this case the trajectory of light is dic-
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tated by Fermat’s fundamental principle, intuitively the angle of
incidence is equal to the angle of reflection. The configuration can
likewise be expressed using the half vector between these two direc-
tions which then coincides with the surface normal. This geometric
configuration is always met for specular reflections and we thus call
it a natural constraint.1

These constraints have long been used in optical design, e.g., in
ABCD matrix analysis or transfer/system matrices, and also were
applied to image formation with pencil tracing [Shinya et al. 1987].
Recently, these geometric considerations of Fermat’s principle led
to an improved sampling technique for specular interactions with
manifold exploration [Jakob 2013] in MLT.

In light transport simulation, a path is typically represented as a list
of vertices (locations of interactions), or by its start vertex and a
sequence of directions. In this paper, we propose a different rep-
resentation, where the relation of incident and outgoing directions
at interactions is specified by the direction of the (generalized) half
vector [Sommerfeld and Runge 1911]. This representation is a lo-
cal parametrization and unique only within a subspace of the path
space (intuitively, paths via the same surface patches, Fig. 2).

For light transport simulation, we need to sample the entire path
space. However, this representation, which we detail further in
Sec. 4, has a number of beneficial properties when considering light
transport within each subspace:

• many practical bidirectional scattering distribution functions
(BSDFs) can be naturally [Walter et al. 2007] or more com-
pactly [Rusinkiewicz 1998] expressed with half vectors,

• we show that it enables importance sampling both geometry
(e.g. curvature) and BSDFs at all interactions along paths,

• we can directly generate valid paths by just perturbing the half
vectors (Fig. 2), even with glossy and specular BSDFs, curved
surfaces and small light sources.

In addition to this representation, our main contributions are:

• a novel global illumination method using this representation
to robustly handle complex inter-surface light transport,

• a symbolic and numerical analysis of the transformation be-
tween our representation and standard measurement spaces
previously used for integration in the path space (Sec. 4),

• a new mutation strategy for bidirectional light transport that
operates on entire paths without explicit connections (Sec. 5),

• a novel stratification scheme for MCMC rendering (Sec. 6),

• and we show how to employ recent results on the Fourier anal-
ysis of Monte Carlo simulation [Subr and Kautz 2013] to fur-
ther improve sampling (Sec. 6.3).

2 Background and Previous Work

Path Integral Light transport methods compute a solution to the
path integral defined for the j-th pixel measurement Ij over mea-
surement contribution function fjpXq [Veach 1998, p.223] on the
product surface area measure dX as

Ij �
»

Ω

fjpXq dX, with dX � dµpXq �
k¹

i�0

dApxiq, (1)

where Ω denotes the path space, i.e., the space of all valid paths
X � px0, ...,xkq of all lengths k � p1..8q that connect a light

1Snell’s law is a special case of Fermat’s principle for refractions where
the generalized half vector (see appendix) aligns with the surface normal.
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Figure 2: The new representation of light transport paths partitions
the path space into submanifolds in which a path can uniquely be
represented by its natural constraints (see Sec. 5.2 for a formal def-
inition). Here two submanifolds (right, gray) with paths of length
2 via one of the surfaces are shown: h1 and h2 specify two paths
in the same subspace, while the red and blue paths have the same
half vector h1 � h3, but are in different subspaces. Our method
enables to easily sample these submanifolds.

source to the sensor via interactions at vertex positions xi. Here-
after we omit the dependence of fpXq on the pixel index j, as the
pixel filter can be applied at the sample accumulation stage. We
denote the corresponding outgoing and incident directions from
xi to xi�1 with oi � �ii�1, the projected solid angle measure
dσKpoq � doK and the surface area measure dx � dApxq. Later,
we will also consider half vectors and projected half vectors which
are denoted as hi and hKi , respectively. Table 1 and Fig. 3 summa-
rize our notation.

Monte Carlo Methods Stochastic path generation in MC meth-
ods can either start from the camera (path tracing [Kajiya 1986]),
from the light sources (light tracing [Arvo 1986]), or from both
sides with bidirectional path tracing (BDPT) [Veach and Guibas
1994; Lafortune and Willems 1993] involving deterministic con-
nections of subpaths. Many-lights methods [Keller 1997] reuse
light subpaths for connections by interpreting their vertices as vir-
tual light sources illuminating the scene. Often these methods em-
ploy clustering and importance sampling (e.g. [Walter et al. 2005]),
and multiple importance sampling [Walter et al. 2012]. We re-
fer the reader to recent surveys on this topic [Dachsbacher et al.
2013; Krivánek et al. 2013]. Bidirectional methods are based on
deterministic connection of path vertices, which implies that bidi-
rectional scattering distribution functions (BSDF) at two connected
vertices cannot be importance-sampled.

Photon Mapping Another popular family of Monte Carlo meth-
ods are derived from photon mapping [Shirley et al. 1995; Jensen
1996] where a large number of light subpaths are generated and
the vertices stored as photons. Light subpaths are then connected
to camera subpaths using kernel estimation, trading variance for
bias. These methods recently gained more attention since the ad-
vent of progressive methods [Hachisuka et al. 2008; Knaus and
Zwicker 2011; Kaplanyan and Dachsbacher 2013a] and unified
frameworks coupling photon mapping and unbiased Monte Carlo
methods [Georgiev et al. 2012; Hachisuka et al. 2012]. Compared
to pure (MC)MC methods, these approaches introduce visible bias
and still need significant amounts of memory for storing photons,
even though the progressive methods partly alleviate this problem.

Markov Chain Monte Carlo Methods The Metropolis light
transport (MLT) method [Veach and Guibas 1997] employs Markov
chain Monte Carlo (MCMC) sampling (using the Metropolis-
Hastings algorithm [Metropolis et al. 1953; Hastings 1970]) for
computing the path integral by iteratively sampling new paths Xt�1

from a current path Xt. The process is bootstrapped with an ini-
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tial path X0 obtained from bidirectional path tracing and subse-
quently the path space is sampled using MCMC with specifically
designed mutation strategies. For the Metropolis-Hastings algo-
rithm these strategies need to compute the transition probability
T pXt Ñ Xt�1q for a state change to happen. To ensure that the
Markov chain converges to the intended stationary distribution, a
newly proposed mutation is accepted only with a certain acceptance
probability minp1, aq with

a � fpXt�1q{T pXt Ñ Xt�1q
fpXiq{T pXt�1 Ñ Xtq :� Rt�1

Rt
. (2)

MLT shares path samples Xi among all pixels, i.e., for estimat-
ing all pixel integrals at once, effectively computing an image his-
togram. For this, each sample is projected to the image plane and
its contribution is accumulated accordingly.

Several variants of MLT and applications of MCMC sampling tech-
niques have been proposed in computer graphics literature. Kele-
men et al. [2002] perform mutations in primary sample space, i.e.,
on random number vectors that are used to generate the paths. As
a consequence, the performance of this method also depends on the
path sampling technique (how random numbers map to paths).

MCMC sampling has also been used with photon mapping where
subpaths are mutated [Fan et al. 2005; Chen et al. 2011; Hachisuka
and Jensen 2011]. In contrast, we importance-sample all interac-
tions of a path at once, which is not the case when a path is con-
nected to a photon location where the BSDF has to be evaluated for
already given directions.

Energy redistribution path tracing (ERPT) [Cline et al. 2005] uses
the original set of MLT mutations [Veach and Guibas 1997], but
a large number of short Markov chains to stratify the image plane
sampling. In contrast, our method employs explicit stratification
within the chain by computing the necessary changes to path con-
figuration to distribute samples evenly. This makes explicit filter-
ing, as in the original ERPT paper [Cline et al. 2005], unnecessary.

Also, there exist various other extensions of MLT which do not di-
rectly change path sampling and can thus be used together with our
method, such as Population Monte Carlo [Cappé et al. 2004] and
gradient domain MLT [Lehtinen et al. 2013]. The latter computes
image gradients plus a coarse approximation of an image. The final
image is then obtained thereof by solving a Poisson equation.

Manifold Exploration Most related to our work is manifold ex-
ploration (ME) [Jakob and Marschner 2012; Jakob 2013], a muta-
tion strategy for MLT specifically designed to improve the sampling
of specular and highly glossy paths. It is based on the observation
that a specular vertex entails a Dirac delta in the integrand (due
to the BSDF), which effectively removes this dimension from the
integration. This essentially reduces the domain of integration to
a lower-dimensional sub-manifold enclosed in path space. Jakob
and Marschner [2012] propose to implement this as a determinis-
tic manifold walk procedure which enforces Fermat’s principle as a
constraint on specular vertices, after performing a perturbation on
any of the other vertices. To render a caustic for example, the al-
gorithm performs a lens perturbation [Veach and Guibas 1997] by
tracing from the sensor towards a perturbed direction until reaching
the caustic. The rest of the path up to the light source is then up-
dated respecting Snell’s law for refraction at the interfaces. While
producing excellent results for caustics caused by specular inter-
actions, this technique can be suboptimal for highly glossy trans-
port. We discuss this method in more detail in Sec. 5.1. Note that
unbiased (MC)MC methods, including manifold exploration, can-
not sample all transport paths, which requires regularization [Ka-
planyan and Dachsbacher 2013b].

Term Description

v,vK Vector and its planar projection onto tangent frame
||v||,v L2 length of a vector, unit (normalized) vector
dv,∆v Differential of vector, finite difference

X Ordered set of points, also light transport path
M, |M | Matrix M , its determinant

�
�
�
dpb0..bnq
dpa0..anq

�
�
� Jacobian determinant of transformation from space A to B

x, i, o Surface point, incident and outgoing direction
pu,v,nq Tangent frame at surface point
h,hK Half vector and projected half vector
fpXq Measurement contribution function for path X

fspiiÑoiq�fspxiq Bidirectional scattering distribution function (BSDF) at xi

Table 1: Notation used throughout our paper.
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Figure 3: Illustration of our notation on a simple path. The vertex
indices are starting from the light. Please also see Table 1 for an
overview of the notation.

3 Overview

We first introduce the space of natural constraints and its relation
to the standard measurement spaces otherwise used in global illu-
mination (Sec. 4). Along this way, we analyze the transformation
between the spaces and discuss important special cases. Through-
out the paper, we ignore visibility and assume the BSDFs are well-
approximated in half vector domain (leaving out some parameters,
like Fresnel terms).

That followed, we introduce the basis for our new mutation strat-
egy which makes use of the new sampling domain and enables its
use with Metropolis light transport methods (Sec. 5). This muta-
tion strategy perturbs half vectors along the path individually while
keeping the first point on the light source and the last point on the
sensor. That is, it explores the subspace containing the current path
(see Fig. 2) by constraint mutation.

In Sec. 6 we detail how this mutation strategy can be controlled by
balancing the three aspects of importance sampling: exploring the
BSDFs, enforcing stratification on the image plane, and sampling
according to a frequency analysis. We show that these goals can be
conveniently achieved at the same time with our theory.

4 Integration in Space of Natural Constraints

4.1 Integration in Path Space

In order to compute the path integral (Eq. 1) we have to gener-
ate paths to sample the path space Ω, and compute the paths’ flux
densities, i.e., the contributions to the image. However, this path
sampling is typically not done in the measurement space, but in the
sampling domain of outgoing directions (or projected solid angle)
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where Monte Carlo methods operate: eye subpaths and/or light sub-
paths are generated by sampling a direction at an interaction loca-
tion (and possibly these sub-paths are deterministically connected
to form complete paths). To compute the flux densities of paths we
still need to perform a change of variables from the sampling do-
main of directions at a vertex xi to the surface area measure at the
next vertex doKi ÞÑ dxi�1 which is represented by the following
Jacobian (called geometric term):

Gpxi,xi�1q�
�����

doKi
dxi�1

������
����doixoi,niy

dxi�1

����� |xii�1,ni�1yxoi,niy|
||xi � xi�1||2 .

Note that these geometric terms only appear explicitly in next event
estimation in path tracing or in the subpath connection in BDPT as
they otherwise cancel out when sampling outgoing directions.

Unfortunately, these geometric terms can introduce difficulties in
radiance measurements as they are not always well-behaved on ge-
ometric junctions, e.g. at corners. Nevertheless, the measurement
space is the only space for a comparison of the flux density and the
sampling probability of two paths and thus a very important space
for techniques that require such comparisons, e.g. multiple impor-
tance sampling and Metropolis light transport [Veach 1998].

On the other hand, the sampling domain of outgoing directions is
best-suited for sampling scattering interactions. Note, a path is not
explicitly represented in this space (e.g. as an ordered set of ver-
tices) and has to be raytraced to determine the respective next scat-
tering locations. As a consequence, altering directions can lead to
changes in the path topology, e.g., when hitting a different surface,
or a drastic change of an endpoint position. This makes it an in-
convenient space for directly working on paths for point-to-point
transport (connection from a light source to the sensor), since the
trajectory cannot be easily controlled.

Although paths are easy to sample in this domain, it shares one
limitation with most path sampling techniques: at some step a path
is completed, i.e., it forms a point-to-point connection, and then the
values of some BSDFs have to be evaluated post factum, which can
lead to unpredictable changes of flux carried by such a path. That is,
the goal is to importance-sample a path with all BSDF interactions.

4.2 The Space of Natural Constraints

For light transport simulation we need to (1) sample the path, and
(2) compute the measurement contribution of the path which, for
the domain of outgoing directions, potentially involves a change of
variables introducing singularities. We propose to use a different
space for sampling which does not suffer from the aforementioned
singularities and further has the desirable property that it works
on entire paths, enabling us to importance-sample all interactions
along paths in between two endpoints (e.g., a pixel on the sensor
and a point on a light source), that is, we keep x0 and xk fixed.

This space of natural constraints is based on the observation that
a complete path—in a subspace of the path space—can be repre-
sented by an ordered set of vertices, X � px0, ...,xkq, but it can
also be uniquely represented using the two endpoints x0 and xk and
a sequence of projected half vectors at the interactions (see Fig. 3).
More precisely we introduce the space of natural constraints, or the
projected half vector domain, as

HK � px0,h
K
1 ,h

K
2 , � � � ,hKk�1,xkq P ΩpHKq � Ω.

The term half vector domain is more intuitive when considering a
single constraint (half vector). We use the terms interchangeably.

Our sampling domain has two key properties that we will introduce
step-by-step in the next sections:

o1

x0

o0

x1

h1

h2

o2

x2

x3

T

T

T
T

T

Figure 4: The simplified product of Jacobians first transforms the
displacement at the last vertex x3 to the outgoing direction at the
first one (x0), allowing to track the changes in flux density through-
out the path. Then a transformation from projected half vectors to
projected outgoing direction at every scattering vertex is applied.

• the change of variables, related to the sampling in the space of
natural constraints, entails that the integrand becomes flatter
and decomposed into highly decorrelated subintegrals,

• even more importantly, the domain of constraints enables us
to importance-sample an entire subspace HK, i.e., all paths of
the same topology in the same submanifold.

4.3 Analysis of the New Domain

We are concerned with the integration over transport paths to com-
pute the incident flux on a sensor pixel due to emission at a light
source (point-to-point transport). Next, we introduce the transfor-
mation of such complete paths sampled in the half vector domain to
the measurement space and analyze the properties of this mapping.

The transformation is obtained from the Jacobian of the half vector
constraint matrix (see appendix or [Jakob 2013]) from projected
half vector measure dHK into surface area measure dX:

»
ΩpX0q

fpXq dX �
»

ΩpHK
0 q

fpXq
���� dX

dHK

����dHK, (3)

where ΩpX0q and ΩpHK
0 q denote the same subspace of the path

space where the local parameterization of the submanifold around
the path X0 is valid. This validity means that the transformation
Jacobian is smooth on the submanifold, which in practice requires
a region of C2 continuity of the surfaces around the vertices. We
will detail in Sec. 5 how this requirement is practically met.

The complete measurement contribution then includes both Jaco-
bians, the Jacobian of projected half vectors dxi ÞÑ dhKi and the
product of geometric terms doKi�1 ÞÑ dxi:

fpXq
���� dX

dHK

���� � ρpXq
�
�k�1¹

i�0

Gpxi,xi�1q
�

�����
dpx1..xk�1q
dphK1 ..hKk�1q

����� . (4)

Here ρpXq denotes the product of BSDFs fs at each surface vertex,
the sensor responsivityWe at the end point xk, and emitter radiance
Le at the start point x0. These components of ρpXq are straightfor-
ward to evaluate and common to all global illumination methods.
We will thus focus on the product of the two Jacobians.

4.3.1 Properties of the Product of Jacobians

In this section, we analyze the most common case of point-to-point
transport, where constraints are two endpoints and the projected
half vectors (on-surface microfacets) for interactions in between.
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Figure 5: The CORNELL BOX (256 samples/pixel) with diffuse sur-
faces rendered using MLT with the original set of mutations (equiv-
alent to manifold exploration for diffuse surfaces) in on-surface
area measure (closeups top row), and with our method (bottom
row). Note how the singularities in the corners cancel out thanks to
the well-behaved product of Jacobians with the half vector domain.

For a given complete path x0, ..,xk we analyze properties of the
transformation in Eq. 4:

pEq. 4q{ρpXq �
�����
dpoK0 ..oKk�1q

dpx1..xkq

�����
�����
dpx1..xk�1q
dphK1 ..hKk�1q

�����
�
�����
dpoK0 ,oK1 ..oKk�1q
dpxk,x1..xk�1q

�����
�����
dpx1..xk�1q
dphK1 ..hKk�1q

�����
�
�����
doK0
dxk

�����
k�1¹
i�1

����doi

dhi

����
���� xoi,niy
xhi,niy

���� , (5)

where we first swapped matrix columns (property of the Jacobian
determinant) and then applied the chain rule in this rearrangement.
The first term of Eq. 5 can be computed using the method of transfer
matrices [Shinya et al. 1987] that has recently been used as gener-
alized geometric term for perfect specular chains [Jakob 2013]:�����

doK0
dxk

����� �
�����
doK0
dx1

�����
����dx1

dxk

���� � Gpx0,x1q |T1| . (6)

The transfer matrix T1 contains the differential transformation of
an on-surface tangent patch at x1 to xk based on the differential
geometry. That is, it tracks the changes of area density along the
light trajectory from the first on-surface vertex after the light source
x1 to the last vertex xk on the camera sensor.

Thus, Eq. 5 can intuitively be viewed as first transforming the area
density as if considering a specular chain using transfer matrices
(Fig. 4). Thereafter the individual transformations from half vectors
to outgoing directions are applied to account for glossy transport.

As an example, let us consider only surface reflections (as in Fig. 4).
If we insert the reflection Jacobians | dhi{ doi| � 1{|4 � xhi,oiy|
for transforming half vector density to outgoing direction (see [Wal-
ter et al. 2007] and Eq. 10 in the appendix) into Eq. 5, we obtain:

�
�����
doK0
dxk

�����
k�1¹
i�1

4 �
���� xoi,niyxoi,hiy

xhi,niy
���� . (7)

Note that all singularities caused by geometric terms except for
Gpx0,x1q cancel out, which is a desirable property for integration.

4.3.2 Qualitative and Quantitative Analysis

The simplified product of Jacobians in Eq. 5 is numerically more
robust than evaluating geometric terms for difficult geometric con-

h2
x0

x1

x4

x6

x2

x5 x3

α
�

0
.3

α
�

0
.0

5

Measurement fpXq BSDF fspx2q Difference

Figure 6: Changes of the measurement contribution fpXq (left)
and the Blinn-Phong BSDF fspx2q (center) caused by perturbing
only the half vector at the highlighted vertex. We visualize normal-
ized values in false-color inside the domain of the projected half
vector (the unit circle). The differences (right) between the normal-
ized distributions show that the changes of the full integrand are
mostly due to the changes in the local BSDF at the perturbed half
vector (Eq. 4).

figurations, e.g. corners, as transfer matrices in these configurations
degenerate to identities compared to singularities (Fig. 5).

Another advantage of the new domain is that the integrand dimen-
sions are highly decorrelated from each other, i.e., we can assume
that changing the value of one constraint (e.g., a projected half vec-
tor) causes the change in the measurement contribution that mostly
comes from the local change of the corresponding BSDF. Note that
we do not take into account visibility and terms that are not ex-
pressible in our domain, such as the Fresnel coefficient, directional
emission distribution of the light source and directional sensor re-
sponsivity, for our importance sampling. In practice, we did not
notice significant loss of sampling efficiency, and rely on Metropo-
lis sampling to account for these terms. Thus, modifications to a
projected half vector hKi mostly influences the BSDF at a single
vertex xi. The remainder of the integrand (Eq. 5) depends on the
differential geometry, which is well-behaved within a submanifold.

By analyzing this remainder (Eq. 7 shows an example), we can con-
clude that all components of this product vary smoothly: the first
term contains one initial geometric term and the determinant of one
transfer matrix. The product consists of cosines that are known to
introduce smooth low-frequency changes in the half vector domain.

To support these claims, we provide numerical validation. In Fig. 6
(more data provided in the supplemental material), we analyze how
the product of Jacobians influences the shape of the integrand in
half vector domain. Note that the distributions are very similar,
which confirms that the product of Jacobians is relatively flat. This
also demonstrates our observations about the decorrelated dimen-
sions in the new domain. It also shows that the effect of the Jaco-
bians in the case of glossy transport is negligible. Note that even
for almost diffuse transport the product remains well-behaved.
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4.4 Specular Interactions in the New Domain

Specular interactions are always considered as a special case in light
transport. In fact, as we will see, one of the terms in the product in
Eq. 5 cancels out with a specular BSDF. Note that this reduces the
dimensionality of the integration and entails that the respective con-
straint (half vector) should not be perturbed when sampling paths.

This cancellation is observed when the specular BSDF fspiÑ oq
with its delta distribution is regarded in the half vector domain.
The respective transformation from outgoing direction domain to
the domain of half vectors appends the Jacobian do ÞÑ dh as

fs � κ
δopsq
|xo,ny| � κ

δhKp0q
|xo,ny|

����dhdo

���� , (8)

where s is the outgoing direction of perfect specular interaction and
κ folds all other factors like the reflection/transmission coefficient
and the Fresnel term; we directly omitted the dot product |xh,ny| �
1 in the numerator caused by the projected half vector.

Note that Eq. 8 contains the inverse Jacobian, |dh{do|, to the re-
spective Jacobian in Eq. 5. For the special case of a purely specular
chain in a path, we can observe this cancellation in the resulting
sub-Jacobian, i.e., the corresponding terms in Eq. 5 are equal to
Eq. 6: it results in the generalized geometric term used in manifold
exploration [Jakob 2013]. In practice this means that we can di-
rectly evaluate materials with delta distributions in our framework
(by combining Eq. 8 with Eq. 10) as they are deduced to the canoni-
cal form. That is, they do not require treatment in a special domain,
e.g. like the “discrete measure” used in the Mitsuba renderer [2010].

4.5 Discussion

The aforementioned properties enable a path sampling strategy to
importance-sample all interactions of a path inbetween endpoints
at once. For example, it is easy to estimate the change in path
measurement due to altering the value of a single half vector con-
straint. Note that many BSDFs can easily be expressed [Walter et al.
2012], represented [Rusinkiewicz 1998], or approximated (e.g., by
the Beckmann roughness equivalent [Jakob 2010]) in this domain.

The major advantage of integrating in this space is that we can
modify individual constraints while preserving others, e.g. the end-
points of a path. This is in contrast to other measures: with the
measure of outgoing directions, the endpoint position depends on
chosen outgoing directions; or in the on-surface area measure, mov-
ing one vertex affects the directions to two adjacent vertices.

In this section we detailed only the most common case of point-
to-point transport, where two endpoints are fixed. Other types of
boundary constraints follow the same derivation, e.g., directional
constraints due to a directional light source or an orthographic cam-
era model which replace the positional constraints. The only differ-
ence is that the positional constraint at the corresponding endpoint
is replaced by a directional constraint (the same as in manifold ex-
ploration, please see [Jakob 2013, p.70] for more details).

With Eq. 5, we compute the path measurement contribution fpXq
using transfer matrices (or system matrices), which were prior used
only for specular transport paths [Shinya et al. 1987]. Thus, we
employ the transfer matrices for the general light transport frame-
work with arbitrary scattering (such as glossy and diffuse) along the
path. In other words, the path is always treated as a pure specular
transport going through the specular microfacets defined by a set of
preselected (in our case, sampled) half vectors (see Fig. 4).

5 Half Vector Space Light Transport

As mentioned before, our representation considers subspaces of the
path space, and only within a subspace the Jacobians described in
the previous section are valid. To sample from each subspace, we
employ a Markov chain method and explore the space of natural
constraints by using small perturbations to the half vectors. In prac-
tice, similarly to original MLT or ERPT [Cline et al. 2005], we sam-
ple a new path with another method, such as bidirectional mutation
or BDPT, and transform it into the half vector representation. In
this form, we can then perturb the constraints of the path (the end-
points as well as the half vectors) and by this efficiently explore the
subspace. These two steps, new path sampling and perturbation,
enable us to sample the entire path space.

5.1 Half Vector Space Mutation

The key of this exploration is a new mutation strategy, detailed in
this section, which adds to the MLT framework. Starting with the
current path in the Markov chain, we compute the geometric deriva-
tives of the constraints in the tangent spaces of all vertices on the
path. This step is analogous to manifold exploration and results in
a block-tridiagonal matrix J which expresses the change of pro-
jected half vectors with respect to vertex positions in their respec-
tive tangent spaces (Eq. 11, described in more detail in Appendix A
and [Jakob 2013]). In this process we also compute and store the
projected half vectors of the current path.

We then proceed by mutating the path by perturbing all half vector
constraints simultaneously, e.g. by sampling on a small disk around
each individual half vector of the current sample. Note that all seg-
ments of a path can be affected even if only one half vector changes.
We first focus on how paths are mutated in general, and next de-
scribe our sampling strategy for constraints which considers surface
roughness as well as stratification on the image plane (Sec. 6).

Obtaining Path Vertices After perturbing the half vectors, we
need to determine the locations of the new path vertices. These lo-
cations are required, for example, to test for visibility or to read out
the surface properties. To this end, we use a modified predictor-
corrector Newtonian method from manifold exploration [Jakob and
Marschner 2012]. In principle this works by first predicting new
vertex positions using J as the Jacobian in a Newtonian method.
And second, correcting these positions by using ray tracing to
project the predicted points back onto the scene geometry.

If we applied the original correction scheme of manifold explo-
ration to project vertex positions, it would retrace the path starting
at one of the endpoints, e.g., from x0 towards x1, and enforce the
newly sampled half vectors at every interaction. This results in a
displaced end vertex x1k and the correction T1 � px1k � xkq can be
used to iteratively refine the path vertices x1i. This original algo-
rithm converges when the error px1k � xkq is not too large; this
approach typically works very well for purely specular surfaces.

However, we use another approach, which first explicitly predicts
the change of all vertex positions at once using ∆X � J�1∆HK

(see Eq. 11 in the Appendix) and then project the new vertex posi-
tions onto the surfaces. The above prediction-correction steps have
to be iterated until the half vectors of the resulting path match the
sampled constraints. Note that, due to the sparsity of the matrix,
a full inversion can be avoided (Sec. 7). This strategy, although a
little more costly to evaluate, typically has better convergence to
desired half vectors, e.g., at grazing interaction angles.

We select the projection direction (either from the sensor or from
the light source) by computing | dx1{dxk�1| � |T1| � |Tk�1|�1,
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Figure 7: Manifold exploration (left) fixes the half vectors (orange) for two selected subpaths by stochastically classifying vertices as
specular. It then perturbs the direction at one of the end points and tries to construct a new path. Unfortunately, the scattering at the vertex
between these two subchains (here: x3, half vector depicted in red) is not importance-sampled. In contrast, our new strategy takes all BSDF
interactions along the path into account. Moreover, we importance-sample all half vectors at once, compared to uncontrollably changing
only one constraint (red) in manifold exploration. This reduces the sample correlation and leads to faster exploration of illumination features.

which is the first-order estimation of the movement of x1 when
moving xk�1. If this ratio is less than one, we start projecting ver-
tices with xk�1, xk�2 etc. (from the sensor), as this minimizes the
projection error. Otherwise, we project starting from the light (x1,
x2, ...). This allows us to improve the convergence (see Table 2).

Acceptance Probability To compute the acceptance probability
as minp1, aq (Eq. 2), both transition probabilities T pXt Ñ Xt�1q
and fpXq are computed in product vertex area measure dX. When
mutating in constraint space ΩpHKq we can easily compute the
transition probability T pHK

t Ñ HK
t�1q, as the joint probability is

just the product of the probabilities of the individual perturbations
pphKt�1|hKt q. To compute a in product vertex area measure, we
transform T pHK

t Ñ HK
t�1q back to ΩpXq and evaluate

Rt�1 � fpXt�1q{
�
�T pHK

t Ñ HK
t�1q

�����
dHK

dX

�����
�


� fpXt�1q
���� dX

dHK

���� {T pHK
t Ñ HK

t�1q,

where the second line shows the interpretation of integration in
half vector space, as described in Sec. 4.3. This is a big advan-
tage when implementing this formula, since it is easy to compute
T pHK

t Ñ HK
t�1q and the numerator can take advantage of the sim-

plified measurement computation (Eq. 5).

Recall that in order to guarantee convergence with MLT, by achiev-
ing ergodicity, the set of mutations has to cover the whole path
space. The proposed mutation does not meet this requirement, e.g.
it does not mutate path lengths. To this end, we always use our mu-
tation together with the bidirectional mutation [Veach 1998]. Note

From light From eye Proposed
Successful generation 47.8% 51.2 % 52.8%
Acceptance rate 45.3% 46.8% 47.4%
Average #iterations 2.20 2.19 2.18

Table 2: Statistics for different direction of projection for the cor-
rector in our predictor-corrector scheme in the KITCHEN scene.
The statistics was gathered on the same number of paths (10.84M)
rendered with the same initial seed paths. The left column is for
the ray-traced projection that always starts from the direction of
the light source. The middle column is for projecting from the sen-
sor (eye); and the rightmost column shows the advantages of our
direction selection heuristic.

that, similar to manifold exploration, our method does not introduce
visible bias in practice, even though paths are constructed up to a
limited numerical precision.

Comparison to Manifold Exploration Since the formulation
used to derive manifold exploration (ME) is based on removing
Dirac deltas from the integration, it is conceptually limited to spec-
ular surfaces (i.e., the special case described in Sec. 4.4). The exten-
sion of ME to glossy materials stochastically classifies all but one
glossy interaction as specular, and keeps the half vectors for these
“quasi-specular” interactions fixed. In every mutation a different
half vector is non-fixed. The BSDF at this interaction is evaluated
when the path construction is complete. Note that this can lead to
uncontrollable change in path measurement contribution fpXq due
to the lack of importance sampling this BSDF. Fig. 7 (left) shows
an example, where vertex x3 is classified as non-specular, which
means that ME will not importance-sample the BSDF at x3, nor try
to keep the half vector constant. Note that because the half vectors
at the other vertices are kept constant, they might be insufficiently
resampled by the method, which can lead to visible correlation arti-
facts. For example, the scratch-like artifacts in the gold ring closeup
in Fig. 1 and in the reflection on the wall in Fig. 13 appear because
the manifold exploration often proposes significant changes to the
chain of glossy interactions. Also, treating glossy vertices this way
still requires to account for the Jacobian determinant, which in turn
requires a costly full matrix inversion in the case when specular and
glossy vertices are mixed [Jakob 2013].

In contrast, mutating in the half vector domain does not depend on
classifying vertices as specular or non-specular, and can directly
explore a glossy caustic by importance-sampling all BSDF interac-
tions at once. Specular interactions do not require special treatment,
as their half vectors always remain at a fixed position (at zero), ef-
fectively reducing the dimensionality of the integration. Note that
the simplified measurement contribution in half vector space (Eq. 5)
treats all types of interactions and BSDFs (diffuse, glossy, and spec-
ular) equally, without a need to handle any type differently.

5.2 Transitioning between Subspaces

As noted in Sec. 4.3, the integration in the domain of half vectors is
valid only on small subspaces ΩpHK

t q (Fig. 2). To be more precise,
we assume that within such subspace of the path space the implicit
function theorem holds [Spivak 1965]. That is, this subspace is a
region of continuity of the constraints Jacobian in Eq. 11. This im-
plies, for example, C2 smoothness of the surfaces in such subspaces
(which in turn provides the continuity of constraint derivatives).
Manifold exploration is also more efficient with continuity of the
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xt
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xt+1

yt+1

Figure 8: When jumping from one submanifold to another, first
the point x1t�1 is predicted by the constraint Jacobian matrix J
evaluated at point xt. Then the projection step traces a ray from
the point of the previous vertex of the proposal yt�1 to find the
projected point xt�1 on the new subspace.

constraints when performing the walk [Jakob 2013, p.94]. How-
ever, such ideal requirements are practically impossible to achieve
on arbitrary scenes.

Our mutation works directly in the space of constraints and relies
on the derivatives of the constraints at every vertex along the path.
Thus the discontinuities in these derivatives, e.g. in normal deriva-
tives, become more apparent (see Fig. 9, left). The remainder of
this section is devoted to this problem and introduces an important
extension to our random walk, which enables it to switch between
different subspaces, leading to easier exploration of the path space.

Analogous to manifold exploration, we test whether the walk with
our projection method from a current path HK

t to a proposal path
HK

t�1 is reversible, i.e., if we can also walk back from HK
t�1 to HK

t .
Note that our predictor-corrector scheme might potentially find a
new path that satisfies the proposed constraints HK

t�1 but lies in a
different subspace. In this case, if we then perform a reverse walk,
we might end up with a path that satisfies the original constraints
HK

t but still lies in this different subspace. We determine such cases
by testing whether the vertex positions match the positions of the
original path and reject the proposal based on that. This ensures the
detailed balance requirement of the Metropolis-Hastings algorithm.

In case of a non-reversible walk, manifold exploration rejects
the proposal path. In contrast, in our method, if the walk fails
(i.e., when our predictor-corrector scheme does not converge to the
given new constraints HK

t�1), we reject the proposal but attempt to
use the predicted path differently instead of immediately failing the
walk. For that, we test whether the first order prediction of the new
path given by the Jacobian of the constraints results in a valid path,
i.e., with non-zero throughput after projection; note that this path
is the prediction of the first iteration of our scheme. If this path is
valid, we make sure it is non-reversible and take it as a suggested
perturbation of the path. We interpret this case as an indication of
a jump from one subspace to another and apply different transition
rules (described below). This extension allows for better explo-
ration of fragmented and highly displaced geometry (see Fig. 9).

For performing a random walk, we compute the new transition
probability density T pXt Ñ Xt�1q of sampling this suggested
path in the on-surface measure. This probability density consists of
the probability densities of (1) predicting each vertex x1t�1 and (2)
projecting x1t�1 to obtain xt�1. The former is the probability den-
sity of sampling the point x1t�1 on the tangent plane of the current
path’s vertex xt. This simple change of the domain is computed
using the constraint Jacobian as

ppX1
t�1|Xtq � ppHK

t�1|HK
t q
���� dX

dHK

���� � ppHK
t�1|HK

t q|JHK
t
|�1.

The correction step obtains the projected vertex xt�1 by casting a
ray from the previous vertex yt�1 towards the outgoing direction

Figure 9: SALAD BOWL: the exploration across geometric edges
is difficult as a walk cannot easily jump to another subspace (left);
with our improvement transition, the walk can more easily jump
between submanifolds leading to more uniform exploration of the
illumination (center); right: false colors showing where the walk
attempted to jump (red) and where the jump was successful (green).

o � yt�1x1t�1 (Fig. 8). Note that x1t�1 might be different from
xt�1, i.e., it might not lie on a surface. The second probability den-
sity accounts for this and converts the on-surface probability density
of the predicted vertex from the virtual surface (defined by the tan-
gent plane at xt) to the density at the new projected vertex xt�1 on
the actual surface. As the projection is done by tracing a ray, we
transform the density using the shared domain of fixed outgoing di-
rection o (Fig. 8), which leads to a simple ratio of geometric terms
for the points x1t�1 and xt�1:

ppxt�1|xtq � ppx1t�1|xtq
�����
dodx1t�1

dxt�1 do

����� � ppx1t�1|xtqGpy,xt�1q
Gpy,x1t�1q

.

The transition probability of the full proposal path T pXt Ñ Xt�1q
is then computed sequentially as a joint product of probabilities at
every vertex along this path, starting from the same direction as the
projection step. Note that this transition probability should satisfy
the detailed balance. Practically, we achieve this by dividing by the
current transition probabilities for both ways [Hastings 1970] when
computing the acceptance probability a as in Eq. 2, i.e., we compute
both T pXt Ñ Xt�1q and the reverse probability T pXt�1 Ñ Xtq.
Moreover, to make this random walk symmetric, we test upfront
that the Newtonian method cannot converge both ways guarantee-
ing that the walk cannot be done from the suggested path back to
the current path using our regular Newtonian method (we denote
such walks as bidirectionally invalid).

Discussion In other words, if a walk is not possible, we try to
take a path suggested by the constraints derivatives and then treat
it as a path generated by perturbing directions, as in other mutation
strategies. This enables jumping between different subspaces.

Note that we use this procedure only if a walk is bidirectionally
invalid, which indicates the boundary of a subspace. The fraction
of non-reversible walks depends on the structure and smoothness of
the scene geometry and is slightly higher for our method compared
to manifold exploration (see Table 3) due to higher dependence on
the differential geometry around a path.

6 Sampling Improvements

In the last sections, we described the principle of perturbing a path
in half vector space. To make the perturbation efficient for comput-
ing images, the following sections describe how to adapt the muta-
tion step sizes to the individual BSDFs, stratify samples in image
space, and consider the bandwidth of the signal to decide upon the
strength of perturbation of the individual dimensions.
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Ours ME
Average # iterations 2.18/6.63 2.61/2.98
Generation rate 58.8% 46.2/59.2%
Non-reversible 3.3% 2.1%

- Submanifold jump 88.3% (of 3.3%) N/A
Acceptance rate 47.1% 35.7%
Mutations 453.6 M 488.6 M

Table 3: Statistics for our mutation strategy and the correspond-
ing numbers for manifold exploration for the equal-time renders in
Fig. 1. The number of iterations is counted per successful proposal
and total. Note that our method can create almost the same total
number of mutations as manifold exploration.

6.1 Optimal Expected Step Size for Interactions

We can optimize the integration for individual interactions, as the
space of half vectors has the property of decorrelated dimensions.
That is, changing one half vector hKi mostly influences the value of
the BSDF at the vertex xi only (see Sec. 4.3.2). This local analy-
sis can be applied to every constraint independently to improve the
sampling of paths as a whole.

In the following we assume that all BSDFs can express their rough-
ness as Beckmann equivalent α, i.e., the microfacet (or half vector)
distribution of a BSDF can be approximated by a Beckmann distri-
bution. As Walter et al. [2012] noticed, most microfacet-based BS-
DFs are easily expressible in this way. This assumption is also prac-
tical for a renderer and is, e.g., used in Mitsuba Renderer [2010].

If we consider a single interaction, e.g. a glossy reflection, we can
estimate the optimal expected value of the mutation step size. Pro-
jected onto the parallel plane at distance one to the tangent plane,
a Beckmann lobe is a 2D Gaussian around the center with variance
σ2 � α2{2. Note that we use the projected half vector hK which is
related to this plane-plane domain as hp-p � h{

a
1 � |hK|2.

The optimal MCMC acceptance rate for such a 2D Gaussian is
about 35% [Bremaud 1999] and the optimal expected step size for
a Gaussian proposal is s � p2{πq|Σ|, where Σ is the covariance
matrix of the BSDF’s 2D Gaussian. We can derive the expected
step size in plane-plane for a single half vector dimension as

sp-p, max � α{?π.
When mutating a half vector constraint, the expected value of the
change to the half vector (i.e., the distance between the current and
perturbed half vector on the parallel plane) should have an expected
value of sp-p,max to achieve the fastest mixing of the Markov chain
(we describe the actual perturbation after analyzing stratification in
Sec. 6.2). This upper bound for an optimal step size is designed to
achieve the maximum exploration of a 2D Gaussian.

Because visibility is ignored in our estimation, it can narrow the
actual support when paths are mutated. We account for this by re-
ducing the step size as

sp-p � γ � sp-p, max, with γ P p0, 1s.
The scaling parameter γ has only a slight effect on the sampling
efficiency. We found that γ � 0.1 (10% of the upper bound) gives
the best results for difficult visibility cases in practice and thus has
been used for all rendered images in this work.

Note that sp-p is defined in the plane-plane domain. It can be con-
verted to half vector domain using the projected half vector and the
relation provided above. However, in practice we use a numerically
more stable Möbius transformation described later in Sect. 7 and in
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Figure 10: A simple scene with a diffuse ground plane, and a
sphere and a cube with a rough dielectric with different roughnesses
(0.01 and 0.1), rendered with 128 samples per pixel and different
fixed step sizes as indicated (two top rows). The 3rd row shows our
optimal step sizes for BSDF bandwidth and the same combined with
ray differentials, as well as a reference render. The insets in the bot-
tom row show that our automatic BSDF estimation is comparable
to the best manually chosen parameter. The large step sizes for the
BSDF maximize the exploration of the submanifold, but are limited
by the ray differentials in favor of stratification on the image plane.
For an uncropped version, see the supplemental material.

Figure 11: False color visualization of sample counts in the COR-
NELL BOX with a glass sphere rendered with 8 spp without (left)
and with (right) the proposed stratification.

the supplementary. We demonstrate the importance of the optimal
step size selected for each individual interaction in Fig. 10.

6.2 Stratification over the Image Plane

The second aspect of a good mutation strategy is to ensure stratifi-
cation of the samples on the image plane. We show how to achieve
this by computing the required perturbation to the half vectors from
the desired stratification on the image plane, and how to combine
these perturbations with the BSDF perturbations derived earlier.

Given a path to mutate, in order to map changes in image space
to half vector space, we first compute the ray differentials [Igehy
1999] from the current position on the sensor xk to the first vertex
in the scene (which requires no tracing of the actual differentials).
Then we project the ray differential vectors along the u � v basis
of the image plane (u and v are on the image plane with a length
of 1 pixel horizontally and vertically) onto the tangent frame of the
first vertex in the scene xk�1. This gives us the pair of offset vec-
tors ∆xu,k�1 and ∆xv,k�1. Veach [1998] suggested to scale these
vectors by 5% of the image size and use this as the desired change
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of xk�1 for mutation. However, his experiments used mostly dif-
fuse interactions. We found that a scaling of 2% is more practical
in scenes with more glossy surfaces, due to the potentially more
localized highlights.

Next, we derive how xk�1 changes when we perturb the individual
half vector constraints. We recall that we can compute the half
vector perturbation ∆hKi from ∆xk�1 using the Jacobian for the
change of variables from vertex position density in local tangent
space to the density of projected half vectors (see Eq. 11):

...
k�1

k

Di

looooomooooon
�J�1

�

0

∆hKi
0

...

�
∆x0

...
k�1

k

, ∆hKi � D�1
i � ∆xk�1. (9)

whereDi is the i-th 2�2 sub-block in the pk�1q-th row of the in-
verted constraint Jacobian J�1, indicating how xk�1 changes when
changing hKi . This is a first-order approximation which assumes
linearity and we can thus independently approximate every ∆hKi .
Note that due to the sparsity of J , it is not necessary to perform a
full matrix inversion (see Sec. 7). Using D�1

i we can now convert
the ray differential offsets ∆xu,k�1 � ∆xv,k�1 to the half vector
space at each vertex obtaining ∆hKu,i � ∆hKv,i.

At this point, we discussed two ways of computing a step size for
each vertex: considering the BSDF or image plane stratification.
Since we want to make sure to stay on the BSDF lobe and inside
the image boundaries, we use the smaller of the two proposed per-
turbations. This, e.g., ensures that purely specular surfaces keep
a constant half vector. As ray differentials are often anisotropic,
we first rotate the sampling scheme to align with the basis vectors
∆hKu,i � ∆hKv,i, and take the minimum of the step sizes proposed
by the BSDF and ray differentials for these axes individually. Sec. 7
explains this sampling in detail.

Fig. 11 shows the ray differential-based stratification in the half vec-
tor domain. It ensures that samples are more evenly distributed over
the image plane, leading to a uniform convergence and lower re-
jection rates due to jumping off the image plane. As each of the
proposed step sizes at every vertex will result in the complete de-
sired change at xk�1, we have to distribute this budget among path
constraints hK1 ...hKk�1, which we detail in the next section.

6.3 Sampling Motivated by the Integrand Spectrum

In order to distribute the estimated step sizes, we assign a per-
constraint weight wi to each step size with

°k�1
i�1 wi � 1. To find

these wi, we recall that, if we want the resulting estimator to have
a low variance, the variance of the sampling spectrum needs to be
low where the integrands power spectral density is high [Subr and
Kautz 2013]. That is, we need to focus the sampling density to
places with narrower spectral bandwidth.

We can interpret the path integral for point-to-point transport as a
nested convolution of the emitted light Le with BSDFs:

(3) � xWe 
 xfs,k�1 � � �
 xfs,2 
 xfs,1 
 Leyyyy.

Ultimately, we are interested in the resulting value at the sensor. We
consider each of these nested convolutions in projected half vector
space as a separate integration process due to the property of highly
decorrelated dimensions. Because all BSDFs are either expressed
or approximated with Gaussians, it is very easy to estimate the
bandwidth of this signal at a certain interaction hKi , which is pro-
portional to the standard deviation σi of the corresponding Gaus-

sample mutation(Xt,Xt�1)

// sample a new path

HK
t�1 � mutate half vectors(Xt) (Secs. 6, 7)

Xt�1 � h to positions(Xt,H
K
t�1) (Sec. 5.2)

// reverse check

h to positions(Xt�1,H
K
t ) �� Xt

// compute transition probabilities

T1, D
�1
i � ray differentials(Xt�1) (Sec. 7)

r � T pHK
t�1 Ñ HK

t q{T pH
K
t Ñ HK

t�1q

// compute half vector measurement

fKHpXt�1q Ð T1,Xt�1 (Eqs. 4, 5, 6)
a � fKHpXt�1q{f

K
HpXtq � r

Figure 12: High-level overview of our mutation strategy.

sian. Our heuristic is then to use the weight wi � σi{
°k�1

j�1 σj for
re-scaling the step size from Sect. 6.2 for every half vector.

7 Implementation Details

We implemented our algorithm as a new mutation strategy in Mit-
suba [Jakob 2010], to be used in the path space MLT framework.
Compared to a naive implementation, the proposed implementation
avoids a lot of unnecessary computational overhead. We provide a
high level overview of our implementation. More detailed guidance
can be found in the supplemental material.

Overview Fig. 12 shows pseudo code for our mutation strategy.
This procedure is called after the initial seeding phase and is passed
a valid path Xi as current sample. It aborts and returns an accep-
tance probability of zero in case if any operation is not feasible,
e.g. a singular matrix is attempted to be inverted or a non-reversible
walk is encountered. This code also assumes that J , Di, T1, and
fKH are cached for a path, and only computed for the current sam-
ple Xi in case it originates from another mutation strategy. The
function h to positions contains the predictor/corrector New-
tonian method (Sec. 5) and recomputes the tangent space derivative
J often (see Eq. 11 and [Jakob 2013]) to derive updated vertex po-
sitions from the perturbed half vector offsets. It does, however, not
require updating transfer matrices or ray differentials. The same
function is also used to check for reversibility. Finally the accep-
tance probability is computed by evaluating both the measurement
contribution and the transition probabilities in half vector space.

Efficient Transformation between Spaces When converting
ray differentials to half vector space, it is crucial to avoid a slow
full matrix inversion. We take advantage of the sparse nature of the
matrix J and use a stripped-down version of LU decomposition to
solve only for the blocks Di from Eq. 9.

Also, in Sec. 5 we show how to compute vertex offsets as ∆X �
J�1∆HK in the prediction step of the Newtonian method. Again,
there is no full matrix inversion required, and we employ the LU
decomposition to compute ∆X. Please see the supplementary ma-
terial for the detailed practical algorithms.

Anisotropic Half Vector Sampling We are performing a random
walk in HK rather than resampling each half vector every time.
We sample an anisotropic offset around the current half vector hK

of the sample Xi. We sample a zero-centered anisotropic Phong
lobe [Ashikhmin and Shirley 2000] and transform it into the space
of orthonormalized ray differentials. We use the step sizes derived
in Sec. 6 (i.e., the minimum of suggested BSDF step and the ray
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differential lengths ||∆hu|| and ||∆hv|| along the respective axes).
Then we apply a Möbius transformation [Hanika 2011, p.40] to
move the center of this distribution to the current half vector hK.
This has the full disk as support and never samples outside it.

8 Results, Discussion and Limitations

We implemented our techniques in Mitsuba and computed all our
equal-time renders using this framework on an Intel i7-3930K hex-
acore CPU at 3.20GHz using 12 threads. To facilitate future work
and comparisons, our full implementation is available.

We compare our method, i.e., half vector mutations with seeding
by bidirectional mutation (see Sect. 5.1), to MLT with manifold ex-
plorations (ME) and Kelemen’s variant of MLT perturbing in the
primary sample space (PSSMLT) [Kelemen et al. 2002] and we ad-
ditionally show results of bidirectional path tracing (BDPT).

Parameters We use the default parameters in the Mitsuba ren-
derer which are the recommended optimal parameters from the cor-
responding publications. According to our experiments, they also
yield the best results on our test scenes. We use 1.0 for the average
number of chains and 100 mutations per chain for ERPT. We use
λ � 50 for manifold exploration (results with different λ-values
are provided in the supplementary).

Scenes Fig. 1 show a scene with a difficult mixture of glossy and
purely specular surfaces, lit by a point spot light and area lights.
Fig. 13 shows a setup with glossy transport and complex distant il-
lumination coming from the outside. Most of the illumination in the
image is due to a caustic reflected off the glossy floor. When using
a path tracer as mapping of primary space samples to path space in
PSSMLT, BSDFs (and thus half vectors) are importance-sampled,
but in contrast to our method, in the domain of outgoing directions.
As a consequence, it always misses the point light source. If a
bidirectional path sampler is used, a deterministic connection will
be performed, evaluating a BSDF instead of importance-sampling
it. ME explores such scenes by keeping the light vertex x0 fixed,
but cannot importance-sample all BSDFs simultaneously, leading
to visible correlation in the rendered highlights.

We would like to point out that manifold exploration and our
method are the only perturbations supporting the exploration of re-
flected caustics (specular-diffuse-specular paths); finding them is
an orthogonal problem [Kaplanyan and Dachsbacher 2013b].

Scenes with complex occlusion are challenging for our mutation
strategy, as we did not specifically design it to work with difficult
visibility. Unfortunately, representing the path integral in half vec-
tor domain will incur that all visibility edges are now present in all
decorrelated 2D slices of the integration domain (i.e., it appears in
each BSDF interaction as the one depicted in Fig. 6). Please re-
fer to the supplementary material where we show further numerical
examples for scenes with high occlusion. The AJAR DOOR scene
(Fig. 14) belongs to this category of difficult scenes. Nonetheless,
our mutation strategy handles this case well and even performs on
par with ME in some regions of the image, e.g. on the back wall
which is explored very uniformly. Although our method worked
well on the scenes we tested, we anticipate that treating visibility
more efficiently will be important future work.

Although our implementation leaves room for optimization, our
mutation strategy involves more costly computation than other
strategies in MLT. Note that we show equal-time comparisons not
images with an equal number of samples. That is, the more costly
yet higher quality samples with our method ultimately pay off.

We demonstrated that our mutation can perform very well on com-
plete paths. However, it is also practical to use it as a drop-in re-
placement for the deterministic manifold walk procedure used in
manifold exploration for connecting two points.

In our implementation used to generate the results, we always re-
trace the entire path to reduce the correlation of the generated sam-
ples. Diffuse interactions, however, are easier explored by only
retracing small parts of a path and then performing a connection.
This contrasts the problem that keeping a part of a path fixed in-
creases the correlation between samples (see Fig. 13), which is a
well-known disadvantage of MCMC methods. A combination with
more classical mutation strategies remains an interesting direction
for future work.

Another interesting direction would be to explore more convenient
parameterizations for half vectors, e.g., a plane-plane parameteriza-
tion as used for light fields, where the Beckmann lobe can be better
expressed and sampled.

Our work focuses on surface rendering. In presence of participat-
ing media, the dimensionality of the problem increases, since there
are no explicitly defined differential manifolds as in the case of sur-
faces. We can imagine that our framework could be extended by
additional constraints for participating media.

9 Conclusion

In this paper we presented a novel approach to sampling and inte-
grating light transport paths. For this we introduced the space of
natural constraints and this domain proved being an attractive al-
ternative space to compute and analyze light transport. We derived
how to convert from this domain to previously used measurement
spaces and examined the resulting transformation Jacobian deter-
minant. Our new representation has several benefits and enabled us
to design a mutation strategy for Metropolis light transport which
can importance sample all BSDF interactions along a path, while
controlling image space stratification and incorporate recent find-
ings of frequency analysis of light transport at the same time. It
has been tailored for glossy and specular interactions, but likewise
handles diffuse transport robustly.
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A Half Vectors and Transformations

The (non-projected) half vector h is defined as the generalized half
vector [Sommerfeld and Runge 1911; Walter et al. 2007] , as

h � pi� ηoq {||i� ηo||.

The term ηi is the ratio of indices of refraction at vertex i, cor-
responding to the previous and next edge of the path. It is 1 for
reflection and ηo{ηi for transmission events, where ηo corresponds
to the edge along the outgoing direction o. We can transform the
half vector density dh to the density of an outgoing direction do by
applying Jacobians from BSDF theory [Walter et al. 2007]:

����dhdo

���� � η2|xh,oy|
pxh, iy � ηxh,oyq2 (10)

Another useful Jacobian for the change of variables from vertex po-
sitions density dxi in local tangent space to the density of projected
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Reference, PSSMLT (12h) ERPT (30m)

Original MLT (30m) MEPT (30m)

MEMLT (30m)   λ=50 RMSE 0.314

HSLT+MLT (30m) RMSE 0.232

Figure 13: Equal-time rendering of the KITCHEN scene with difficult glossy paths. The top row shows BDPT, MLT, ERPT and MEPT for
comparison. The two bottom rows compare manifold exploration (MEMLT) (237 spp, acceptance rate 42.7%) to our method (HSLT) (229
spp, acceptance rate 67.3%). Note how efficient the new mutation can estimate the optimal sampling density of difficult regions and handle
hard features such as glossy caustics (please see the supplementary for more results).

half vectors dσKphiq � dhKi � dhi|xhi,niy| which is written as

J� dHK

dX
�dphK1 ..hKk�1q

dpx1..xk�1q �

�
�����

B1 C1

A2 B2 C2

.. .. ..
Ak�2 Bk�2 Ck�2

Ak�1 Bk�1

�
����, (11)

which has a structure of a block tridiagonal matrix with 2� 2
blocks Ai, Bi, Ci. More details on this matrix can be found in
Jakob’s PhD thesis [2013, Sec.4.3]. It can also be used as a
first order approximation that maps finite changes of path vertices
∆X � p∆x1..∆xk�1q to offsets ∆HK � p∆hK1 ..∆hKk�1q in pro-
jected half vector space as ∆HK � J � ∆X.
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DACHSBACHER, C., KRIVÁNEK, J., HASAN, M., ARBREE, A.,
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