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Figure 1: Refracted pathways through a hair fiber. Single Re-
flectance (R), double transmittance (TT), transmission-reflection-
transmission (TRT) and so on.

1 Introduction

The rendering of hair, fur, and other fibrous structures (dieletric
or conductive) is an important problem in rendering. Sometimes
fibers are very close to the camera and span several pixels, requir-
ing an explicit cylindrical geometric representation together with
common BRDF and BSDF reflectance models. By far the most
common case, however, is very thin fibers that are much more ef-
ficiently reprented either as ideal curve primitives or as statistical
scattering events in an anisotropic medium. In this latter cases the
reflectance from fibers is described using a far-field radiometric
model called a Bidirectional Curve Scattering Distribution Func-
tion (BCSDF) [Zinke and Weber 2007].

Previously in graphics, the fiber model of Kajiya and Kay [1989]
remained predominant until Marschner et al. [2003] introduced the
factored lobe analytic BCSDF that remains the basis of most re-
alistic hair rendering today. The key to factored BCSDFs is to
decompose the reflectance into separate modes of propagation—
direct reflection (R), double transmission, (TT) and paths with one
or more internal reflections (TRT, TRRT, ...) (Figure 1). (Glossy
metallic fibers use only the R lobe). The total reflectance function
S is the sum of all such component scattering functions (or lobes)
Sp

S(θi, θo, φ) =
∞

∑
p=0

Sp(θi, θo, φ). (1)

The modes are indexed by p, the number of internal path segments
traversed by light rays contributing to that mode. Following the
convention of Marschner et al. [2003], incident and reflected direc-
tions are measured in a spherical coordinate system centered on the
fiber axis, with θi and θo measuring longitudinal inclinations to the
normal plane of the fiber and φ = φo − φi measuring the azimuthal
difference between the incident and reflected directions. Each lobe
is factored into a longitudinal scattering function Mp and an az-
imuthal scattering function Np:

Sp(θi, θo, φ) = Mp(θi, θo, φ)Np(θi, θo, φ). (2)

In previous work, Mp has been assumed independent of φ , and Np
depends only weakly on the θs. In this sense the functions Sp are
partly separable.

Marschner et al. [2003] began by deriving an exact far-field solu-
tion for circular fibers with no tilted scales and a smooth dielec-
tric surface. They then showed how to approximately treat surface
roughness, tilted scales, and elliptical cross-sections by modifying

the exact solution in various ways. Comparisons of this general
approximate fiber model to measured reflectance data from human
hair have been performed previously [Marschner et al. 2003; Zinke
et al. 2009]. However, to the best of our knowledge, no previous
work has studied the radiometric accuracy of these analytic models
relative to the ideal representation at their foundation—cylindrical
primitives with glossy surfaces. Irrespective of the applicability of
these models to simulating human hair reflectance, we find that
new important effects are required for analytic BCSDFs to accu-
rately simulate reflectance from cylidrincal primitives with rough
surfaces.

We performed a comprehensive Monte Carlo simulation using a
fiber model consistent with the original derivation of Marschner et
al. [2003]—a rough dielectric cylinder with tilted scales and sur-
face roughness following a Beckmann microfacet distribution (Fig-
ure 1). We found the simulation to be in good general agreement
with previous analytic models, specifically the treatment of rough-
ness by Zinke and Weber [2007] and d’Eon et al. [2011]. However,
we note an important behaviour that was not previously predicted.
The shift and blur of the specular cone that is caused by deviations
from the smooth cylinder depends significantly on the inclination
angle of the incident light and also varies around the cone. That
is, the Mp functions depend on all three variables θi, θo, and φ ,
requiring an entirely non-separable model for Sp.

To incorporate these behaviours, we derive higher accuracy pertur-
bations from the exact smooth model, resulting in new Mp functions
that bring the model into much better agreement with simulation.
Our model is analytic and is easy to deploy in existing rendering
systems that use factored BCSDFs. For efficient use in Monte Carlo
renderers we also provide practical, analytic, easy to implement
importance sampling scheme extending the approach of d’Eon et
al. [2013] to handle the non-separable lobes using a short iteration
loop.

2 A New Fiber Reflectance Model

In this section we describe details of our ground-truth simulation
and our evaluation of the accuracy of previous fiber models. We
then describe each lobe of our new model individually and give
derivations of our new non-separable functions that exhibit higher
accuracy behaviours.

We seek to measure the accuracy of a modified version of the model
of Marschner et al. [2003]. Specifically, the parametric hair re-
flectance model described of the form Equation 1 as a function of
incoming and reflected directions, denoted ~ωi and ~ωo, respectively.
Notation is simplified by referring to the longitudinal difference
angle θd = (θo − θi)/2. The relative index of refraction η of the
hair to the surrounding medium is typically fixed at 1.55. From θd ,
η , and the offset h ∈ [−1, 1] to the fiber cross section (Figure 1)
a Bravais analysis gives the azimuthal distributions compactly us-

ing γi = arcsin(h), γt = arcsin( h
η ′
), η

′ =

√
η2−sin(θd)

cos(θd)
to predict the

relative change in azimuth

Φ(p, h) = 2 p γt − 2 γi + pπ (3)

for each mode p being considered. To treat rough fibers we use
the azimuthal functions Np of d’Eon et al. [2011] evaluated using a



70-point Gaussian quadrature

Np(φ) =
1
2

∫ 1

−1
dh A(p, h)Dp(vp,N , φ −Φ(p, h)). (4)

We use the attenutation terms A(p, h) and the wrapped Gaussian
Dp of variance vp,N given by d’Eon et al. [d’Eon et al. 2011]. We
use the longitudinal scattering function M(v, θcone, θo) of d’Eon et
al. [2011] for all lobes

M(v, θcone, θo) =
csch(1/v)

2v
e

sin θcone sin θo
v I0

[
cos θcone cos θo

v

]
1

cos θo
.

(5)
For additional numerical recipes for evaluating this function,
see [d’Eon 2013]. We remark that this M function leads to a non-
reciprocal reflectance. However, for low fiber roughnesses this does
not cause significant problems, and the derivation of non-separable
lobe widths and inclinations can apply readily to alternative M func-
tions, such as renormalized Gaussians.

The M function provides rough spreading in the longitudinal direc-
tions acting like a Gaussian of variance vp centered at the non-rough
specular cone exitance θconep . Note that with previous models, h
(and therefore φ ) does not appear in the evaluation of M and so the
lobes are separable. Our new non-separable model arises by adding
h variation to both the longitudinal variances vp and to θconep .

2.1 Ground Truth Simulation

We ran a geometrical optics Monte Carlo simulation of scattering
within rough dielectric cylinders with homgoeneous interior ab-
sorption. We performed a full suite of simulation experiments with
parameters

θi ∈ [0, 0.25, 0.5, 0.75, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.55]

α ∈ [0,±2 degrees,± 4degrees]

µa ∈ [0.0, 0.003, 0.006, 0.015, 0.03, 0.06, 0.12, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0]

β ∈ [0.0025, 0.005, 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.15, 0.3]

η ∈ [1.55, 1.55/1.33]

where α is the tilt of the surface scales, µa is the internal absorption
coefficient, β is the Beckmann roughness, and η is the relative index
of refraction of the hair to the surrounding medium (we consid-
ered human hair in air and in water). For each simulation the trace
geometry was a unit radius analytic infinite cylinder with a rough
dielectric BSDF ([Stam 2001; Walter et al. 2007]) with Beckmann
roughness β and Smith shadowing. For each simulation with fixed
θi a random offset h ∈ [−1, 1] was chosen uniformly (see Figure 1).
Importance sampling of the BSDF determined the traced pathways
(ie. R vs T was chosen proportional to each Fresnel term—grazing
the edge of the fiber made the likelihood of scoring an “R” sample
higher, for example). 10 million rays were traced per simulation.
The outgoing distribution was accumulated into a 400 x 100 latlong
image. The sample weight was the product of weights returned by
the surface BSDF importance sampling and also multiplied by the
Beer-Lambert absorptions along the internal pathways. The first
four lobes were stored in separate buffers. All paths past TRRT
were stored in a single buffer. Tilted scales were simulated with a
shading normal (so rare occurences of hitting the scales from the
back side result in energy loss). Some energy loss is also to be
expected from the shadowing terms in the BSDF especially for high
roughness.

2.2 Approximating cone angles and widths

For fibers with rough surfaces and tilted scales, the ground truth
simulation shows significant variation in both the width and the

inclination of the R, TT, and TRT highlights as a function of φ ,
α, and θi. Previous fiber models have assumed constant lobe widths
βR, βT T , βT RT that are user-specified. In this section we show how to
connect these explicitly to φ , α, θi, and roughness β and show that
these new expressions create lobes in much closer agreement with
simulation. While the exact values can always be computed using
ray tracing through the cylinder, simple approximations to these
inclinations and widths are of great help in formulating a practical
scattering model.

We call the surface normal of the average cylinder the macro sur-
face normal or macro-normal and the surface normal that is per-
turbed by scale tilt and roughness the micro surface normal or
micro-normal. For this section of the paper we are concerned only
about longitudinal perturbations to the path, so we need only con-
sider longitudinal perturbations to the normals, and we will assume
the micro-normal, macro-normal, and the fiber axis are coplanar.
Under this assumption the micro-normal at the kth intersection point
can be described by its inclination αk relative to the macro-normal.
Each αk is an independent random variable, with mean α and vari-
ance β

2.

The path taken by a ray depends on the micro-normals encoun-
tered at each of the refraction or reflection points (see Figure 1);
a single ray entering at inclination θi and offset h gives rise to an
exiting ray for each p that departs the cylinder at an inclination
θp(θi, h,α1, . . . ,αp+1). As observed by Marschner et al. [2003], if
the normals are all perpendicular to the cylinder axis (αk = 0), then
the ray exiting the cylinder will have exactly the opposite inclina-
tion as the incident ray; but in the presence of tilted normals, the
inclination of the exiting ray varies. Our goal is to calculate the
derivatives of θp with respect to the αks, from which we will ulti-
mately derive the longitudinal center and width of the lobe (that is,
the mean and variance of θp, taken over the random distribution of
αks).

To compute the angle of the exiting ray, we express the ray direc-
tions at each interface as unit vectors in a basis aligned with the
macro- or micro-normal, keeping only the components perpendic-
ular to the normal. We call the component in the direction of the
fiber axis x, and the component in the perpendicular direction y.
The disk x2 + y2 < 1 is the Nusselt analog of the hemisphere about
the surface normal.

In this coordinate system, the coordinates of the incident direction
are (xi, yi) = (sin θi, h cos θi). The progress of the ray can then be
computed using a series of transformations in (x, y) space, the most
important being rotations about the y axis

Q(αk, x, y) = (x cos αk − z sin αk, y),

where z =
√

1− x2 − y2, which are used to convert between the
coordinates of the micro- and macro-normal. For instance, the ef-
fect of a reflection on a ray coming from the outside of the fiber
is calculated by starting with the (outward-pointing) incident direc-
tion (x, y) relative to the macro-normal, rotating it to align with the
micro-normal, negating it (for reflection), and rotating back to the
frame of the macro-normal:

R[αk](x, y) = Q(αk,−Q(−αk, x, y)).

For a ray from the inside, the rotations are in the opposite sense:

R′[αk](x, y) = Q(−αk,−Q(αk, x, y)).

In these Nusselt coordinates, the effect of refraction going into the
fiber is simply a dilation:

T [αk](x, y) = Q(−αk,−Q(−αk, x, y)/η)

and going out of the fiber:

T ′[αk](x, y) = Q(αk,−Q(αk, x, y) η).



Again the sign of the rotation reverses for vectors on the inside of
the fiber. Finally, the relationship between the transmitted direction
at one point on the surface and the incident direction after propaga-
tion to the next point is simply

P(x, y) = −(x, y).

With these tools we can express the functions that map incident to
exiting directions for the three modes as follows:

(xR,−y) = FR(α1, x, y) = R[α1](xi, y)

(xT T ,−y) = FT T (α1,α2, x, y) = (T ′[α2] ◦ P ◦ T [α1]) (xi, y)

(xT RT ,−y) = FT RT (α1,α2,α3, x, y) =

(T ′[α3] ◦ P ◦ R′[α2] ◦ P ◦ T [α1])(xi, y).

Note that η|y| is invariant along the whole path, since we are only
considering normal tilt in the x direction.

With the computation set up this way, with all functions written
as compositions of Q with scaling interspersed, the derivatives can
be computed by multiplying the derivative matrices (this procedure
is similar to the approach taken by automatic differentiation). The
derivative of Q is[
−z cos αk − x sin αk cos αk + (x/z) sin αk (y/z) sin αk

0 0 1

]
and the derivatives of the Fs can be easily computed by evaluating
this derivative for the various events along the path and multiplying.

To find the lobe tilt angles for the specular cone θcone, which is to
say, the deviation of a ray that hits average normals at all interfaces,
we evaluate xR, xT T , and xT RT for α1 = α2 = α3 = α and solve for
θ = arcsin x. To find the lobe width, we evaluate the derivatives
dx∗/dαk at αk = α and compute β times the norm of the resulting
vector of derivatives.

While the above provides an efficient way to calculate the three Fs
and their derivatives dF∗/dαk, we use a simpler approximation, by
expanding the Fs about zero tilt:

F∗(α, xi, y) = F∗(0, xi, y) + α(Dα F∗)(0, xi, y).

For all three lobes F∗(0, xi, y) = (−xi,−y). The relevant derivatives
of F take on a simple form at α = 0:

dxR

dα1
= −2z

dxT T

dα1,2
= [ηz′ − z, ηz′ − z]

dxT RT

dα1...3
= [ηz′ − z, 2ηz′, ηz′ − z]

where z′ =
√

1− (x/η)2 − (y/η)2. Using the approximate model,
the lobe shifts are the sums of these vectors times α, and the widths
are the norms of these vectors times β .

2.3 A New R Lobe

Using the formalism derived in the previous section we derive a
new R reflectance model (p = 0) for both conductive and dielectric
fibers. Our motivation is to include two behaviours seen in ground
truth Monte Carlo photon simulation that previous models lack:

• the longitudinal angle θ of the specular cone varies with the
relative azimuth of the light and camera, φ

• the longitudinal spread of the exitance also varies with φ—the R
function tightens when the light grazes off the sides of the fiber

θo = −π/2

θo = π/2

φ

−π . . . π −π . . . π −π . . . π

(a) θi = 0 (b) θi = 0.5 (c) θi = 1.3 (d) θi = 1.5

(e) θi = 0 (f) θi = 0.5 (g) θi = 1.3 (h) θi = 1.5

Figure 2: Each plot shows three lat-long visualizations of the exi-
tance from the fibre due to R reflection: MC ground-truth (left), our
new proposed R lobe (middle) and [d’Eon et al. 2011] (right). Top
row: Scale tilt of 4 degrees, bottom row: Scale tilt of -4 degrees.
Fiber roughness of 0.08.

From the analysis in the previous section we find that specular cone
exitance for R is

θconeR = arcsin xR =

− arcsin (sin θi − 2 sin α (cos(φ/2) cos α cos θi + sin α sin θi))

which shows the φ and α dependence clearly and reduces to the
expected −θi when α = 0. To get a first order approximation of
the width βR =

√
vR of the roughened M function as a function of

h and θi we use the derivative of the FR function above to arrive at
the simple expression:

√
vR = β

√
2(1− h2) = β

√
2 cos(φ/2) (6)

Like d’Eon et al. [2011] we special case NR to not use azimuthal
roughness. We found this new R lobe to match simulations quite
closely for all but extremely grazing incidence/exitance (see Fig-
ure 2).

2.4 A Non-Separable TT Lobe

Monte Carlo simulation of double transmission (TT) through rough
dielectric cylinders showed several behaviours not found in previ-
ous hair models:

• The width of the MTT function depends on φ

• The width of the MTT function widens dramatically as the lon-
gitudinal difference angle, θd becomes large

• The tilted scales lead to non-trivial lobe placement and total
internal reflection can happen for a significant portion of the
incident angles

Similar to R, our new TT lobe includes h dependence in both the
cone angles and longitudinal widths. These are easily evaluated
using several Nusselt Sphere rotations

θconeT T = arcsin (xT T (θi,α, h)) . (7)

To relate h to φ we use the solution of Equation 3 for (p = 1) [d’Eon
et al. 2011]. However, unlike R, xT T may not be real or we could
also have |xT T | > 1. This corresponds to total internal reflection
as light attempts to transmit out of the fiber on the second T. This
effect is seen clearly in ground-truth simulation. For tilt angles as
small as 2◦ no TT energy escapes a smooth fiber for θi < −1.1.



θr = −π/2

θr = π/2

φ

−π . . . π −π . . . π −π . . . π

(a) θi = 0 (b) θi = 0.5 (c) θi = 1 (d) θi = 1.4

Figure 3: Four TT lobe comparisons. Each image: MC (left), our
new TT lobe (middle) and [d’Eon et al. 2011] (right). Note the
variation in position and width of the lobes with φ (horizontal dir)
and also the widening of TT as θi becomes large. These behaviours
are not possible with a separable BCSDF. η = 1.55,α = −2◦, β =
0.04.

To handle these cases we clamp the inputs to all square root eval-
uations in xT T to be non-negative and for |xT T | > 1 we return
θconeT T = −sign(θi)π/2 instead of returning 0 for M. This allows
very rough fibers to scatter small amounts of energy into these black
regions instead of creating unrealistic sharp discontinuities in the
lobes.

Our new non-separable TT lobe width
√

vT T is estimated at α = 0
to simplify the result. We found this to work well when applied
directly to lobes shifted by α < 5◦ (Figure 3). We summarize the
result, where the result uses θd in place of θi for reciprocity,

x = sin(θd)

y = h cos(θd)

DT T =
−2
√

1− x2 − y2 − η

√
−((−η2 + x2 + y2)/η2))

cos(θd)

vT T = (
1
2

βDT T )
2.

In theory a similar analysis could be used with derivatives in the
azimuthal plane to estimate the azimuthal widths of the blurring in
Equation 4 but we found a constant v1,N = β

2/2 sufficiently accu-
rate.

2.5 A New TRT Lobe

Similar to TT, we derive a more accurate TRT specular cone angle
θconeT RT to predict better longitudinal lobe positioning. This is im-
portant visually because the offset from R creates the characteristic
asymmetric R + TRT highlight seen in high-variance illuminations
of human hair (Figure 5). We could compute the exact lobe inclina-
tion and width as a function of h, but solving Equation 3 for h given
φ is problematic and has up to three roots. However, the variation in
the TRT longitudinal position with respect to h and therefore φ(h)
was rather limited. Furthermore, when TRT is bright, its energy is
mostly placed in a narrow range of φ , but due to a wide range of h,
so we use a lobe inclination and width computed at h = 0 (and thus,
our TRT lobe remains separable). However, it still predicts more
accurate lobe placement and width than previous models (Figure 4).
Our new cone angle is

θconeT RT = arcsin xT RT (α, sin(θi), cos(θi)) (8)
and its evaluation is most compact by computing it as the sequence
of rotations derived in Section 2.2. Our new TRT lobe width

√
vT RT

is also estimated once at h = 0 and α = 0. The final result after all
rotations is

DT RT = (−2 cos θd + 4η

√
1− (sin θd)2/η2)/ cos θd

vT RT = (1/4)β 2D2
T RT .

For the azimuthal term N2 we use azimuthal variance v2,N = 2β
2.

θr = −π/2

θr = π/2

φ

−π . . . π −π . . . π −π . . . π

(a) θi = 0 (b) θi = 0.5 (c) θi = 1 (d) θi = 1.4

Figure 4: Four TRT lobe comparisons. Each image: MC (left),
our new TRT lobe (middle) and [d’Eon et al. 2011] (right). Note
the widening of TRT as θi becomes large and more accurate lobe
placement. η = 1.55,α = −2◦, β = 0.04.

Figure 5: The fine-tuning of lobe shapes might seem trivial but their
alignment, width, and brightness contribute to the color and satu-
ration of the total light reflected in any given direction and our new
model (left) can predict quite different results from previous separa-
ble models (right). β = 0.06, η = 1.55, θi = 1.1,α = −2◦, µa/r =
{0.12, 0.25, 0.5}.

3 Importance Sampling Non-Separable Fiber
Lobes

Here we describe an approximate iterative scheme to sample the
non-separable lobe functions of our new model. We begin with
the importance sampling approach of d’Eon et al. [2013]. Hav-
ing selected h and p, the we need to combine the two individual
M and N sampling schemes into an importance sampling of their
non-separable product Mp × Np (giving azimuthal deflection φ and
longitudinal exitance θr and a cumulative sample weight). This
is challenging because sampling φ changes vp, the width of the
Mp lobe. Further, the longitudinal deflection due to sampling Mp
changes the Bravais index η

′ and, thus, the azimuthal function Np.
So, despite having sampling schemes for M and N individually, we
don’t know how to sample either of them because knowing how to
sample M requires the result of sampling N, and vice versa. An
approach we found to work well is to note that a fixed point exists:
the shapes of M and N are such that, given sampling variables ξh
and g for sampling φ , and ξM,1 and ξM,2 for sampling θr, there ex-
ists {φ , θr} such that sampling φ using θr gives a φ that samples
θr. In fact, we found that the two sampling schemes themselves
are an efficient iteration procedure for finding this fixed point. So
our sampling scheme is to choose all random numbers, start with a
guess for φ , θr and sample one from the other back and forth until
the fixed point is found and return this as our sampled direction.
We describe TT here as an example, but all the lobes follow this
simple pattern. We initialize the process by guessing θr = −θi—
the specular cone angle for no scale tilt, resulting in the following
algorithm:

{theta_r,phi,w} = sampleTT(h,g,xi_M1,xi_M2)

{

// start along the specular cone

phioffset = sqrt( v_TTN ) * g

theta_r = -theta_i

for( NUM_ITERATIONS times )

{

theta_d = 0.5 * ( theta_r - theta_i )



(a) θi = 0 (b) θi = 0.5 (c) θi = 1.0 (d) θi = 1.2

Figure 6: Sampled distributions of the complete non-separable
fiber model as a function of the number of iterations in our sampling
scheme. Left: Eval comparison, then, moving right, 1, 2, 3, 4, 5 and
10 iterations. β = 0.04,α = 0. 10000 samples each. (b) On the
first iteration the TRT caustics form vertical lines in the middle, but
on the second iteration their variation with θ is recovered. Only for
grazing angles (d) with TT are more than 2 iterations required to
arrive at the desired distribution.

phi = Phi_1( h, eta_prime(h,eta,theta_d) ) + phioffset

theta_cone = thetaConeTT( theta_i, alpha, phi, theta_d )

v = v_TT( phi, beta, theta_d )

theta_r = sampleM( xi_M1, xi_M2, v_TT );

}

return { theta_r,phi,A(p,h) / w_p }

}

It then remains to determine what function this samples and how
well the iteration scheme converges. In short, the sampled function
is the fiber function plus a very small residual error and we require,
on average, only 2 iterations for most roughnesses and angles, and
no more than 8 iterations worst case to sample realistic hair scatter-
ing (Figure 6). In the Appendices we discuss more formal details
of the convergence and residual.

4 Application to Hair Rendering

We were initially hopeful that the newly derived non-separable
fiber model would do away with the somewhat arbitrary parametric
complexity of previous hair fiber models by reducing the degrees
of freedom of the model to four physically-based parameters (per
wavelength): α, η , β and µa. As Figure 7 shows, the analytic model
is indeed very accurate at describing the far-field reflectance of a
rough dielectric cylinder with internal absorption and tilted scales.
However, when applying the model in a Monte Carlo renderer to
match controlled photographs of real hair, we found that it was nec-
essary to longitudinally widen the TT and TRT lobes significantly
relative to R in a way not predicted by this physical model. The
longitudinal widening would not be explained by the known ellipti-
cal cross section of hair fibers [Khungurn and Marschner 2014] and
we expect some form of interaction between overlapping scales, or
internal volumetric scattering by air pockets or other heterogeneity
is causing this effect. The R lobe of our new model, however, shows
immediate practical use for rendering hair and exhibits a funda-
mental property of glossy fiber reflectance that is to be expected in
future hair models which consider new underlying physical repre-
sentations, and consider both elliptical and non-separable effects in
one combined framework.

A Importance Sampling Scheme Residual

In this appendix we derive the probability density of the samples
generated by our iteration. We give the proof for a slightly simpler
scenario in which a single random number is used to choose each
of φ and θ by inverting a cumulative distribution function. That
is, we have inverse-CDF sampling procedures to choose φ from the
azimuthal lobe if we know θ , and to choose θ from the longitudinal
lobe if we know φ . This means we have a function PM(θ , φ) that is
the CDF of M(θ , φ) as a function of θ for any fixed value of φ , and

(a) previous (b) our model (c) previous

(d) our model

Figure 8: Rendering hair fibers with our new model does not al-
ways produce dramatic appearance differences relative to previous
models (here we show forward path tracing with NEE). However,
in practice we find that incorporating the new physically-based be-
haviours lead to a more consistent appearance over varied lighting
conditions.

also PN(θ , φ) which is the CDF of N(θ , φ)1 as a function of φ for
any fixed value of θ . The two individual sampling procedures are:

solve PM(θ , φ) = ξ1 for θ (9)

solve PN(θ , φ) = ξ2 for φ (10)

where ξ1 and ξ2 are independent and uniformly distributed in [0, 1].
Used separately, these procedures will generate random samples
with densities M(·, φ) and N(θ , ·) respectively. The sampling pro-
cedure we are using to sample the product of these densities is
iteratively solving the joint problem:

solve
[

PM
PN

]
(θ , φ) =

[
ξ1
ξ2

]
for θ and φ (11)

The two CDFs are considered together as a function F : IR2 → IR2,
which is being solved to find θ and φ in one step. Since the 2D
random variable (ξ1, ξ2) has a uniform, unit probability density, the
density of (θ , φ) is simply the determinant of the derivative (Jaco-
bian) of F . This derivative is

∇F =

[
∂PM
∂ θ

∂PM
∂ φ

∂PN
∂ θ

∂PN
∂ φ

]
=

[
M(θ , φ) ∂PM

∂ φ

∂PN
∂ θ

N(θ , φ)

]
If at least one of the off-diagonal terms is zero, we have the desired
pdf M(θ , φ)N(θ , φ). However, if both off-diagonals are non-zero
(as they generally are in the non-separable case), we have an extra
term in our pdf, which we call the residual:

p(θ , φ) = M(θ , φ)N(θ , φ)− ∂PM

∂ φ

∂PN

∂ θ

The only case in which the residual term would be large is when
an M lobe changes width or position quickly as a function of φ

while N simultaneously changes rapidly with θd . The only lobes
for which N changes rapidly with θd are the TR+T terms. Since we
use separable lobes for these, their residual is zero.

1 We are ignoring attenuation for simplicity, so that N integrates to 1.



Figure 7: Extensive Monte Carlo validation of our model and the importance sampling procedure for it. We find good matching between the
sampled function (using a fixed iteration count of 6) to our new lobe functions for all but extreme roughness and inclination θi. Each result
contains, from left to right, (a) a lobe image from the ground truth MC simulation with 10 million photons, (b) the result of sampling our new
model (including lobe selection) 1 million times, splatting with the lobe weights, (c) the result of evaluating our new model over the lat/long
image, (d) an absolute difference image of the same intensity of the other images (chosen by finding the brightest pixel in the left image to
then map to 1), (e) evaluation of a semi-separable model ([d’Eon et al. 2011] specifically).
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