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METHOD, SYSTEM, AND COMPUTER 
PROGRAM PRODUCT FOR EFFICIENT RAY 
TRACING OF MICROPOLYGON GEOMETRY 

FIELD OF THE INVENTION 

The present invention relates to ray tracing, and more par 
ticularly to image synthesis by e?iciently ray tracing highly 
detailed geometry. 

BACKGROUND 

Previously, building an acceleration data structure for e?i 
cient ray tracing of highly complex geometry Was prohibi 
tively expensive or imposed restrictions on hoW the geometry 
had to be modeled. There is thus a need for addressing these 
and/ or other issues associated With the prior art. 

SUMMARY 

A system, method, and computer program product are 
provided for e?iciently ray tracing micropolygon or other 
highly complex geometry. In operation, a ?rst hierarchy of a 
plurality of objects is established. Additionally, rays are 
traced using the ?rst hierarchy to e?iciently identify Which of 
the plurality of objects are potentially intersected. Further 
more,.at least one of the potentially intersected objects are 
decomposed, on-demand, into a set of subobj ects, each set of 
subobjects corresponding to one of the at least one of the 
potentially intersected objects. Still yet, a second hierarchy is 
established for at least one of the set of subobjects, the second 
hierarchy being determined by a connectivity of subobj ects in 
an associated set of subobjects in order to accelerate ray 
tracing. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shoWs a method for ef?ciently ray tracing 
micropolygon or other highly complex geometry, in accor 
dance With one embodiment. 

FIG. 2 shoWs a system for ef?ciently ray tracing 
micropolygon or other highly complex geometry, in accor 
dance With another embodiment. 

FIG. 3 shoWs a method for ef?ciently ray tracing 
micropolygon or other highly complex geometry, in accor 
dance With another embodiment. 

FIG. 4 shoWs data structures for e?iciently ray tracing 
micropolygon or other highly complex geometry, in accor 
dance With one embodiment. 

FIG. 5 illustrates an exemplary system in Which the various 
architecture and/or functionality of the various previous 
embodiments may be implemented. 

DETAILED DESCRIPTION 

FIG. 1 shoWs a method for ef?ciently ray tracing 
micropolygon or other highly complex geometry, in accor 
dance With one embodiment. As shoWn, a ?rst hierarchy of a 
plurality of objects is established. See operation 102. 

Additionally, rays are traced using the ?rst hierarchy to 
e?iciently identify Which of the plurality of objects are poten 
tially intersected. See operation 104. 

Furthermore, at least one of the potentially intersected 
objects is decomposed, on-demand, into a set of subobjects, 
each set of subobj ects corresponding to one of the at least one 
of the potentially intersected objects. See operation 106. In 
this case, decomposing the potentially intersected objects 
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2 
into the set of subobjects may include generating the set of 
subobjects. In one embodiment, an individual level of detail 
of any decomposition resulting from the decomposing may 
be selected adaptively based on a selected criterion. 

Still yet, a second hierarchy is established for at least one of 
the set of subobj ects, the second hierarchy being determined 
by a connectivity of subobjects in an associated set of subob 
jects in order to accelerate ray tracing. See operation 108. In 
one embodiment, the intersection of the ray and the bounding 
box of a subobject may be used instead of the intersection of 
a ray and the actual subobj ect as an approximate intersection 
of a ray and a subobject. 

In this case, self intersection may be ameliorated by off 
setting rays depending on at least one of: the potentially 
intersected objects; the set of subobjects; or a bounding vol 
ume of one or more of the subobjects. Furthermore, in one 
embodiment, self intersection may be ameliorated by offset 
ting rays proportional to a length of at least one of a diagonal 
or a longest side of an object bounding box divided by 2 to a 
poWer of the level of detail, Where Zero corresponds to a 
coarsest level of detail. 

It should be noted that, in one embodiment, the ray tracing 
may be performed in parallel. Furthermore, in one embodi 
ment, the objects may include surface patches that are tessel 
lated into a tWo-dimensional array of micropolygons from 
Which a complete hierarchy is capable of being built in time 
linear in the number of micropolygons. In this case, the tes 
sellation may yield one of a triangular or quadrilateral mesh. 
Additionally, the surface patches may include one of a mul 
tiresolution surface, subdivision surface, or a parametric sur 
face, Which may be capable of being trimmed and displaced. 

In one embodiment, motion maybe considered as temporal 
displacement. As long as bounding volumes With respect to 
segments of motion can be determined, the embodiment may 
be applied e?iciently even for non-linear motion. In this case, 
the ?rst hierarchy and the sets of subobj ects may be generated 
adaptively With respect to their motion and potentially for a 
given time. Additionally, motion may be speci?ed by splines 
over speci?ed instants in time. Further, interpolation may be 
used to compute all data at the given time to perform ray 
intersection. It should be noted that, in some cases, motion 
blur may be simulated. 
As part of the ray tracing, in one embodiment, ray data may 

be computed from a ray identi?cation number. Furthermore, 
a traversal of the ?rst hierarchy may include considering 
multiple rays simultaneously such that each of the plurality of 
objects is considered at most once during ray tracing. 

In another embodiment, in a traversal of the ?rst hierarchy, 
for each of a plurality of rays a prede?ned number of closest 
objects that are potentially intersected may be recorded and 
records of pairs of ray and object identi?cation resulting from 
the recording may be sorted by object identi?cation. In this 
case, for each of the object identi?cations, if an object is 
intersected by at least one of the rays associated With the 
object identi?cation, an identi?ed object may be decomposed 
into a plurality of subobjects and a second hierarchy may be 
determined by a connectivity of the plurality of subobjects in 
order to accelerate ray tracing. As an option, at least one of a 
prede?ned number of recorded pairs may be increased When 
rays are terminated or terminated rays may be directly 
replaced by neW rays. In this case, the neW rays may be 
computed in dependence of the terminated rays and may be 
directly intersected With a currently decomposed set of sub 
objects. 
More illustrative information Will noW be set forth regard 

ing various optional architectures and features With Which the 
foregoing framework may or may not be implemented, per 
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the desires of the user. It should be strongly noted that the 
following information is set forth for illustrative purposes and 
should not be construed as limiting in any manner. Any of the 
following features may be optionally incorporated With or 
Without the exclusion of other features described. 

FIG. 2 shoWs a system 200 for e?iciently ray tracing 
micropolygon or other highly complex geometry, in accor 
dance With one embodiment. As an option, the present system 
200 may be implemented in the context of the functionality 
and architecture of FIG. 1. Of course, hoWever, the present 
system 200 may be implemented in any desired environment. 
It should also be noted that the aforementioned de?nitions 
may apply during the present description. 
As shoWn, a parallel processing architecture 202 is pro 

vided. Such parallel processing architecture 202 includes a 
plurality of parallel processors 204. While not shoWn, such 
parallel processors 204 may be capable of operating on a 
predetermined number of threads. To this end, each of the 
parallel processors 204 may operate in parallel, While the 
corresponding threads may also operate in parallel. 

In one embodiment, the parallel processing architecture 
202 may include a single instruction multiple data (SIMD) 
architecture. In such a system, the threads being executed by 
the processor are collected into groups such that, at any 
instant in time, all threads Within a single group are executing 
precisely the same instruction but on potentially different 
data. 

In another embodiment, the foregoing parallel processing 
architecture 202 may include a graphics processor or any 
other integrated circuit equipped With graphics processing 
capabilities [eg in the form of a chipset, system-on-chip 
(SOC), core integrated With a CPU, discrete processor, etc.]. 
In still another embodiment, the foregoing parallel processing 
architecture 202 may include a processor With one or more 
vector processing elements such as the Cell processor, refer 
ring to the Cell Broadband Engine microprocessor architec 
ture jointly developed by Sony®, Toshiba®, and IBM®. 

With continuing reference to FIG. 2, the parallel process 
ing architecture 202 may include local shared memory 206. 
Each of the parallel processors 204 of the parallel processing 
architecture 202 may read and/or Write to its oWn local shared 
memory 206. This shared memory 206 may consist of physi 
cally separate memories associated With each processor or it 
may consist of separately allocated regions of one or more 
memories shared amongst the processors 204. Further, in the 
illustrated embodiment, the shared memory 206 may be 
embodied on an integrated circuit on Which the processors 
204 of the parallel processing architecture 202 are embodied. 

Still yet, global memory 208 is shoWn to be included. In 
use, such global memory 208 is accessible to all the proces 
sors 204 of the parallel processing architecture 202. As 
shoWn, such global memory 208 may be embodied on an 
integrated circuit that is separate from the integrated circuit 
on Which the processors 204 of the aforementioned parallel 
processing architecture 202 are embodied. While the parallel 
processing architecture 202 is shoWn to be embodied on the 
various integrated circuits of FIG. 2 in a speci?c manner, it 
should be noted that the system components may or may not 
be embodied on the same integrated circuit, as desired. 

Still yet, the present system 200 of FIG. 2 may further 
include a driver 210 for controlling the parallel processing 
architecture 202, as desired. In one embodiment, the driver 
210 may include a library, for facilitating such control. For 
example, such library 210 may include a library call that may 
instantiate the functionality set forth herein. Further, in 
another embodiment, the driver 210 may be capable of pro 
viding general computational capabilities utiliZing the paral 
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4 
lel processing architecture 202 (e. g. a graphics processor, 
etc.). An example of such a driver may be provided in con 
junction With the CUDATM frameWork provided by NVIDIA 
Corporation. In use, the driver 210 may be used to control the 
parallel processing architecture 202 for e?iciently ray tracing 
micropolygon or other highly complex geometry. 

FIG. 3 shoWs a method 300 for ef?ciently ray tracing 
micropolygon or other highly complex geometry, in accor 
dance With another embodiment. As an option, the present 
method 300 may be implemented in the context of the func 
tionality and architecture of FIGS. 1-2. Of course, hoWever, 
the method 300 may be carried out in any desired environ 
ment. Again, the aforementioned de?nitions may apply dur 
ing the present description. 
As shoWn, a set of rays is received. See operation 302. In 

this case, the set of rays may be generated and/or be received 
as part of a ray tracing process. Furthermore, the rays may be 
a set of rays present at a node in a hierarchy. 

For each of the rays in the set of rays, a prede?ned number 
of closest objects that are potentially intersected are recorded. 
See operation 304. These records of pairs of ray and object 
identi?cation then are sorted by object identi?cation. See 
operation 306. 

For each object identi?cation, if the object is intersected by 
at least one of the rays associated With the object identi?ca 
tion, the identi?ed object is decomposed into a plurality of 
subobj ects. See operation 308. Furthermore, a second hierar 
chy is determined by a connectivity of the plurality of subob 
jects in order to accelerate ray tracing. See operation 310. 

It should be noted that after the recording of the aforemen 
tioned pairs, the process may be continued for each ray at the 
node of the ?rst hierarchy Where the recording Was inter 
rupted. Furthermore, in one embodiment, at least one of the 
prede?ned number of recorded pairs may be increased When 
rays are terminated. In another embodiment, terminated rays 
may be directly replaced by neW rays. 

In this Way, a ray tracing architecture may be implemented 
that alloWs the ray tracing of highly complex geometry result 
ing from the classic modeling approach of surface patches 
that are tessellated into micropolygons. The observation that 
the acceleration data structure implied by the topology of the 
micropolygons is of high quality and can be constructed in 
time linear in the number of micropolygons leads to e?i 
ciency in this ray tracing. While preserving all advantages of 
previous production rendering systems, by implementing the 
aforementioned techniques, ray tracing is available in a uni 
?ed manner, simplifying Work?oW, and even alloWing for full 
light transport simulation. 

Geometric detail is often modeled by parametric or multi 
resolution surface patches that are displaced and have to be 
rendered including motion blur. Games folloW a similar tWo 
level approach of modeling. In the case of games, While the 
rasteriZed geometry may be rather coarse, detail may be 
added by shaders that compute local approximations to ray 
tracing. 
As ray tracing alloWs for precise shadoWs, re?ections, and 

light transport simulation, it may be desirable to completely 
ray trace such geometric content Without approximations. 
Adapting to a tWo-level modeling approach and recogniZing 
that ef?cient auxiliary data structures for accelerated ray trac 
ing may be built in time linear in the number of elements 
resulting from tessellating a surface patch, it becomes pos 
sible to ray trace complex geometry more ef?ciently than 
previous approaches. 

In one embodiment, a technical director in a ray tracing 
system may program both the shading and surface patch 
tessellation. As long as the surface patches can be organiZed 
in main memory, the artist may model and e?iciently ray trace 
geometric detail that is capable of going far beyond What can 
be stored in main memory. 
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In the past, the Reyes image rendering architecture has 
been used very successfully in movie production. The funda 
mental assumptions and design principles have alloWed users 
to model and render diverse and complex content. 

Using the aforementioned techniques, it is possible to 
make ray tracing paramount in accordance With the as sump 
tions of the Reyes architecture. The design principles of natu 
ral coordinates, vectorization, common representation, local 
ity, and texture maps remain the same, leading to a uni?ed ray 
tracing architecture instead of a back door extension. 

It should be noted that the tWo-level modeling approach 
mentioned above makes ray tracing quite different from ray 
tracing general massive geometry, because much more data 
locality is intrinsic as opposed to the general setting. Addi 
tionally, a scalable parallelization may be implemented, thus 
alloWing for realtime ray tracing. 

According to the tWo-level modeling approach, ray tracing 
may be accelerated using a tWo-level hierarchy. The top-level 
hierarchy organizes the list of surfaces patches. In this case, 
one reason for the ef?ciency is the observation that the regular 
topology (or connectivity) of a micropolygon buffer implies a 
high quality acceleration data structure that may be con 
structed in time linear in the number of its micropolygons. In 
one embodiment, this technique may be easily extended to 
temporal ray tracing as required for motion blur simulation. 
As an option, such a micropolygon buffer may be ?lled on 

demand With the micropolygons resulting from the tessella 
tion of a surface patch. HoWever, in some cases, this tech 
nique may be costly and ideally Would be performed only 
once. 

As stated above, the top-level hierarchy may organize the 
surface patches. Conservative axis-aligned bounding boxes 
of the patches may be computed by instancing the actual 
micropolygons of the leaf objects. Depending on hoW the 
surface detail is modeled, interval arithmetic or estimates of 
bounds may be more e?icient in some cases. 

For very complex instancing or tessellation processes, such 
as very large models or computationally expensive proce 
dural content, it is sometimes desirable to visit every leaf node 
only one single time. As an option, this may be accomplished 
by tracing all available rays through the acceleration structure 
at the same time. Consequently, it may be su?icient to allo 
cate memory for only one buffer that is ?lled on demand. 

For this purpose, a very simple acceleration structure may 
be utilized. For example, the list of surface patches may be 
partitioned using a binary bounding volume hierarchy, con 
structed using the surface area heuristic. In this case, all inner 
nodes may store an axis aligned bounding box and have 
exactly tWo children, While each leaf node references exactly 
one surface patch. Consequently, neither empty leaves nor 
special cases need to be considered. The number of nodes is at 
most linear in the number of surface patches. 

Ray tracing may then begin by intersecting the Whole 
buffer of rays With the left child box of the root node. The list 
of rays may then be sorted such that all rays intersecting this 
box are located in one block at the beginning of the buffer. The 
process may then repeat recursively With the left child of the 
currently tested node. When stepping up in the recursion, the 
right child box may be intersected, the ray buffer may be 
sorted accordingly, and the algorithm may descend in the 
right branch of the bounding volume hierarchy (BVH) tree. 
As a result, all rays that intersect a speci?c leaf node are one 
contiguous block in the ray buffer and each leaf may be 
visited at most once. 

In some cases, this approach does not alloW for traversing 
all rays along their ray direction. Therefore, “left” and “right” 
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6 
may be sWapped according to a heuristic based on the ray 
directions in order to traverse the majority of rays along their 
direction. 

Tracing single rays alloWs for sorted traversal, in Which 
closer nodes are processed ?rst. This enables the early termi 
nation of rays that have already intersected an object closer 
than the entry point of the next bounding box. In addition, 
higher branching factors for the BVH may lead to a higher 
e?iciency. In some cases, such optimizations may be dif?cult 
to realize When simultaneously tracing multiple rays. 

In one embodiment, in order to reduce multiple accesses to 
the same leaf node and bene?t from the above optimizations, 
the rays may be traced up to some entry node in the hierarchy 
and then spatial sorting may be performed. 

Additionally, in one embodiment, a Quad-BVII (QBVII) 
may be constructed, Where the leaves are the conservative 
bounding boxes of a single patch. Given an array of R rays, 
each ray may traverse the hierarchy in turn, Which may then 
optionally be executed in parallel by partitioning the array. 
As an option, instead of directly intersecting a ray With 

patches, the N ?rst intersections of a ray With a leaf bounding 
box may be recorded in an array that keeps tuples of the form 
(rayid, lea?d). If this array is sized to keep up to M tuples, 
NIM/R. This array may then be sorted by lea?d. Using the 
resulting permutation, the array of rays may remain in origi 
nal order, Which can be used to implicitly associate pixel 
positions and rays, etc. 

For each lea?d in the array, the leaf object may be tessel 
lated and the rays corresponding to the lea?d may be traced 
through the leaf object. In a parallel implementation, each 
thread may pick the next lea?d as a task. In one embodiment, 
Writing back intersection results to rays may be synchronized 
and/or serialized by implementing a feW locks for larger 
blocks of rays or by Writing the ray intersections to small 
buffers for each thread, Which may be synchronized at the 
end. 
Once all tuples (rayid, lea?d) are processed, the rays may 

continue the top-level traversal. Since single ray traversal 
may be ordered by ray direction, it may be easy to determine 
Which children have already been processed, When stepping 
up in the hierarchy. It may therefore be su?icient to keep a 
reference to the last node that a ray traversed in order to 
continue traversal later on. 
As an option, early termination may be realized by inter 

secting the ray and a leaf bounding box prior to tessellation. 
The resulting number R' of remaining rays may then be used 
to determine the next N'IM/R'. In this Way, the process does 
not have to be repeated too often, as the depth complexity of 
most scenes is reached quickly. 

Additionally, this scheme may enable additional optimiza 
tions. First, in the presence of shaders, Which require to access 
large memory blocks (e.g. such as measured BRDF data, 
etc.), many rays may have an early out event at the same time 
and thus the memory may not have to be accessed several 
times. Second, to further reduce the need for repeated tessel 
lation over generations of rays, the early termination event 
may be used to shade a terminated block of rays and spaWn 
neW ray directions, Which may directly be intersected With the 
already tessellated originating patch and then be re-injected 
into the top-level traversal. 

FIG. 4 shoWs data structures 400 that may be used With one 
embodiment. Rays 402 that may be represented by a data type 
ray_t may be referenced by an array 404, Which may store 
pairs of ray identi?cation and hierarchy entry point, Where a 
value of —1 may represent no reference. For each ray refer 
enced in this array 404, N pairs of ray identi?cation and object 
identi?cation may be stored in another array 406 of size R 
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times N. The latter array 406 of tuples may be sorted by object 
(or patch) identi?cation later oil. 

For someone skilled in the art, it is obvious hoW to imple 
ment the aforementioned techniques using spatial partition 
ing schemes instead of object list partitioning schemes. Such 
spatial partitioning schemes may include BSP trees, kd trees, 
and regular or hierarchical grids that may be stored explicitly 
or used implicitly. Variants of obj ect list partitioning schemes 
that may be used include a bounding interval hierarchy and 

8 
be split until the tessellation for each part ?ts into the buffer. 
In some situations, there may also be ?exibility in increasing 
the buffer siZe. As an option, detecting a buffer over?ow may 
be easily integrated With the computation of the conservative 
bounding boxes. 
The number of 4’":2’"><2’" micropolygons and the topology 

(or connectivity) determined by the tWo-dimensional array of 
vertices may advert to using a complete quad-tree of axis 
aligned bounding boxes as acceleration hierarchy for ray 
tracing the micropolygons. It should be noted that, although 

variants thereof. All of these techniques may be using 10 . . 
. . . in some cases, complete trees for ray tracing may not be 

memory that is bounded by a constant or linearly bounded in - - - 
. . . . . . desired to be used, this concept may be very appropriate for 

the number of objects. The object list partitioning schemes 
_ 1 d f 1, _ h f _ f tessellated surfaces patches. 

may Inc e_re erence rep lcanon' SC emes eaturlng re er' The bottom-up construction of the complete quad-tree is 
ence replication may only need to record tuples (rayid, lea?d) linear in the number of nodes 
that are different, hoWever, the sorting of the tuples makes it 15 
easy to remove multiple entries. All data structures may be m _ 

built on demand. Aside of axis-aligned bounding boxes, other 4‘ E 0(4m) 
bounding volumes like for example spheres may be applied. ‘:0 
In Pase the ObJeCts do nqt ?t Into mam mémory’ Stfeammg the and thus linear in the number of micropolygons of one surface 
ObJeCFS and bu?ket Somng may be apphed PO W11‘? a repré' 20 patch. For a total of n micropolygons this results in an 
sentation of objects that may be accessed With limited main 
memory. Such methods are knoWn in the art. 

Table 1 shows detailed timings (in seconds) for 1000 bil- n 
. . . . . . ()(n 1Og_) lion triangles in a forest image, in accordance With one 4m 
embodiment. With high depth complexity and multiple cores, 25 
a single ray traversal may be bene?cial. The number of tes 
sellated patches is reduced due to sorted traversal and early 
out in the top level QBVH. In this case, timings Were obtained construction time, given an O (n log n) procedure to set up 
on an eight core Xeon machine. the ray tracing acceleration data structure. 

TABLE 1 

total time 
tessellate bottom-level [s] top-level [s] shade [s] soit [s] #tess. patches [s] 

Top-Level QBVH 232.360001 339.585304 41.525017 120.095985 64.416071 4486828 319.380018 
Top-Level all-rays 267.062500 203.312500 1144.843750 123.574219 0.000000 5275258 1746.332031 
nm 1 

Top-Level all-rays 367.007812 343.136719 1651.222656 122.675781 0.000000 5489927 2491.605469 
nm 2 

40 

Tessellation and bottom-level timings for the QBVH vari 
ant are summed up over the number of cores. Thus, these 
?gures do not add up to the total time. Top-level QBVH 
traversal is parallel as Well. Thus, the algorithmic speedup 
factor is about ?ve for just the top-level traversal. The high 
variance in the single visit traversal is due to the speculative 
sorting by one ray direction for the Whole buffer, Which may 
Work Well in some cases. 

As can be seen in the comparison in Table l, the QBVH 
top-level hierarchy outperforms the single visit variant in 
various Ways. The chance of early termination and more 
sophisticated single ray traversal optimiZations are very use 
ful. ParalleliZation is another useful aspect, Which may at 
least be tedious With the single visit traversal. In the case of 
repeated tessellation, single ray traversal tessellates less leaf 
nodes in the presence of highly occluded geometry. 

In one embodiment, the micropolygonl buffer may repre 
sent 2’"><2'" micropolygons as a tWo-dimensional array of 

(2’"+l)><(2’"+l) vertices, Where each four adjacent vertices 
de?ne one micropolygon. The buffer may be ?lled by tessel 
lating a surface patch of a leaf of the top-level hierarchy. 
Subsequently, the micropolygons may be intersected With all 
rays that intersect the axis-aligned bounding box of the top 
level hierarchy leaf. 

In the case that the tessellation of a surface patch is too 
large to ?t into the micropolygon buffer, the tessellation may 
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In many cases, motion approximated by linear splines is 
utiliZed in movie production. Given the instants tO<t l< . . . <tn 
de?ning the time intervals [tit-+1), tracing a ray at time te[tl-, 
tin) may be accomplished by instancing tWo micropolygon 
buffers, one at time ti and one at time ti+1 . The actual bounding 
boxes and micropolygons used during ray traversal then may 
be determined by linear interpolation. 

If the rays are sorted by their time, each of the n time 
intervals needs to be touched at most once and allocating tWo 
micropolygon buffers may be suf?cient. Concerning the top 
level hierarchy, the same principles may be applied. HoWever, 
depending on the cost to construct the hierarchy, it may be 
more e?icient to use only one hierarchy based on bounding 
boxes conservatively covering the Whole time interval [to,tn). 
The speci?cation of motion may be considered a temporal 

displacement, Which may go beyond the classic concept of 
displacement. In fact, in some cases, motion curves (e.g. 
general splines, etc.) may be adaptively sampled depending 
on the required level of detail or the speed of motion, etc., 
Which may be useful for fast motion. The set of time intervals 
may vary from patch to patch and may be chosen speci?c to 
the situation like for example speci?c to the times of the rays. 
If a convex hull property is available (eg for BéZier curves, 
NURBS, etc.), it may be possible to determine axis-aligned 
bounding boxes even for non-linear motion. 
As an option, this ray tracing architecture may be designed 

to seamlessly ?t into existing production pipelines With pro 
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grammable shading. In one embodiment, SIMD instructions 
may be used for evaluating the surface area heuristic and 
axis-aligned bounding boxes may be in SSE layout. It should 
be noted that the class for surface patches should provide a 
technique to compute a bounding box and a technique to 
intersect a group of rays that may depend on a given time or 
time interval. 

In most cases, surface patches that use a micropolygon 
buffer for ray tracing should implement a tessellation tech 
nique, that in its most classic variant computes the micropoly 
gon vertices by either sampling or subdividing a surface 
patch, applies trimming and displacement, and stores inter 
polated (s, t) texture coordinates. Vertices may be displaced 
along sampled or interpolated per-vertex normals. After 
Wards, a loop over all micro-polygons may evaluate Whether 
or not the micro-polygon is clipped or trimmed. 

Unless the micro-polygon is discarded, an associated 
bounding box, color from texture, and normal by vertex dif 
ferences may be computed and stored. Such a tessellation 
technique should be aWare of the resolution of the micropoly 
gon buffer. In case of insu?icient resolution, surface patches 
may be split. 

In one embodiment, ray tracing the micropolygon buffer 
may begin by marking all axis-aligned bounding boxes of the 
hierarchy as empty before calling the tessellation technique. 
After the bounding boxes of the micropolygon have been 
determined, the bounding volumes of the inner nodes of the 
hierarchy are updated in a bottom-up manner, similar to MIP 
maps. 

It should be noted that bounding boxes marked as empty 
may not need to update their parent boxes and may also be 
handled transparently during ray traversal. Since the memory 
for the micropolygon buffer data structure may be allocated 
once for the Whole rendering process, optimiZing for memory 
of the empty bounding boxes or omitted micropolygons may 
not be e?icient. 

The bounding volume hierarchy is a complete tree and 
therefore may be stored in pre-order as an array Without 
pointers. Each 2><2 bounding box belonging to the same 
father may be stored in one structure, thus alloWing for inter 
secting one ray With four bounding boxes using SIMD 
instructions for a current processor. In order to avoid address 
conversion during shading, MIP maps of colors and normals 
may be stored using the same memory layout as the bounding 
volume hierarchy. 

For suf?ciently ?ne tessellations (e.g. doWn to sub-pixel 
accuracy, etc .), the actual micropolygon intersection test may 
be replaced by using the intersection With the ?nest bounding 
box instead. Since the bottom-level bounding volume hierar 
chy is a complete tree, father and child indices may be com 
puted from the node index. 

Consequently, in one embodiment, the hierarchies may be 
interpreted and stored as a skip list, Which may alloW one to 
stream the tree through an array of rays using a SIMD or 
SIMT architecture (eg with a GPU). While this approach 
may be highly memory e?icient, it may not bene?t maximally 
from early termination, because this Would require guaran 
teed ordered traversal. The e?iciency of this approach may 
depend on memory latency. 

In another embodiment, a technique for ray tracing free 
form surface patches may be implemented. In this case, 
instead of storing vertices of micropolygons, a tWo-dimen 
sional array of “micropatches” may be stored as Well. The 
tessellation procedure then may correspond to subdividing 
and displacing the patch in order to ?ll the array. 

In one embodiment, the bounding volume hierarchy may 
built in a standard fashion, hoWever, instead of intersecting 
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10 
triangles of quadrilaterals, a high precision intersection may 
be used to directly intersect a ray With the micro-patches of 
the micro-patch grid. 

For the case of BéZier surface patches, the micropatches 
may be the control polygons resulting from subdivision by the 
de Casteljau algorithm. This Would include triangularpatches 
as Well, for example. 
The principle of building a hierarchy implied by die con 

nectivity of a subdivision process may also apply to different 
surfaces, such as multiresolution surfaces or trimmed 
NURBS. In these cases, such a hierarchy may be built in time 
linear in the number of elements resulting from the subdivi 
sion process. 

Connectivity may also be speci?ed by the data layout of an 
object. For example the triangles of a list of triangles may be 
enumerated in such a Way, that a meaningful hierarchy of 
bounding volumes is found by just pairing each tWo adjacent 
triangles in the list and repeating the pairing process With the 
pairs until only one bounding volume is left. 

Physically-based rendering generally requires a lot of rays 
to be traced. This number is typically too large to ?t the 
required ray buffer into main memory. Also, at the beginning, 
all of the rays may not be knoWn. Some effects (eg soft 
shadoWs, ambient occlusion, re?ections, etc.) may require 
several passes to be rendered. 

In various embodiments, there may be several choices, 
Which may balance betWeen depth complexity, re-tessellat 
ing, and memory requirements. For example, in one embodi 
ment, rays may be re-injected as possible after an early ter 
mination event. As an option, this may be accomplished by 
replacing the terminated ray by a neWly spaWned ray, instead 
of removing it from the buffer. In most cases, this Will utilize 
the ray buffer Well and use the (rayid, lea?d) buffer for neW 
rays rather than to tackle depth complexity. This may be very 
bene?cial in common algorithmic situations of scattering, 
computing ambient occlusion, testing shadoW rays, etc. 

In another embodiment, rays may be grouped by genera 
tion. In yet another embodiment, the screen may be tiled. In 
this Way, some locality may be exploited for ?rst generation 
lens connection rays. In general, it is most e?icient to trace as 
many rays as possible (i.e. ?t into main memory, etc.) at a 
time. 

It should be noted that the use of an (rayid, lea?d) array 
alloWs for computing the ray associated With a rayid from this 
number itself For common situations such as rays emerging 
from one point (eg a pinhole camera, point light shadoWs, 
ambient occlusion rays, etc.), this alloWs a user to completely 
omit the simultaneous storage of the rays. In other Words, the 
rays may be computed on demand. 

Although the ray tracing architecture may be designed to 
deliver precise visibility, approximate visibility may be 
implemented to increase performance. In one embodiment, 
this may be achieved by adaptively selecting the resolution 
parameter m of the micropolygon array. It should be noted 
that in another embodiment this technique may be applied to 
create adaptive voxeliZations of the geometry. 

In one embodiment, a level of detail (LOD) technique may 
be used. In some cases, When using LOD, if tWo adjacent 
patches are tessellated in a different LOD, there may be 
cracks along the boundary of the patches. Additionally, in 
some cases, a mechanism to identify the required LOD may 
be needed. As an option, this may be accomplished using ray 
differentials as a local approximation of the distance to the 
neighboring ray cast from the pixel raster. Further, in some 
cases, popping may occur, Where objects suddenly appear in 
more detail, Which results in distracting, quick changes in 
animations. 
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In the cases Where cracking may potentially occur, crack 
ing may be avoided by stitching the adjacent geometry 
together. However, because tessellation is suf?ciently ?ne 
such that the smallest boxes of the BVH can directly be used 
as primitives, cracks do not appear, because by construction 
neighboring bounding boxes at least seamlessly touch each 
other. For example, if the adjacent box is larger, it Will span at 
least the area of the tWo smaller boxes that may be included. 
Ray differentials are an approximation of the distance to 

neighboring rays hitting the same surface. Using the tech 
niques described above, all rays may be traced at once. Thus, 
there may not be a need for such an approximation, since the 
information about the other rays is available. 

In some cases, hoWever, it may be desirable to choose the 
LOD before tessellating a patch. That is, it may need to be 
decided for an LOD based on a patch bounding box and a 
group of rays intersecting this patch. As an option, this may be 
solved by assuming equal distribution of the ray directions 
and origins. Consequently, tessellation may be accomplished 
such that the number of resulting voxels is at least equal to the 
number of rays intersecting this patch. 

With respect to popping, popping may bene?t from the fact 
that LOD is chosen to be sub-pixel accurate for lens connec 
tion rays. In this Way, no popping of directly visible geometry 
can take place. In some cases, hoWever, for secondary effects 
as self-shadoWing of a patch, popping may still become vis 
ible in form of a noticeable difference in shading. In one 
embodiment, this may be alleviated by adding a-priori knoWl 
edge of rays to be spaWned at the surface to the LOD decision. 
Another Way to create soft shadoWs is to complement the 
coarse levels With directional opacity information. 

In order to ameliorate the self-intersection problem, the 
offset 6 used to offset the ray origin of a ray leaving a surface 
should be selected according to the actual level of detail m. 
This may be achieved by choosing 

Where d is the length of the longest side of the axis-aligned 
bounding box of the tessellation in the micropolygon buffer. 
The offset 6 such is not ?xed per ray, but may depend on the 
currently processed object. 

The micropolygon buffer object With its operations of trac 
ing rays, building the implied bounding volume hierarchy, 
bounding box computation, and tessellation lends itself to 
hardWare acceleration because memory requirements are 
constant and moderate, algorithms are suf?ciently compact, 
and most parts can be executed in parallel. 

In one embodiment, the implementation of the micropoly 
gon buffer operations as an “FPGA personality” on the HC-l 
series of supercomputers may be utiliZed as an ef?cient 
approach to hardWare acceleration. Additionally, certain inte 
ger arithmetic ray tracing techniques may be especially suited 
for the micropolygon arrays. In this case, due to the spatial 
proximity of the micropolygons, their numeric range may be 
very limited. Consequently, reducing the precision to integers 
does not pose a problem. This, in connection With the memory 
capacities of modern FPGAs, alloWs a user to store the vertex 
array and bounding volume hierarchy of the micropolygon 
buffer on chip for interesting values of m. 

If a coprocessor (eg an FPGA or GPU, etc.) cannot 
directly access main memory, data may be transferred asyn 
chronously in order to hide latencies. The ef?ciency depends 
on the amount of data is being transferred. The minimum data 
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set includes the rays and the micropolygon vertex array to be 
intersected and may assume that the implied bounding vol 
ume hierarchy is built on chip. 

Alternatively, the tessellation may be performed on the 
co-processor also. This may require the surface patch data 
along With the displacement data to be transferred. Along 
these lines, all rays of a generation may be stored on the 
coprocessor, reducing the ray data to be transferred to a set of 
indices. In any case, ray distances need to be returned to the 
main processor. In one embodiment, the Cell and Larrabee 
processors may be utiliZed to implement the micropolygon 
buffer operations. 
The image rendering architecture and techniques 

addressed above preserve the features of the Reyes architec 
ture including the ability to separate sampling from shading. 
Since the algorithm is entirely based on ray tracing,.effects 
like such as re?ections, shadoWs, or even global illumination 
may noW be ray traced. This removes the need to ?nd suitable 
approximations and simpli?es Work?oW Without restricting 
artistic freedom and expression. 

Furthermore, the presented architecture may be vieWed as 
a hybrid betWeen rasteriZation and ray tracing. In one 
embodiment, the reordering of the computations may be 
implemented in the context of a rasteriZer and may Work the 
same Way for a rasteriZer. In this case, the leaves may be tested 
for visibility via occlusion queries, the geometry may then be 
instanced and rasteriZed. 

FIG. 5 illustrates an exemplary system 500 in Which the 
various architecture and/ or functionality of the various pre 
vious embodiments may be implemented. As shoWn, a sys 
tem 500 is provided including at least one host processor 501 
Which is connected to a communication bus 502. The system 
500 also includes a main memory 504. Control logic (soft 
Ware) and data are stored in the main memory 504 Which may 
take the form of random access memory (RAM). 

The system 500 also includes a graphics processor 506 and 
a display 508, i.e. a computer monitor. In one embodiment, 
the graphics processor 506 may include a plurality of shader 
modules, a rasteriZation module, etc. Each of the foregoing 
modules may even be situated on a single semiconductor 
platform to form a graphics processing unit (GPU). Similarly, 
in one embodiment, the foregoing modules may be situated 
on a semiconductor platform like an FPGA and/or other 
recon?gurable device. As an option, these devices may be 
in-socket devices. 

In the present description, a single semiconductor platform 
may refer to a sole unitary semiconductor-based integrated 
circuit or chip. It should be noted that the term single semi 
conductor platform may also refer to multi-chip modules With 
increased connectivity Which simulate on-chip operation, and 
make substantial improvements over utiliZing a conventional 
central processing unit (CPU) and bus implementation. Of 
course, the various modules may also be situated separately 
or in various combinations of semiconductor platforms per 
the desires of the user. 
The system 500 may also include a secondary storage 510. 

The secondary storage 510 includes, for example, a hard disk 
drive and/ or a removable storage drive, representing a ?oppy 
disk drive, a magnetic tape drive, a compact disk drive, etc. 
The removable storage drive reads from and/or Writes to a 
removable storage unit in a Well knoWn manner. 

Computer programs, or computer control logic algorithms, 
may be stored in the main memory 504 and/ or the secondary 
storage 510. Such computer programs, When executed, 
enable the system 500 to perform various functions. Memory 
504, storage 510 and/or any other storage are possible 
examples of computer-readable media. 
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In one embodiment, the architecture and/or functionality 
of the various previous ?gures may be implemented in the 
context of the host processor 501, graphics processor 506, an 
integrated circuit (not shoWn) that is capable of at least a 
portion of the capabilities of both the host processor 501 and 
the graphics processor 506, a chipset (i.e. a group of inte 
grated circuits designed to Work and sold as a unit for per 
forming related functions, etc.), and/or any other integrated 
circuit for that matter. 

Still yet, the architecture and/ or functionality of the various 
previous ?gures may be implemented in the context of a 
general computer system, a circuit board system, a game 
console system dedicated for entertainment purposes, an 
application-speci?c system, and/ or any other desired system. 
For example, the system 500 may take the form of a desktop 
computer, lap-top computer, and/or any other type of logic. 
Still yet, the system 500 may take the form of various other 
devices including, but not limited to, a personal digital assis 
tant (PDA) device, a mobile phone device, a television, etc. 

Further, While not shoWn, the system 500 may be coupled 
to a netWork [eg a telecommunications netWork, local area 
netWork (LAN), Wireless netWork, Wide area netWork (WAN) 
such as the lntemet, peer-to-peer netWork, cable netWork, 
etc.] for communication purposes. 

While various embodiments have been described above, it 
should be understood that they have been presented by Way of 
example only, and not limitation. Thus, the breadth and scope 
of a preferred embodiment should not be limited by any of the 
above-described exemplary embodiments, but should be 
de?ned only in accordance With the folloWing claims and 
their equivalents. 
What is claimed is: 
1. A method, comprising: 
identifying a plurality of surface patches; 
establishing a ?rst hierarchy by organiZing the surface 

patches into an acceleration structure, such that each leaf 
node of the ?rst hierarchy references a bounding box of 
a different one of the surface patches; 

tracing rays using the ?rst hierarchy to identify that at least 
one of the bounding boxes of one of the surface patches 
is potentially intersected by at least one of the rays; 

for a predetermined number of the potential intersections 
betWeen one of the rays and one of the bounding boxes 
of one of the surface patches, storing in a single array a 
tuple including a ray identi?er of the one of the rays and 
a leaf identi?er associated With the one of the surface 
patches in the one of the bounding boxes that are poten 
tially intersected; 

for each of the leaf identi?ers stored in the array: 
determining a level of detail of a tWo-dimensional array 

of vertices and micropolygons based on the bounding 
box of the surface patch that is referenced by the leaf 
identi?er and the rays identi?ed to potentially inter 
sect the surface patch, such that a number of the 
micropolygons is at least equal to a number of the rays 
identi?ed to potentially intersect the surface patch 
referenced by the leaf identi?er; 

decomposing, on-demand, the surface patch referenced 
by the leaf identi?er into the tWo-dimensional array of 
vertices and micropolygons; 

establishing a second hierarchy for the tWo-dimensional 
array of vertices and micropolygons of the surface 
patch referenced by the leaf identi?er, the second 
hierarchy being determined by a connectivity of the 
micropolygons in the tWo-dimensional array of verti 
ces and micropolygons, in order to accelerate ray 
tracing; and 
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14 
intersecting, utiliZing the second hierarchy, the 

micropolygons of the tWo dimensional array of verti 
ces and micropolygons of the surface patch refer 
enced by the leaf identi?er With all rays in the array 
that are stored in one of the tuples of the array includ 
ing the leaf identi?er. 

2. The method of claim 1, Wherein self intersection is 
ameliorated by offsetting rays depending on at least one of: at 
least one of the potentially intersected surface patches; at least 
one of the tWo-dimensional arrays of vertices and micropoly 
gons; and at least one of the bounding boxes of one or more of 
the tWo-dimensional arrays of vertices and micropolygons. 

3. The method of claim 1, Wherein self intersection is 
ameliorated by offsetting rays proportional to a longest side 
of at least one of the surface patch bounding boxes divided by 
2 to the poWer of the level of detail, Where Zero corresponds to 
a coarsest level of detail. 

4. The method of claim 1, Wherein an intersection of a ray 
and one of the surface patch bounding boxes associated With 
the tWo-dimensional array of vertices and micropolygons is 
utiliZed as an approximate intersection of the ray and the 
tWo-dimensional array of vertices and micropolygons 
decomposed from the one of the surface patches. 

5. The method of claim 1, Wherein each of the potentially 
intersected surface patches is tessellated into one of the tWo 
dimensional arrays of vertices and micropolygons from 
Which the second hierarchy is capable of being built in time 
linear in a number of micropolygons. 

6. The method of claim 5, Wherein the tessellation yields 
one of a triangular or quadrilateral mesh. 

7. The method of claim 5, Wherein each of the potentially 
intersected surface patches include one of a multiresolution 
surface, a subdivision surface, or a parametric surface, Which 
is capable of being trimmed and displaced. 

8. The method of claim 7, Wherein motion is considered as 
a temporal displacement. 

9. The method of claim 5, Wherein, for each of the leaf 
identi?ers stored in the array, a buffer is ?lled by tessellating 
the surface patch referenced by the leaf identi?er into the 
tWo-dimensional array of vertices and micropolygons. 

10. The method of claim 9, Wherein the buffer ?lled by 
tessellating the surface patch referenced by the leaf identi?er 
represents 2’"><2’" of the micropolygons as the tWo-dimen 
sional array of (2’"+l)><(2’" +1) of the vertices, Where m is a 
resolution parameter of the tWo dimensional array. 

11. The method of claim 1, Wherein objects are speci?ed 
With motion over time. 

12. The method of claim 11, Wherein the ?rst hierarchy and 
each of the tWo-dimensional arrays of vertices and 
micropolygons are generated adaptively With respect to their 
motion and potentially for a given time. 

13. The method of claim 11, further comprising simulating 
motion blur. 

14. The method of claim 13, Wherein interpolation is used 
to compute all data at the given time to perform the ray 
intersections. 

15. The method of claim 13, Wherein segments of motion 
are capable of being bounded by bounding volumes. 

16. The method of claim 1, Wherein ray data is computed 
from a ray identi?cation number. 

17. The method of claim 1, Wherein a traversal of the ?rst 
hierarchy includes considering multiple rays simultaneously 
such that each of the surface patches is considered at most 
once during the ray tracing. 
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18. The method of claim 1, further comprising, for each of 
a plurality of rays: 

recording a prede?ned number of closest ones of the sur 
face patches that are potentially intersected; and 

sorting records of pairs of ray and surface patch identi?ca 
tion resulting from the recording by surface patch iden 
ti?cation. 

19. The method of claim 18, Wherein at least one of a 
prede?ned number of recorded pairs is increased When rays 
are terminated or terminated rays are directly replaced by neW 
rays. 

20. The method of claim 19, Wherein a high precision 
intersection is used to directly intersect a ray With micro 
patches of a micro-patch grid. 

21. The method of claim 19, Wherein the neW rays are 
computed in dependence of the terminated rays and directly 
are intersected With a currently decomposed tWo -dimensional 
array of vertices and micropolygons. 

22. The method of claim 1, Wherein the ray tracing is 
performed in parallel. 

23. The method of claim 1, Wherein, for each of the leaf 
identi?ers stored in the array, decomposing the surface patch 
referenced by the leaf identi?er into the tWo-dimensional 
array of vertices and micropolygons includes generating the 
tWo-dimensional array of vertices and micropolygons. 

24. The method of claim 1, Wherein the connectivity of the 
micropolygons is speci?ed by a data layout of the surface 
patch referenced by the leaf identi?er, such that triangles of a 
list of triangles are enumerated, and a hierarchy of bounding 
volumes is determined by pairing each tWo adjacent triangles 
of the list of triangles and repeating the pairing until only one 
bounding volume remains. 

25. The method of claim 1, further including sorting the 
array based on the leaf identi?ers such that all rays that 
potentially intersect a particular bounding box of a particular 
one of the surface patches are located in one block at a 
beginning of a buffer. 

26. The method of claim 25, Wherein the ray identi?ers of 
the sorted array are maintained in an original order for asso 
ciating pixel positions and the rays. 

27. The method of claim 1, Wherein the decomposing and 
the intersection of at least tWo of the surface patches identi?ed 
by at least tWo of the leaf identi?ers in the array are performed 
in parallel by at least tWo threads. 

28. The method of claim 27, Wherein each thread of the 
parallel processing selects from the array a next leaf identi?er 
as a task. 

29. The method of claim 27, Wherein intersection results of 
the at least tWo of the surface patches identi?ed by the at least 
tWo of the leaf identi?ers in the array are synchronized by 
Writing ray intersections to buffers for each thread, and sub 
sequently synchronizing the intersection results. 

30. A computer program product embodied on a non-tran 
sitory computer readable medium, comprising: 

computer code for identifying a plurality of surface 
patches; 

computer code for establishing a ?rst hierarchy by orga 
nizing the surface patches into an acceleration structure, 
such that each leaf node of the ?rst hierarchy references 
a bounding box of a different one of the surface patches; 

computer code for tracing rays using the ?rst hierarchy to 
identify that at least one of the bounding boxes of one of 
the surface patches is potentially intersected by at least 
one of the rays; 

computer code for, for a predetermined number of the 
potential intersections betWeen one of the rays and one 
of the bounding boxes of one of the surface patches, 

5 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
storing in a single array a tuple including a ray identi?er 
of the one of the rays and a leaf identi?er associated With 
the one of the surface patches in the one of the bounding 
boxes that are potentially intersected; 

computer code for, for each of the leaf identi?ers stored in 
the array: 
determining a level of detail of a tWo-dimensional array 

of vertices and micropolygons based on the bounding 
box of the surface patch that is referenced by the leaf 
identi?er and the rays identi?ed to potentially inter 
sect the surface patch, such that a number of the 
micropolygons is at least equal to a number of the rays 
identi?ed to potentially intersect the surface patch 
referenced by the leaf identi?er; 

decomposing, on-demand, the surface patch referenced 
by the leaf identi?er into the tWo-dimensional array of 
vertices and micropolygons; 

establishing a second hierarchy for the tWo-dimensional 
array of vertices and micropolygons of the surface 
patch referenced by the leaf identi?er, the second 
hierarchy being determined by a connectivity of the 
micropolygons in the tWo-dimensional array of verti 
ces and micropolygons, in order to accelerate ray 
tracing; and 

intersecting, utilizing the second hierarchy, the 
micropolygons of the tWo dimensional array of verti 
ces and micropolygons of the surface patch refer 
enced by the leaf identi?er With all rays in the array 
that are stored in one of the tuples of the array includ 
ing the leaf identi?er. 

31. An apparatus, comprising: 
one or more processors capable of: 

identifying a plurality of surface patches; 
establishing a ?rst hierarchy by organizing the surface 

patches into an acceleration structure, such that each 
leaf node of the ?rst hierarchy references a bounding 
box of a different one of the surface patches; 

tracing rays using the ?rst hierarchy to identify that at 
least one of the bounding boxes of one of the surface 
patches is potentially intersected by at least one of the 
rays; 

for a predetermined number of the potential intersec 
tions betWeen one of the rays and one of the bounding 
boxes of one of the surface patches, storing in a single 
array a tuple including a ray identi?er of the one of the 
rays and a leaf identi?er associated With the one of the 
surface patches in the one of the bounding boxes that 
are potentially intersected; 

for each of the leaf identi?ers stored in the array: 
determining a level of detail of a tWo-dimensional 

array of vertices and micropolygons based on the 
bounding box of the surface patch that is referenced 
by the leaf identi?er and the rays identi?ed to 
potentially intersect the surface patch, such that a 
number of the micropolygons is at least equal to a 
number of the rays identi?ed to potentially inter 
sect the surface patch referenced by the leaf iden 
ti?er; 

decomposing, on-demand, the surface patch refer 
enced by the leaf identi?er into the tWo-dimen 
sional array of vertices and micropolygons; 

establishing a second hierarchy for the tWo-dimen 
sional array of vertices and micropolygons of the 
surface patch referenced by the leaf identi?er, the 
second hierarchy being determined by a connectiv 
ity of the micropolygons in the tWo-dimensional 
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array of Vertices and micropolygons, in order to 
accelerate ray tracing; and 

intersecting, utilizing the second hierarchy, the 
micropolygons 0f the two dimensional array of 
Vertices and micropolygons 0f the surface patch 5 
referenced by the leaf identi?er With all rays in the 
array that are stored in one of the tuples 0f the array 
including the leaf identi?er. 

* * * * * 


