
US008570322B2

(12) Ulllted States Patent (10) Patent N0.: US 8,570,322 B2
Hanika et al. (45) Date of Patent: Oct. 29, 2013

(54) METHOD, SYSTEM, AND COMPUTER OTHER PUBLICATIONS
PROGRAM PRODUCT FOR EFFICIENT RAY _ u _

RelChl, M., Dunger, R., Sch1eWe,A., Klemmer, T., Hartleb, M., LUX,
C., Frohlich, B., GPU-based Ray Tracing of Dynamic Scenes , Pro
ceedings 5. Workshop ,,Virtuelle and ErWeiterte Realitat der GI

(75) Inventors: Johannes Hanika, Ulm (DE); Fachgruppe VIUAR, pp, 245-260, 2008*
Alexander Keller, Berlin (DE); Peter Schroder and Steven Drucker. A data parallel algorithm for
Hendrik Lensch’ Blaustein (DE) raytracing of heterogeneous databases. In Proceedings of Computer

Graphics Interface, 1992, p. 167-175.*
Christensen P., Fong J ., Laur D., Batali D.: Ray tracing for the movie

(73) Assignee: NVIDIA Corporation, Santa Clara, CA ‘Cars’. In Proc. 2006 IEEE Symposium on Interactive Ray Tracing
(Us) (2006), pp. 73-78.*

Lauterbach C., Yoon S.-E., Tang M., Manocha D.: ReduceM: Inter
active and memory ef?cient ray tracing of large models. Computer

(*) Notice: Subject to any disclaimer, the term ofthis Graphics Forum 27, 4 (2008), 1313-1321.).* _ _ _

patent is extended or adjusted under 35 gbpanémemi A Keller, (‘:‘ImPmVlPg Ray Trac2lglg3 lprglgéséo?li
ject pace ntersectron omputatron,” rt, pp. - ,

U'S'C' 15403) by 960 days‘ Symposium on Interactive Ray Tracing, 2006.*
Solomon Boulos, Ingo Wald and Carsten Benthin, Adaptive Ray

(21) App1_ NO; 12/464,354 Packet Reordering, Proceedings of IEEE Symposium on Interactive
Ray Tracing 2008*
Budge, B. et al., “Out-of-core Data Management for Path Tracing on

(22) Filed: May 12, 2009 Hybrid Resources,” Computer Graphics Forum, Proceedings of
Eurographics, 2009, vol. 28, No. 2.

(65) Prior Publication Data (Continued)

US 2010/0289799 A1 Nov. 18, 2010 Primary Examiner i Daniel Hajnik

Assistant Examiner * Sultana M Zalalee

(51) Int_ CL (74) Attorney, Agent, or Firm * Zilka-Kotab, PC

G06T 15/00 (2011.01)
(52) U 5 Cl (57) ABSTRACT

USPC 345/421. 345/426 A system, method, and computer program product are pro
_ """"" """ """"""""""" " ’ vided for ef?ciently ray tracing micropolygon or other highly

(58) Fleld of Classl?catlon Search complex geometry. In operation, a ?rst hierarchy of a plural
None _ _ _ ity of objects is established. Additionally, rays are traced
See aPPhCaUOn ?le for Complete Search hlstory- using the ?rst hierarchy to e?iciently identify Which of the

plurality of objects are potentially intersected. Furthermore,
. at least one of the potentially intersected objects are decom

(56) References Clted posed, on-demand, into a set of subobjects, each set of sub
U_S_ PATENT DOCUMENTS objects corresponding to one of the at least one of the poten

tially intersected objects. Still yet, a second hierarchy is
7 ,952,583 B2 5/2011 Waechter et a1. established for at least one of the set of subobjects, the second

2005/0231508 A1 : 10/2005 chnslensen et a1~ ~~~~~~~ ~~ 345/428 hierarchy being determined by a connectivity of subobj ects in
* ggllllsrnet' ' ' ' ' ' " 341‘ an associated set of subobj ects in order to accelerate ray

2007/0182732 Al * 8/2007 Woop et al. 345/420 traclng'
2008/0021682 Al * l/2008 Holland 703/5

2009/0284523 A1 * 11/2009 Peterson et al. 345/419 31 Claims, 5 Drawing Sheets

f‘ 208

GLOBAL MEMORY

205 204
l 1

,- 202

- amazes,

x‘ L:

210'\
DRIVER

US 8,570,322 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Carr, N. A. et al., “Fast GPU Ray Tracing of Dynamic Meshes using
Geometry Images,” Proceedings of the 2006 conference on Graphics
interface, 2006, pp. 203-209.
Christensen, P H. et al., “Ray Tracing for the Movie ‘Cars’,” IEEE
Symposium on Interactive Ray Tracing, 2006, pp. 1-6.
Cline, D. et al., “Lightweight Bounding Volumes for Ray Tracing,”
Journal of Graphics Tools, 2006, vol. 11, No. 4, pp. 61-71.
Cook, R. et al., “The Reyes Image Rendering Architecture,” Com
puter Graphics, Jul. 1987, vol. 21, No. 4, pp. 95-102.
Wald, I. et al., “On building fast kd-trees for Ray Tracing, and on
doing that in O(N log N),” IEEE Symposium on Interactive Ray
Tracing, 2006, pp. 61-69.
DammertZ, H. et a1. “Shallow Bounding Volume Hierarchies for Fast
SIMD Ray Tracing of Incoherent Rays,” Computer Graphics Forum,
Proceedings of the 19th Eurographics Symposium on Rendering,
2008, pp. 1225-1234.
Ernst, M. et a1. “Multi Bounding Volume Hierarchies,” In Proceed
ings of the 2008 IEEE/EG Symposium on Interactive Ray Tracing,
2008, pp. 35-40.
Goldsmith, J. et al., “Automatic Creation of Object Hierarchies for
Ray Tracing,” IEEE Computer Graphics & Applications, 1987, pp.
14-20.
Hanika, J. et al., “Towards Hardware Ray Tracing using Fixed Point
Arithmetic,” Proceedings of the 2007 IEEE/EG Symposium on Inter
active Ray Tracing, 2007, pp. 119-128.
Igehy, H., “Tracing Ray Differentials,” ACM Transactions on Graph
ics, Proceedings of SIGGRAPH 1999, 1999, pp. 179-186.

Kato, T. et al., ‘“Kilauea’ iParallel Global Illumination Renderer,”
Fourth Eurographics Workshop on Parallel Graphics and Visualiza
tion, 2002, pp. 7-13.
Lacewell, D. et al., “Raytracing Pre?ltered Occlusion for Aggregate
Geometry,” IEEE Symposium on Interactive Raytracing, 2008, pp.
19-26.
Lamparter, B. et al., “The Ray-Z-BufferiAn Approach for Ray
Tracing Arbitrarily Large Scenes,” Aug. 1, 1991, pp. 1-33.
Lokovic, T. et al., “Deep Shadow Maps,” In SIGGRAPH 2000:
Proceedings of the 27th annual Conference on Computer Graphics
and Interactive Techniques, 2000, pp. 385-392.
MacDonald, J. et al., “Heuristics for ray tracing using space subdi
vision,” The Visual Computer, 1990, vol. 6, pp. 153-166.
Navratil, P. A. et al., “Dynamic Ray Scheduling to Improve Ray
Coherence and Bandwidth Utilization,” Technical Report TR-07-19,
Apr. 12, 2007, pp. 1-10.
Pharr, M. et al., “Geometry Caching for Ray-Tracing Displacement
Maps,” 1996, pp. 1-10.
Pharr, M. et al., “Rendering Complex Scenes with Memory-Coherent
Ray Tracing,” SIGGRAPH 1997, Proceedings of the 24th annual
conference on Computer graphics and interactive techniques, 1997,
pp. 101-108.
Djeu, P. et al., “Razor: An Architecture for Dynamic Multiresolution
Ray Tracing,” Technical Report TR-07-52, Jan. 24, 2007, pp. 1-13.
Tatarchuk, N., “Practical Dynamic Parallax Occlusion Mapping,”
ACM SIGGRAPH 2005 Sketches, 2005.
Wald, I. et al., “Getting Rid of PacketsiEf?cient SIMD Single-Ray
Traversal Using Multi-branching BVHs -,” Proceedings of the 2008
IEEE/EG Symposium on Interactive Ray Tracing, 2008, pp. 49-57.
Wald, I. “On fast Construction of SAH based Bounding Volume
Hierarchies,” Proceedings of the 2007 Eurographics/IEEE Sympo
sium on Interactive Ray Tracing, 2007, pp. 33-40.

* cited by examiner

US. Patent 0a. 29, 2013 Sheet 1 of5 US 8,570,322 B2

ESTABLISH A FiRST HiERARCHY OF A PLURALITY OF “L102
OBJECTS

l
TRACE RAYS USiNG THE FIRST HSERARCHY TO 104

EFFiClENTLY IDEN'HFY WHICH OF THE PLURALITY OF wL/
OBJECTS ARE POTENTIALLY INTERSECTED

DECQMPOSE, ON~DEMAND, AT LEAST ONE OF THE
PGTENTIALLY iNTERSEC-TED OBJECTS iNTQ A SET OF 106

SUBGBJECTS, EACH SET OF SUBGBJECTS *L/
CQRRESPONMNG TO ONE {3F THE AT LEAST ONE GF

THE POTENTMLLY INTERSECTED OBJECTS

Y
ESTABLISH A 5500mm HJERARCHY FOR AT LEAST
one DF THE SET OF susnsasms, THE sEcmm

mERARcHY slams DETERMINED BY A CONNECTWITY v03
0F SUBOBJECTS m AN ASSQCiATED SET OF
SUBOBJECTS IN ORDER TO ACCELERATE RAY

mmms

FIGURE ‘I

US. Patent

FIGURE 2

Oct. 29, 2013 Sheet 2 0f 5 US 8,570,322 B2

<0
-_V~ 2G8

GLOBAL MEMQRY

20a _ f 204
1

‘ ' 2B2

sigcéén PARALLEL ‘r
2 “* PROCESSOR

MEMORY

l I
i l

2110‘ “x

DRNER

US. Patent 0a. 29, 2013 Sheet 3 of5 US 8,570,322 B2

RECENE A SET OF RAYS 302

l
FOR EACH UP THE RAYS,
lDENTlFY AND RECORD A 394
PREDEHNED NUMBER OF W

CLUSE$T OBJECTS THAT ARE
POTENUALLY INTERSECTED

l
sum" RECORDS OF PAIRS OF RAY
AND OBJECT IDENTiFICATiON BY W3“;

OBJECT memmcmzow

FOR EACH 0mm?
IDENTiFiCATlON, IF mTERsEcTEn ,

BY AT LEAST one OF THE RAYS W398
ASSGCiATED wrm THE OBJECT
mammcmiou, DECGMPOSE
THE lDENTIFIED OBJECT mm A
PLuRAuW 0F su BOBJECTS

4,
DETERMENE A SECOND

HIERARC HY BY A can mecnvm'
(IF THE PLURAUTY OF W310

SUBOBJECTS m oases: TO
ACCELERATE RAY TRACING

FIGURE 3

US. Patent 0a. 29, 2013 Sheet 4 of5 US 8,570,322 B2

Emmi ?wmm “mm, Eng 5%., 5% Emma ‘mm; "Ml

w WEDGE mag.“ mad.“ mad,” and,“ 32m.” 26.“ mw,mh_ amid;

@QE

Q

US. Patent 0a. 29, 2013 Sheet 5 of5 US 8,570,322 B2

500

561

504

iSECONDARY
BUS STORAGE

510

GRAPHK?S
PROCESSOR

506

502

508

FIGURE 5

US 8,570,322 B2
1

METHOD, SYSTEM, AND COMPUTER
PROGRAM PRODUCT FOR EFFICIENT RAY
TRACING OF MICROPOLYGON GEOMETRY

FIELD OF THE INVENTION

The present invention relates to ray tracing, and more par
ticularly to image synthesis by e?iciently ray tracing highly
detailed geometry.

BACKGROUND

Previously, building an acceleration data structure for e?i
cient ray tracing of highly complex geometry Was prohibi
tively expensive or imposed restrictions on hoW the geometry
had to be modeled. There is thus a need for addressing these
and/ or other issues associated With the prior art.

SUMMARY

A system, method, and computer program product are
provided for e?iciently ray tracing micropolygon or other
highly complex geometry. In operation, a ?rst hierarchy of a
plurality of objects is established. Additionally, rays are
traced using the ?rst hierarchy to e?iciently identify Which of
the plurality of objects are potentially intersected. Further
more,.at least one of the potentially intersected objects are
decomposed, on-demand, into a set of subobj ects, each set of
subobjects corresponding to one of the at least one of the
potentially intersected objects. Still yet, a second hierarchy is
established for at least one of the set of subobjects, the second
hierarchy being determined by a connectivity of subobj ects in
an associated set of subobjects in order to accelerate ray
tracing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shoWs a method for ef?ciently ray tracing
micropolygon or other highly complex geometry, in accor
dance With one embodiment.

FIG. 2 shoWs a system for ef?ciently ray tracing
micropolygon or other highly complex geometry, in accor
dance With another embodiment.

FIG. 3 shoWs a method for ef?ciently ray tracing
micropolygon or other highly complex geometry, in accor
dance With another embodiment.

FIG. 4 shoWs data structures for e?iciently ray tracing
micropolygon or other highly complex geometry, in accor
dance With one embodiment.

FIG. 5 illustrates an exemplary system in Which the various
architecture and/or functionality of the various previous
embodiments may be implemented.

DETAILED DESCRIPTION

FIG. 1 shoWs a method for ef?ciently ray tracing
micropolygon or other highly complex geometry, in accor
dance With one embodiment. As shoWn, a ?rst hierarchy of a
plurality of objects is established. See operation 102.

Additionally, rays are traced using the ?rst hierarchy to
e?iciently identify Which of the plurality of objects are poten
tially intersected. See operation 104.

Furthermore, at least one of the potentially intersected
objects is decomposed, on-demand, into a set of subobjects,
each set of subobj ects corresponding to one of the at least one
of the potentially intersected objects. See operation 106. In
this case, decomposing the potentially intersected objects

20

25

30

35

40

45

50

55

60

65

2
into the set of subobjects may include generating the set of
subobjects. In one embodiment, an individual level of detail
of any decomposition resulting from the decomposing may
be selected adaptively based on a selected criterion.

Still yet, a second hierarchy is established for at least one of
the set of subobj ects, the second hierarchy being determined
by a connectivity of subobjects in an associated set of subob
jects in order to accelerate ray tracing. See operation 108. In
one embodiment, the intersection of the ray and the bounding
box of a subobject may be used instead of the intersection of
a ray and the actual subobj ect as an approximate intersection
of a ray and a subobject.

In this case, self intersection may be ameliorated by off
setting rays depending on at least one of: the potentially
intersected objects; the set of subobjects; or a bounding vol
ume of one or more of the subobjects. Furthermore, in one
embodiment, self intersection may be ameliorated by offset
ting rays proportional to a length of at least one of a diagonal
or a longest side of an object bounding box divided by 2 to a
poWer of the level of detail, Where Zero corresponds to a
coarsest level of detail.

It should be noted that, in one embodiment, the ray tracing
may be performed in parallel. Furthermore, in one embodi
ment, the objects may include surface patches that are tessel
lated into a tWo-dimensional array of micropolygons from
Which a complete hierarchy is capable of being built in time
linear in the number of micropolygons. In this case, the tes
sellation may yield one of a triangular or quadrilateral mesh.
Additionally, the surface patches may include one of a mul
tiresolution surface, subdivision surface, or a parametric sur
face, Which may be capable of being trimmed and displaced.

In one embodiment, motion maybe considered as temporal
displacement. As long as bounding volumes With respect to
segments of motion can be determined, the embodiment may
be applied e?iciently even for non-linear motion. In this case,
the ?rst hierarchy and the sets of subobj ects may be generated
adaptively With respect to their motion and potentially for a
given time. Additionally, motion may be speci?ed by splines
over speci?ed instants in time. Further, interpolation may be
used to compute all data at the given time to perform ray
intersection. It should be noted that, in some cases, motion
blur may be simulated.
As part of the ray tracing, in one embodiment, ray data may

be computed from a ray identi?cation number. Furthermore,
a traversal of the ?rst hierarchy may include considering
multiple rays simultaneously such that each of the plurality of
objects is considered at most once during ray tracing.

In another embodiment, in a traversal of the ?rst hierarchy,
for each of a plurality of rays a prede?ned number of closest
objects that are potentially intersected may be recorded and
records of pairs of ray and object identi?cation resulting from
the recording may be sorted by object identi?cation. In this
case, for each of the object identi?cations, if an object is
intersected by at least one of the rays associated With the
object identi?cation, an identi?ed object may be decomposed
into a plurality of subobjects and a second hierarchy may be
determined by a connectivity of the plurality of subobjects in
order to accelerate ray tracing. As an option, at least one of a
prede?ned number of recorded pairs may be increased When
rays are terminated or terminated rays may be directly
replaced by neW rays. In this case, the neW rays may be
computed in dependence of the terminated rays and may be
directly intersected With a currently decomposed set of sub
objects.
More illustrative information Will noW be set forth regard

ing various optional architectures and features With Which the
foregoing framework may or may not be implemented, per

US 8,570,322 B2
3

the desires of the user. It should be strongly noted that the
following information is set forth for illustrative purposes and
should not be construed as limiting in any manner. Any of the
following features may be optionally incorporated With or
Without the exclusion of other features described.

FIG. 2 shoWs a system 200 for e?iciently ray tracing
micropolygon or other highly complex geometry, in accor
dance With one embodiment. As an option, the present system
200 may be implemented in the context of the functionality
and architecture of FIG. 1. Of course, hoWever, the present
system 200 may be implemented in any desired environment.
It should also be noted that the aforementioned de?nitions
may apply during the present description.
As shoWn, a parallel processing architecture 202 is pro

vided. Such parallel processing architecture 202 includes a
plurality of parallel processors 204. While not shoWn, such
parallel processors 204 may be capable of operating on a
predetermined number of threads. To this end, each of the
parallel processors 204 may operate in parallel, While the
corresponding threads may also operate in parallel.

In one embodiment, the parallel processing architecture
202 may include a single instruction multiple data (SIMD)
architecture. In such a system, the threads being executed by
the processor are collected into groups such that, at any
instant in time, all threads Within a single group are executing
precisely the same instruction but on potentially different
data.

In another embodiment, the foregoing parallel processing
architecture 202 may include a graphics processor or any
other integrated circuit equipped With graphics processing
capabilities [eg in the form of a chipset, system-on-chip
(SOC), core integrated With a CPU, discrete processor, etc.].
In still another embodiment, the foregoing parallel processing
architecture 202 may include a processor With one or more
vector processing elements such as the Cell processor, refer
ring to the Cell Broadband Engine microprocessor architec
ture jointly developed by Sony®, Toshiba®, and IBM®.

With continuing reference to FIG. 2, the parallel process
ing architecture 202 may include local shared memory 206.
Each of the parallel processors 204 of the parallel processing
architecture 202 may read and/or Write to its oWn local shared
memory 206. This shared memory 206 may consist of physi
cally separate memories associated With each processor or it
may consist of separately allocated regions of one or more
memories shared amongst the processors 204. Further, in the
illustrated embodiment, the shared memory 206 may be
embodied on an integrated circuit on Which the processors
204 of the parallel processing architecture 202 are embodied.

Still yet, global memory 208 is shoWn to be included. In
use, such global memory 208 is accessible to all the proces
sors 204 of the parallel processing architecture 202. As
shoWn, such global memory 208 may be embodied on an
integrated circuit that is separate from the integrated circuit
on Which the processors 204 of the aforementioned parallel
processing architecture 202 are embodied. While the parallel
processing architecture 202 is shoWn to be embodied on the
various integrated circuits of FIG. 2 in a speci?c manner, it
should be noted that the system components may or may not
be embodied on the same integrated circuit, as desired.

Still yet, the present system 200 of FIG. 2 may further
include a driver 210 for controlling the parallel processing
architecture 202, as desired. In one embodiment, the driver
210 may include a library, for facilitating such control. For
example, such library 210 may include a library call that may
instantiate the functionality set forth herein. Further, in
another embodiment, the driver 210 may be capable of pro
viding general computational capabilities utiliZing the paral

20

25

30

35

40

45

50

55

60

65

4
lel processing architecture 202 (e. g. a graphics processor,
etc.). An example of such a driver may be provided in con
junction With the CUDATM frameWork provided by NVIDIA
Corporation. In use, the driver 210 may be used to control the
parallel processing architecture 202 for e?iciently ray tracing
micropolygon or other highly complex geometry.

FIG. 3 shoWs a method 300 for ef?ciently ray tracing
micropolygon or other highly complex geometry, in accor
dance With another embodiment. As an option, the present
method 300 may be implemented in the context of the func
tionality and architecture of FIGS. 1-2. Of course, hoWever,
the method 300 may be carried out in any desired environ
ment. Again, the aforementioned de?nitions may apply dur
ing the present description.
As shoWn, a set of rays is received. See operation 302. In

this case, the set of rays may be generated and/or be received
as part of a ray tracing process. Furthermore, the rays may be
a set of rays present at a node in a hierarchy.

For each of the rays in the set of rays, a prede?ned number
of closest objects that are potentially intersected are recorded.
See operation 304. These records of pairs of ray and object
identi?cation then are sorted by object identi?cation. See
operation 306.

For each object identi?cation, if the object is intersected by
at least one of the rays associated With the object identi?ca
tion, the identi?ed object is decomposed into a plurality of
subobj ects. See operation 308. Furthermore, a second hierar
chy is determined by a connectivity of the plurality of subob
jects in order to accelerate ray tracing. See operation 310.

It should be noted that after the recording of the aforemen
tioned pairs, the process may be continued for each ray at the
node of the ?rst hierarchy Where the recording Was inter
rupted. Furthermore, in one embodiment, at least one of the
prede?ned number of recorded pairs may be increased When
rays are terminated. In another embodiment, terminated rays
may be directly replaced by neW rays.

In this Way, a ray tracing architecture may be implemented
that alloWs the ray tracing of highly complex geometry result
ing from the classic modeling approach of surface patches
that are tessellated into micropolygons. The observation that
the acceleration data structure implied by the topology of the
micropolygons is of high quality and can be constructed in
time linear in the number of micropolygons leads to e?i
ciency in this ray tracing. While preserving all advantages of
previous production rendering systems, by implementing the
aforementioned techniques, ray tracing is available in a uni
?ed manner, simplifying Work?oW, and even alloWing for full
light transport simulation.

Geometric detail is often modeled by parametric or multi
resolution surface patches that are displaced and have to be
rendered including motion blur. Games folloW a similar tWo
level approach of modeling. In the case of games, While the
rasteriZed geometry may be rather coarse, detail may be
added by shaders that compute local approximations to ray
tracing.
As ray tracing alloWs for precise shadoWs, re?ections, and

light transport simulation, it may be desirable to completely
ray trace such geometric content Without approximations.
Adapting to a tWo-level modeling approach and recogniZing
that ef?cient auxiliary data structures for accelerated ray trac
ing may be built in time linear in the number of elements
resulting from tessellating a surface patch, it becomes pos
sible to ray trace complex geometry more ef?ciently than
previous approaches.

In one embodiment, a technical director in a ray tracing
system may program both the shading and surface patch
tessellation. As long as the surface patches can be organiZed
in main memory, the artist may model and e?iciently ray trace
geometric detail that is capable of going far beyond What can
be stored in main memory.

US 8,570,322 B2
5

In the past, the Reyes image rendering architecture has
been used very successfully in movie production. The funda
mental assumptions and design principles have alloWed users
to model and render diverse and complex content.

Using the aforementioned techniques, it is possible to
make ray tracing paramount in accordance With the as sump
tions of the Reyes architecture. The design principles of natu
ral coordinates, vectorization, common representation, local
ity, and texture maps remain the same, leading to a uni?ed ray
tracing architecture instead of a back door extension.

It should be noted that the tWo-level modeling approach
mentioned above makes ray tracing quite different from ray
tracing general massive geometry, because much more data
locality is intrinsic as opposed to the general setting. Addi
tionally, a scalable parallelization may be implemented, thus
alloWing for realtime ray tracing.

According to the tWo-level modeling approach, ray tracing
may be accelerated using a tWo-level hierarchy. The top-level
hierarchy organizes the list of surfaces patches. In this case,
one reason for the ef?ciency is the observation that the regular
topology (or connectivity) of a micropolygon buffer implies a
high quality acceleration data structure that may be con
structed in time linear in the number of its micropolygons. In
one embodiment, this technique may be easily extended to
temporal ray tracing as required for motion blur simulation.
As an option, such a micropolygon buffer may be ?lled on

demand With the micropolygons resulting from the tessella
tion of a surface patch. HoWever, in some cases, this tech
nique may be costly and ideally Would be performed only
once.

As stated above, the top-level hierarchy may organize the
surface patches. Conservative axis-aligned bounding boxes
of the patches may be computed by instancing the actual
micropolygons of the leaf objects. Depending on hoW the
surface detail is modeled, interval arithmetic or estimates of
bounds may be more e?icient in some cases.

For very complex instancing or tessellation processes, such
as very large models or computationally expensive proce
dural content, it is sometimes desirable to visit every leaf node
only one single time. As an option, this may be accomplished
by tracing all available rays through the acceleration structure
at the same time. Consequently, it may be su?icient to allo
cate memory for only one buffer that is ?lled on demand.

For this purpose, a very simple acceleration structure may
be utilized. For example, the list of surface patches may be
partitioned using a binary bounding volume hierarchy, con
structed using the surface area heuristic. In this case, all inner
nodes may store an axis aligned bounding box and have
exactly tWo children, While each leaf node references exactly
one surface patch. Consequently, neither empty leaves nor
special cases need to be considered. The number of nodes is at
most linear in the number of surface patches.

Ray tracing may then begin by intersecting the Whole
buffer of rays With the left child box of the root node. The list
of rays may then be sorted such that all rays intersecting this
box are located in one block at the beginning of the buffer. The
process may then repeat recursively With the left child of the
currently tested node. When stepping up in the recursion, the
right child box may be intersected, the ray buffer may be
sorted accordingly, and the algorithm may descend in the
right branch of the bounding volume hierarchy (BVH) tree.
As a result, all rays that intersect a speci?c leaf node are one
contiguous block in the ray buffer and each leaf may be
visited at most once.

In some cases, this approach does not alloW for traversing
all rays along their ray direction. Therefore, “left” and “right”

20

25

30

35

40

45

50

55

60

65

6
may be sWapped according to a heuristic based on the ray
directions in order to traverse the majority of rays along their
direction.

Tracing single rays alloWs for sorted traversal, in Which
closer nodes are processed ?rst. This enables the early termi
nation of rays that have already intersected an object closer
than the entry point of the next bounding box. In addition,
higher branching factors for the BVH may lead to a higher
e?iciency. In some cases, such optimizations may be dif?cult
to realize When simultaneously tracing multiple rays.

In one embodiment, in order to reduce multiple accesses to
the same leaf node and bene?t from the above optimizations,
the rays may be traced up to some entry node in the hierarchy
and then spatial sorting may be performed.

Additionally, in one embodiment, a Quad-BVII (QBVII)
may be constructed, Where the leaves are the conservative
bounding boxes of a single patch. Given an array of R rays,
each ray may traverse the hierarchy in turn, Which may then
optionally be executed in parallel by partitioning the array.
As an option, instead of directly intersecting a ray With

patches, the N ?rst intersections of a ray With a leaf bounding
box may be recorded in an array that keeps tuples of the form
(rayid, lea?d). If this array is sized to keep up to M tuples,
NIM/R. This array may then be sorted by lea?d. Using the
resulting permutation, the array of rays may remain in origi
nal order, Which can be used to implicitly associate pixel
positions and rays, etc.

For each lea?d in the array, the leaf object may be tessel
lated and the rays corresponding to the lea?d may be traced
through the leaf object. In a parallel implementation, each
thread may pick the next lea?d as a task. In one embodiment,
Writing back intersection results to rays may be synchronized
and/or serialized by implementing a feW locks for larger
blocks of rays or by Writing the ray intersections to small
buffers for each thread, Which may be synchronized at the
end.
Once all tuples (rayid, lea?d) are processed, the rays may

continue the top-level traversal. Since single ray traversal
may be ordered by ray direction, it may be easy to determine
Which children have already been processed, When stepping
up in the hierarchy. It may therefore be su?icient to keep a
reference to the last node that a ray traversed in order to
continue traversal later on.
As an option, early termination may be realized by inter

secting the ray and a leaf bounding box prior to tessellation.
The resulting number R' of remaining rays may then be used
to determine the next N'IM/R'. In this Way, the process does
not have to be repeated too often, as the depth complexity of
most scenes is reached quickly.

Additionally, this scheme may enable additional optimiza
tions. First, in the presence of shaders, Which require to access
large memory blocks (e.g. such as measured BRDF data,
etc.), many rays may have an early out event at the same time
and thus the memory may not have to be accessed several
times. Second, to further reduce the need for repeated tessel
lation over generations of rays, the early termination event
may be used to shade a terminated block of rays and spaWn
neW ray directions, Which may directly be intersected With the
already tessellated originating patch and then be re-injected
into the top-level traversal.

FIG. 4 shoWs data structures 400 that may be used With one
embodiment. Rays 402 that may be represented by a data type
ray_t may be referenced by an array 404, Which may store
pairs of ray identi?cation and hierarchy entry point, Where a
value of —1 may represent no reference. For each ray refer
enced in this array 404, N pairs of ray identi?cation and object
identi?cation may be stored in another array 406 of size R

US 8,570,322 B2
7

times N. The latter array 406 of tuples may be sorted by object
(or patch) identi?cation later oil.

For someone skilled in the art, it is obvious hoW to imple
ment the aforementioned techniques using spatial partition
ing schemes instead of object list partitioning schemes. Such
spatial partitioning schemes may include BSP trees, kd trees,
and regular or hierarchical grids that may be stored explicitly
or used implicitly. Variants of obj ect list partitioning schemes
that may be used include a bounding interval hierarchy and

8
be split until the tessellation for each part ?ts into the buffer.
In some situations, there may also be ?exibility in increasing
the buffer siZe. As an option, detecting a buffer over?ow may
be easily integrated With the computation of the conservative
bounding boxes.
The number of 4’":2’"><2’" micropolygons and the topology

(or connectivity) determined by the tWo-dimensional array of
vertices may advert to using a complete quad-tree of axis
aligned bounding boxes as acceleration hierarchy for ray
tracing the micropolygons. It should be noted that, although

variants thereof. All of these techniques may be using 10 . .
. . . in some cases, complete trees for ray tracing may not be

memory that is bounded by a constant or linearly bounded in - - -
. desired to be used, this concept may be very appropriate for

the number of objects. The object list partitioning schemes
_ 1 d f 1, _ h f _ f tessellated surfaces patches.

may Inc e_re erence rep lcanon' SC emes eaturlng re er' The bottom-up construction of the complete quad-tree is
ence replication may only need to record tuples (rayid, lea?d) linear in the number of nodes
that are different, hoWever, the sorting of the tuples makes it 15
easy to remove multiple entries. All data structures may be m _

built on demand. Aside of axis-aligned bounding boxes, other 4‘ E 0(4m)
bounding volumes like for example spheres may be applied. ‘:0
In Pase the ObJeCts do nqt ?t Into mam mémory’ Stfeammg the and thus linear in the number of micropolygons of one surface
ObJeCFS and bu?ket Somng may be apphed PO W11‘? a repré' 20 patch. For a total of n micropolygons this results in an
sentation of objects that may be accessed With limited main
memory. Such methods are knoWn in the art.

Table 1 shows detailed timings (in seconds) for 1000 bil- n
. ()(n 1Og_) lion triangles in a forest image, in accordance With one 4m
embodiment. With high depth complexity and multiple cores, 25
a single ray traversal may be bene?cial. The number of tes
sellated patches is reduced due to sorted traversal and early
out in the top level QBVH. In this case, timings Were obtained construction time, given an O (n log n) procedure to set up
on an eight core Xeon machine. the ray tracing acceleration data structure.

TABLE 1

total time
tessellate bottom-level [s] top-level [s] shade [s] soit [s] #tess. patches [s]

Top-Level QBVH 232.360001 339.585304 41.525017 120.095985 64.416071 4486828 319.380018
Top-Level all-rays 267.062500 203.312500 1144.843750 123.574219 0.000000 5275258 1746.332031
nm 1

Top-Level all-rays 367.007812 343.136719 1651.222656 122.675781 0.000000 5489927 2491.605469
nm 2

40

Tessellation and bottom-level timings for the QBVH vari
ant are summed up over the number of cores. Thus, these
?gures do not add up to the total time. Top-level QBVH
traversal is parallel as Well. Thus, the algorithmic speedup
factor is about ?ve for just the top-level traversal. The high
variance in the single visit traversal is due to the speculative
sorting by one ray direction for the Whole buffer, Which may
Work Well in some cases.

As can be seen in the comparison in Table l, the QBVH
top-level hierarchy outperforms the single visit variant in
various Ways. The chance of early termination and more
sophisticated single ray traversal optimiZations are very use
ful. ParalleliZation is another useful aspect, Which may at
least be tedious With the single visit traversal. In the case of
repeated tessellation, single ray traversal tessellates less leaf
nodes in the presence of highly occluded geometry.

In one embodiment, the micropolygonl buffer may repre
sent 2’"><2'" micropolygons as a tWo-dimensional array of

(2’"+l)><(2’"+l) vertices, Where each four adjacent vertices
de?ne one micropolygon. The buffer may be ?lled by tessel
lating a surface patch of a leaf of the top-level hierarchy.
Subsequently, the micropolygons may be intersected With all
rays that intersect the axis-aligned bounding box of the top
level hierarchy leaf.

In the case that the tessellation of a surface patch is too
large to ?t into the micropolygon buffer, the tessellation may

45

50

55

60

65

In many cases, motion approximated by linear splines is
utiliZed in movie production. Given the instants tO<t l< . . . <tn
de?ning the time intervals [tit-+1), tracing a ray at time te[tl-,
tin) may be accomplished by instancing tWo micropolygon
buffers, one at time ti and one at time ti+1 . The actual bounding
boxes and micropolygons used during ray traversal then may
be determined by linear interpolation.

If the rays are sorted by their time, each of the n time
intervals needs to be touched at most once and allocating tWo
micropolygon buffers may be suf?cient. Concerning the top
level hierarchy, the same principles may be applied. HoWever,
depending on the cost to construct the hierarchy, it may be
more e?icient to use only one hierarchy based on bounding
boxes conservatively covering the Whole time interval [to,tn).
The speci?cation of motion may be considered a temporal

displacement, Which may go beyond the classic concept of
displacement. In fact, in some cases, motion curves (e.g.
general splines, etc.) may be adaptively sampled depending
on the required level of detail or the speed of motion, etc.,
Which may be useful for fast motion. The set of time intervals
may vary from patch to patch and may be chosen speci?c to
the situation like for example speci?c to the times of the rays.
If a convex hull property is available (eg for BéZier curves,
NURBS, etc.), it may be possible to determine axis-aligned
bounding boxes even for non-linear motion.
As an option, this ray tracing architecture may be designed

to seamlessly ?t into existing production pipelines With pro

US 8,570,322 B2
9

grammable shading. In one embodiment, SIMD instructions
may be used for evaluating the surface area heuristic and
axis-aligned bounding boxes may be in SSE layout. It should
be noted that the class for surface patches should provide a
technique to compute a bounding box and a technique to
intersect a group of rays that may depend on a given time or
time interval.

In most cases, surface patches that use a micropolygon
buffer for ray tracing should implement a tessellation tech
nique, that in its most classic variant computes the micropoly
gon vertices by either sampling or subdividing a surface
patch, applies trimming and displacement, and stores inter
polated (s, t) texture coordinates. Vertices may be displaced
along sampled or interpolated per-vertex normals. After
Wards, a loop over all micro-polygons may evaluate Whether
or not the micro-polygon is clipped or trimmed.

Unless the micro-polygon is discarded, an associated
bounding box, color from texture, and normal by vertex dif
ferences may be computed and stored. Such a tessellation
technique should be aWare of the resolution of the micropoly
gon buffer. In case of insu?icient resolution, surface patches
may be split.

In one embodiment, ray tracing the micropolygon buffer
may begin by marking all axis-aligned bounding boxes of the
hierarchy as empty before calling the tessellation technique.
After the bounding boxes of the micropolygon have been
determined, the bounding volumes of the inner nodes of the
hierarchy are updated in a bottom-up manner, similar to MIP
maps.

It should be noted that bounding boxes marked as empty
may not need to update their parent boxes and may also be
handled transparently during ray traversal. Since the memory
for the micropolygon buffer data structure may be allocated
once for the Whole rendering process, optimiZing for memory
of the empty bounding boxes or omitted micropolygons may
not be e?icient.

The bounding volume hierarchy is a complete tree and
therefore may be stored in pre-order as an array Without
pointers. Each 2><2 bounding box belonging to the same
father may be stored in one structure, thus alloWing for inter
secting one ray With four bounding boxes using SIMD
instructions for a current processor. In order to avoid address
conversion during shading, MIP maps of colors and normals
may be stored using the same memory layout as the bounding
volume hierarchy.

For suf?ciently ?ne tessellations (e.g. doWn to sub-pixel
accuracy, etc .), the actual micropolygon intersection test may
be replaced by using the intersection With the ?nest bounding
box instead. Since the bottom-level bounding volume hierar
chy is a complete tree, father and child indices may be com
puted from the node index.

Consequently, in one embodiment, the hierarchies may be
interpreted and stored as a skip list, Which may alloW one to
stream the tree through an array of rays using a SIMD or
SIMT architecture (eg with a GPU). While this approach
may be highly memory e?icient, it may not bene?t maximally
from early termination, because this Would require guaran
teed ordered traversal. The e?iciency of this approach may
depend on memory latency.

In another embodiment, a technique for ray tracing free
form surface patches may be implemented. In this case,
instead of storing vertices of micropolygons, a tWo-dimen
sional array of “micropatches” may be stored as Well. The
tessellation procedure then may correspond to subdividing
and displacing the patch in order to ?ll the array.

In one embodiment, the bounding volume hierarchy may
built in a standard fashion, hoWever, instead of intersecting

20

25

30

35

40

45

50

55

60

65

10
triangles of quadrilaterals, a high precision intersection may
be used to directly intersect a ray With the micro-patches of
the micro-patch grid.

For the case of BéZier surface patches, the micropatches
may be the control polygons resulting from subdivision by the
de Casteljau algorithm. This Would include triangularpatches
as Well, for example.
The principle of building a hierarchy implied by die con

nectivity of a subdivision process may also apply to different
surfaces, such as multiresolution surfaces or trimmed
NURBS. In these cases, such a hierarchy may be built in time
linear in the number of elements resulting from the subdivi
sion process.

Connectivity may also be speci?ed by the data layout of an
object. For example the triangles of a list of triangles may be
enumerated in such a Way, that a meaningful hierarchy of
bounding volumes is found by just pairing each tWo adjacent
triangles in the list and repeating the pairing process With the
pairs until only one bounding volume is left.

Physically-based rendering generally requires a lot of rays
to be traced. This number is typically too large to ?t the
required ray buffer into main memory. Also, at the beginning,
all of the rays may not be knoWn. Some effects (eg soft
shadoWs, ambient occlusion, re?ections, etc.) may require
several passes to be rendered.

In various embodiments, there may be several choices,
Which may balance betWeen depth complexity, re-tessellat
ing, and memory requirements. For example, in one embodi
ment, rays may be re-injected as possible after an early ter
mination event. As an option, this may be accomplished by
replacing the terminated ray by a neWly spaWned ray, instead
of removing it from the buffer. In most cases, this Will utilize
the ray buffer Well and use the (rayid, lea?d) buffer for neW
rays rather than to tackle depth complexity. This may be very
bene?cial in common algorithmic situations of scattering,
computing ambient occlusion, testing shadoW rays, etc.

In another embodiment, rays may be grouped by genera
tion. In yet another embodiment, the screen may be tiled. In
this Way, some locality may be exploited for ?rst generation
lens connection rays. In general, it is most e?icient to trace as
many rays as possible (i.e. ?t into main memory, etc.) at a
time.

It should be noted that the use of an (rayid, lea?d) array
alloWs for computing the ray associated With a rayid from this
number itself For common situations such as rays emerging
from one point (eg a pinhole camera, point light shadoWs,
ambient occlusion rays, etc.), this alloWs a user to completely
omit the simultaneous storage of the rays. In other Words, the
rays may be computed on demand.

Although the ray tracing architecture may be designed to
deliver precise visibility, approximate visibility may be
implemented to increase performance. In one embodiment,
this may be achieved by adaptively selecting the resolution
parameter m of the micropolygon array. It should be noted
that in another embodiment this technique may be applied to
create adaptive voxeliZations of the geometry.

In one embodiment, a level of detail (LOD) technique may
be used. In some cases, When using LOD, if tWo adjacent
patches are tessellated in a different LOD, there may be
cracks along the boundary of the patches. Additionally, in
some cases, a mechanism to identify the required LOD may
be needed. As an option, this may be accomplished using ray
differentials as a local approximation of the distance to the
neighboring ray cast from the pixel raster. Further, in some
cases, popping may occur, Where objects suddenly appear in
more detail, Which results in distracting, quick changes in
animations.

US 8,570,322 B2
11

In the cases Where cracking may potentially occur, crack
ing may be avoided by stitching the adjacent geometry
together. However, because tessellation is suf?ciently ?ne
such that the smallest boxes of the BVH can directly be used
as primitives, cracks do not appear, because by construction
neighboring bounding boxes at least seamlessly touch each
other. For example, if the adjacent box is larger, it Will span at
least the area of the tWo smaller boxes that may be included.
Ray differentials are an approximation of the distance to

neighboring rays hitting the same surface. Using the tech
niques described above, all rays may be traced at once. Thus,
there may not be a need for such an approximation, since the
information about the other rays is available.

In some cases, hoWever, it may be desirable to choose the
LOD before tessellating a patch. That is, it may need to be
decided for an LOD based on a patch bounding box and a
group of rays intersecting this patch. As an option, this may be
solved by assuming equal distribution of the ray directions
and origins. Consequently, tessellation may be accomplished
such that the number of resulting voxels is at least equal to the
number of rays intersecting this patch.

With respect to popping, popping may bene?t from the fact
that LOD is chosen to be sub-pixel accurate for lens connec
tion rays. In this Way, no popping of directly visible geometry
can take place. In some cases, hoWever, for secondary effects
as self-shadoWing of a patch, popping may still become vis
ible in form of a noticeable difference in shading. In one
embodiment, this may be alleviated by adding a-priori knoWl
edge of rays to be spaWned at the surface to the LOD decision.
Another Way to create soft shadoWs is to complement the
coarse levels With directional opacity information.

In order to ameliorate the self-intersection problem, the
offset 6 used to offset the ray origin of a ray leaving a surface
should be selected according to the actual level of detail m.
This may be achieved by choosing

Where d is the length of the longest side of the axis-aligned
bounding box of the tessellation in the micropolygon buffer.
The offset 6 such is not ?xed per ray, but may depend on the
currently processed object.

The micropolygon buffer object With its operations of trac
ing rays, building the implied bounding volume hierarchy,
bounding box computation, and tessellation lends itself to
hardWare acceleration because memory requirements are
constant and moderate, algorithms are suf?ciently compact,
and most parts can be executed in parallel.

In one embodiment, the implementation of the micropoly
gon buffer operations as an “FPGA personality” on the HC-l
series of supercomputers may be utiliZed as an ef?cient
approach to hardWare acceleration. Additionally, certain inte
ger arithmetic ray tracing techniques may be especially suited
for the micropolygon arrays. In this case, due to the spatial
proximity of the micropolygons, their numeric range may be
very limited. Consequently, reducing the precision to integers
does not pose a problem. This, in connection With the memory
capacities of modern FPGAs, alloWs a user to store the vertex
array and bounding volume hierarchy of the micropolygon
buffer on chip for interesting values of m.

If a coprocessor (eg an FPGA or GPU, etc.) cannot
directly access main memory, data may be transferred asyn
chronously in order to hide latencies. The ef?ciency depends
on the amount of data is being transferred. The minimum data

20

25

30

35

40

45

50

55

60

65

12
set includes the rays and the micropolygon vertex array to be
intersected and may assume that the implied bounding vol
ume hierarchy is built on chip.

Alternatively, the tessellation may be performed on the
co-processor also. This may require the surface patch data
along With the displacement data to be transferred. Along
these lines, all rays of a generation may be stored on the
coprocessor, reducing the ray data to be transferred to a set of
indices. In any case, ray distances need to be returned to the
main processor. In one embodiment, the Cell and Larrabee
processors may be utiliZed to implement the micropolygon
buffer operations.
The image rendering architecture and techniques

addressed above preserve the features of the Reyes architec
ture including the ability to separate sampling from shading.
Since the algorithm is entirely based on ray tracing,.effects
like such as re?ections, shadoWs, or even global illumination
may noW be ray traced. This removes the need to ?nd suitable
approximations and simpli?es Work?oW Without restricting
artistic freedom and expression.

Furthermore, the presented architecture may be vieWed as
a hybrid betWeen rasteriZation and ray tracing. In one
embodiment, the reordering of the computations may be
implemented in the context of a rasteriZer and may Work the
same Way for a rasteriZer. In this case, the leaves may be tested
for visibility via occlusion queries, the geometry may then be
instanced and rasteriZed.

FIG. 5 illustrates an exemplary system 500 in Which the
various architecture and/ or functionality of the various pre
vious embodiments may be implemented. As shoWn, a sys
tem 500 is provided including at least one host processor 501
Which is connected to a communication bus 502. The system
500 also includes a main memory 504. Control logic (soft
Ware) and data are stored in the main memory 504 Which may
take the form of random access memory (RAM).

The system 500 also includes a graphics processor 506 and
a display 508, i.e. a computer monitor. In one embodiment,
the graphics processor 506 may include a plurality of shader
modules, a rasteriZation module, etc. Each of the foregoing
modules may even be situated on a single semiconductor
platform to form a graphics processing unit (GPU). Similarly,
in one embodiment, the foregoing modules may be situated
on a semiconductor platform like an FPGA and/or other
recon?gurable device. As an option, these devices may be
in-socket devices.

In the present description, a single semiconductor platform
may refer to a sole unitary semiconductor-based integrated
circuit or chip. It should be noted that the term single semi
conductor platform may also refer to multi-chip modules With
increased connectivity Which simulate on-chip operation, and
make substantial improvements over utiliZing a conventional
central processing unit (CPU) and bus implementation. Of
course, the various modules may also be situated separately
or in various combinations of semiconductor platforms per
the desires of the user.
The system 500 may also include a secondary storage 510.

The secondary storage 510 includes, for example, a hard disk
drive and/ or a removable storage drive, representing a ?oppy
disk drive, a magnetic tape drive, a compact disk drive, etc.
The removable storage drive reads from and/or Writes to a
removable storage unit in a Well knoWn manner.

Computer programs, or computer control logic algorithms,
may be stored in the main memory 504 and/ or the secondary
storage 510. Such computer programs, When executed,
enable the system 500 to perform various functions. Memory
504, storage 510 and/or any other storage are possible
examples of computer-readable media.

US 8,570,322 B2
13

In one embodiment, the architecture and/or functionality
of the various previous ?gures may be implemented in the
context of the host processor 501, graphics processor 506, an
integrated circuit (not shoWn) that is capable of at least a
portion of the capabilities of both the host processor 501 and
the graphics processor 506, a chipset (i.e. a group of inte
grated circuits designed to Work and sold as a unit for per
forming related functions, etc.), and/or any other integrated
circuit for that matter.

Still yet, the architecture and/ or functionality of the various
previous ?gures may be implemented in the context of a
general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-speci?c system, and/ or any other desired system.
For example, the system 500 may take the form of a desktop
computer, lap-top computer, and/or any other type of logic.
Still yet, the system 500 may take the form of various other
devices including, but not limited to, a personal digital assis
tant (PDA) device, a mobile phone device, a television, etc.

Further, While not shoWn, the system 500 may be coupled
to a netWork [eg a telecommunications netWork, local area
netWork (LAN), Wireless netWork, Wide area netWork (WAN)
such as the lntemet, peer-to-peer netWork, cable netWork,
etc.] for communication purposes.

While various embodiments have been described above, it
should be understood that they have been presented by Way of
example only, and not limitation. Thus, the breadth and scope
of a preferred embodiment should not be limited by any of the
above-described exemplary embodiments, but should be
de?ned only in accordance With the folloWing claims and
their equivalents.
What is claimed is:
1. A method, comprising:
identifying a plurality of surface patches;
establishing a ?rst hierarchy by organiZing the surface

patches into an acceleration structure, such that each leaf
node of the ?rst hierarchy references a bounding box of
a different one of the surface patches;

tracing rays using the ?rst hierarchy to identify that at least
one of the bounding boxes of one of the surface patches
is potentially intersected by at least one of the rays;

for a predetermined number of the potential intersections
betWeen one of the rays and one of the bounding boxes
of one of the surface patches, storing in a single array a
tuple including a ray identi?er of the one of the rays and
a leaf identi?er associated With the one of the surface
patches in the one of the bounding boxes that are poten
tially intersected;

for each of the leaf identi?ers stored in the array:
determining a level of detail of a tWo-dimensional array

of vertices and micropolygons based on the bounding
box of the surface patch that is referenced by the leaf
identi?er and the rays identi?ed to potentially inter
sect the surface patch, such that a number of the
micropolygons is at least equal to a number of the rays
identi?ed to potentially intersect the surface patch
referenced by the leaf identi?er;

decomposing, on-demand, the surface patch referenced
by the leaf identi?er into the tWo-dimensional array of
vertices and micropolygons;

establishing a second hierarchy for the tWo-dimensional
array of vertices and micropolygons of the surface
patch referenced by the leaf identi?er, the second
hierarchy being determined by a connectivity of the
micropolygons in the tWo-dimensional array of verti
ces and micropolygons, in order to accelerate ray
tracing; and

20

25

30

35

40

45

50

55

60

65

14
intersecting, utiliZing the second hierarchy, the

micropolygons of the tWo dimensional array of verti
ces and micropolygons of the surface patch refer
enced by the leaf identi?er With all rays in the array
that are stored in one of the tuples of the array includ
ing the leaf identi?er.

2. The method of claim 1, Wherein self intersection is
ameliorated by offsetting rays depending on at least one of: at
least one of the potentially intersected surface patches; at least
one of the tWo-dimensional arrays of vertices and micropoly
gons; and at least one of the bounding boxes of one or more of
the tWo-dimensional arrays of vertices and micropolygons.

3. The method of claim 1, Wherein self intersection is
ameliorated by offsetting rays proportional to a longest side
of at least one of the surface patch bounding boxes divided by
2 to the poWer of the level of detail, Where Zero corresponds to
a coarsest level of detail.

4. The method of claim 1, Wherein an intersection of a ray
and one of the surface patch bounding boxes associated With
the tWo-dimensional array of vertices and micropolygons is
utiliZed as an approximate intersection of the ray and the
tWo-dimensional array of vertices and micropolygons
decomposed from the one of the surface patches.

5. The method of claim 1, Wherein each of the potentially
intersected surface patches is tessellated into one of the tWo
dimensional arrays of vertices and micropolygons from
Which the second hierarchy is capable of being built in time
linear in a number of micropolygons.

6. The method of claim 5, Wherein the tessellation yields
one of a triangular or quadrilateral mesh.

7. The method of claim 5, Wherein each of the potentially
intersected surface patches include one of a multiresolution
surface, a subdivision surface, or a parametric surface, Which
is capable of being trimmed and displaced.

8. The method of claim 7, Wherein motion is considered as
a temporal displacement.

9. The method of claim 5, Wherein, for each of the leaf
identi?ers stored in the array, a buffer is ?lled by tessellating
the surface patch referenced by the leaf identi?er into the
tWo-dimensional array of vertices and micropolygons.

10. The method of claim 9, Wherein the buffer ?lled by
tessellating the surface patch referenced by the leaf identi?er
represents 2’"><2’" of the micropolygons as the tWo-dimen
sional array of (2’"+l)><(2’" +1) of the vertices, Where m is a
resolution parameter of the tWo dimensional array.

11. The method of claim 1, Wherein objects are speci?ed
With motion over time.

12. The method of claim 11, Wherein the ?rst hierarchy and
each of the tWo-dimensional arrays of vertices and
micropolygons are generated adaptively With respect to their
motion and potentially for a given time.

13. The method of claim 11, further comprising simulating
motion blur.

14. The method of claim 13, Wherein interpolation is used
to compute all data at the given time to perform the ray
intersections.

15. The method of claim 13, Wherein segments of motion
are capable of being bounded by bounding volumes.

16. The method of claim 1, Wherein ray data is computed
from a ray identi?cation number.

17. The method of claim 1, Wherein a traversal of the ?rst
hierarchy includes considering multiple rays simultaneously
such that each of the surface patches is considered at most
once during the ray tracing.

US 8,570,322 B2
15

18. The method of claim 1, further comprising, for each of
a plurality of rays:

recording a prede?ned number of closest ones of the sur
face patches that are potentially intersected; and

sorting records of pairs of ray and surface patch identi?ca
tion resulting from the recording by surface patch iden
ti?cation.

19. The method of claim 18, Wherein at least one of a
prede?ned number of recorded pairs is increased When rays
are terminated or terminated rays are directly replaced by neW
rays.

20. The method of claim 19, Wherein a high precision
intersection is used to directly intersect a ray With micro
patches of a micro-patch grid.

21. The method of claim 19, Wherein the neW rays are
computed in dependence of the terminated rays and directly
are intersected With a currently decomposed tWo -dimensional
array of vertices and micropolygons.

22. The method of claim 1, Wherein the ray tracing is
performed in parallel.

23. The method of claim 1, Wherein, for each of the leaf
identi?ers stored in the array, decomposing the surface patch
referenced by the leaf identi?er into the tWo-dimensional
array of vertices and micropolygons includes generating the
tWo-dimensional array of vertices and micropolygons.

24. The method of claim 1, Wherein the connectivity of the
micropolygons is speci?ed by a data layout of the surface
patch referenced by the leaf identi?er, such that triangles of a
list of triangles are enumerated, and a hierarchy of bounding
volumes is determined by pairing each tWo adjacent triangles
of the list of triangles and repeating the pairing until only one
bounding volume remains.

25. The method of claim 1, further including sorting the
array based on the leaf identi?ers such that all rays that
potentially intersect a particular bounding box of a particular
one of the surface patches are located in one block at a
beginning of a buffer.

26. The method of claim 25, Wherein the ray identi?ers of
the sorted array are maintained in an original order for asso
ciating pixel positions and the rays.

27. The method of claim 1, Wherein the decomposing and
the intersection of at least tWo of the surface patches identi?ed
by at least tWo of the leaf identi?ers in the array are performed
in parallel by at least tWo threads.

28. The method of claim 27, Wherein each thread of the
parallel processing selects from the array a next leaf identi?er
as a task.

29. The method of claim 27, Wherein intersection results of
the at least tWo of the surface patches identi?ed by the at least
tWo of the leaf identi?ers in the array are synchronized by
Writing ray intersections to buffers for each thread, and sub
sequently synchronizing the intersection results.

30. A computer program product embodied on a non-tran
sitory computer readable medium, comprising:

computer code for identifying a plurality of surface
patches;

computer code for establishing a ?rst hierarchy by orga
nizing the surface patches into an acceleration structure,
such that each leaf node of the ?rst hierarchy references
a bounding box of a different one of the surface patches;

computer code for tracing rays using the ?rst hierarchy to
identify that at least one of the bounding boxes of one of
the surface patches is potentially intersected by at least
one of the rays;

computer code for, for a predetermined number of the
potential intersections betWeen one of the rays and one
of the bounding boxes of one of the surface patches,

5

20

25

30

35

40

45

50

55

60

65

16
storing in a single array a tuple including a ray identi?er
of the one of the rays and a leaf identi?er associated With
the one of the surface patches in the one of the bounding
boxes that are potentially intersected;

computer code for, for each of the leaf identi?ers stored in
the array:
determining a level of detail of a tWo-dimensional array

of vertices and micropolygons based on the bounding
box of the surface patch that is referenced by the leaf
identi?er and the rays identi?ed to potentially inter
sect the surface patch, such that a number of the
micropolygons is at least equal to a number of the rays
identi?ed to potentially intersect the surface patch
referenced by the leaf identi?er;

decomposing, on-demand, the surface patch referenced
by the leaf identi?er into the tWo-dimensional array of
vertices and micropolygons;

establishing a second hierarchy for the tWo-dimensional
array of vertices and micropolygons of the surface
patch referenced by the leaf identi?er, the second
hierarchy being determined by a connectivity of the
micropolygons in the tWo-dimensional array of verti
ces and micropolygons, in order to accelerate ray
tracing; and

intersecting, utilizing the second hierarchy, the
micropolygons of the tWo dimensional array of verti
ces and micropolygons of the surface patch refer
enced by the leaf identi?er With all rays in the array
that are stored in one of the tuples of the array includ
ing the leaf identi?er.

31. An apparatus, comprising:
one or more processors capable of:

identifying a plurality of surface patches;
establishing a ?rst hierarchy by organizing the surface

patches into an acceleration structure, such that each
leaf node of the ?rst hierarchy references a bounding
box of a different one of the surface patches;

tracing rays using the ?rst hierarchy to identify that at
least one of the bounding boxes of one of the surface
patches is potentially intersected by at least one of the
rays;

for a predetermined number of the potential intersec
tions betWeen one of the rays and one of the bounding
boxes of one of the surface patches, storing in a single
array a tuple including a ray identi?er of the one of the
rays and a leaf identi?er associated With the one of the
surface patches in the one of the bounding boxes that
are potentially intersected;

for each of the leaf identi?ers stored in the array:
determining a level of detail of a tWo-dimensional

array of vertices and micropolygons based on the
bounding box of the surface patch that is referenced
by the leaf identi?er and the rays identi?ed to
potentially intersect the surface patch, such that a
number of the micropolygons is at least equal to a
number of the rays identi?ed to potentially inter
sect the surface patch referenced by the leaf iden
ti?er;

decomposing, on-demand, the surface patch refer
enced by the leaf identi?er into the tWo-dimen
sional array of vertices and micropolygons;

establishing a second hierarchy for the tWo-dimen
sional array of vertices and micropolygons of the
surface patch referenced by the leaf identi?er, the
second hierarchy being determined by a connectiv
ity of the micropolygons in the tWo-dimensional

US 8,570,322 B2
17 18

array of Vertices and micropolygons, in order to
accelerate ray tracing; and

intersecting, utilizing the second hierarchy, the
micropolygons 0f the two dimensional array of
Vertices and micropolygons 0f the surface patch 5
referenced by the leaf identi?er With all rays in the
array that are stored in one of the tuples 0f the array
including the leaf identi?er.

* * * * *

