
Copyright © 2012 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
DigiPro 2012, Los Angeles, CA, August 4, 2012.
© 2012 ACM 978-1-4503-1649-1/12/0008 $15.00

Camera Space Volumetric Shadows

Johannes Hanika∗, Peter Hillman, Martin Hill and Luca Fascione
Weta Digital Ltd

c©2012 Twentieth Century Fox Film Corporation. All rights Reserved.

Figure 1: Render of many hundreds of horses in the desert, with dust and volumetric shadows.

Abstract
We transform irregularly sampled shadow map data to deep image
buffers in camera space, which are then used to create volumetric
shadows in a deep compositing workflow. Our technique poses no
restrictions on the sample locations of the shadow map and can thus
be used with a variety of adaptive approaches to produce more pre-
cise shadows closer to the camera. To construct watertight shafts
towards the light source forming crepuscular rays, we use a two-
dimensional quad tree in light space. This structure is constructed
from the shadow samples independent of the camera position, mak-
ing stereo renders and camera animations for static light sources
and geometry more efficient. The actual integration of volumetric
light transport is then left to a fast image space deep compositing
workflow, enabling short turnaround times for cinematic lighting
design. We show a simple scalable ray tracing kernel to convert the
quad tree representation to a deep image for each camera, where
ray tracing takes only 25% of the processing time.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing;

Keywords: Deep Compositing, Volumetric Shadows, Ray Tracing

∗e-mail:jhanika@wetafx.co.nz

1 Introduction
Deep Compositing is an emerging technique in motion picture vi-
sual effects. The process relies on rendering deep images, in which
each pixel stores an arbitrarily long list of depth-sorted samples.
Elements rendered into separate deep images can be combined ac-
curately to produce a single composited image of the entire scene,
even if the images are interleaved in depth. This allows for great
flexibility, since only elements which have changed need to be re-
rendered, and the scene can be divided into elements without need-
ing to consider how they will be combined. By comparison, in
traditional compositing with regular images the scene must be di-
vided into elements in such a way that they can be recombined with-
out edge artefacts or depth order violations. Volumetric deep im-
age pixels represent a volume as piecewise constant optical density
and color as a function of depth. Volumetric renders of participat-
ing media are generally computationally intensive, so the ability to
compute them independently and composite them correctly into the
scene is highly advantageous.
Where one element casts a shadow on another, the flexibility of
deep compositing has previously been reduced significantly, since
the shadowed element will need to be re-rendered every time the
shadowing element moves to ensure the shadow cast on it is correct.
In this paper, we propose a technique for computing volumetric
shadowing data independently of the shadowed objects, and for ap-
plying this shadow data to a rendered element at composite time.
This means that when a shadowing element moves, shadowed el-
ements do not need to be re-rendered: they are rendered without
any shadows from other elements, and the shadows are applied at
composite-time. Our technique stores shadow maps computed from
the point of view of the camera, rather than the light. This is an
overall gain, since it allows the shadowmap to be applied to a deep
image at interactive speed, and shadows tend to be applied far more
frequently than they are recomputed.
A significant application of our technique is in the application of

7

Shadow Computation

Camera-space deep
shadow map

Beauty Renders

Interactive
volume creationShadow tweaks

3D Rendering

Compositing

Composite
Pre-volume

Apply shadow
Phase Function
Shading volume

Volume
Augmentation

Unshadowed
volume render

Combine
deep images

Figure 2: The context of our technique. We use input from 3D rendering, namely a shadow point cloud, and transform it to camera space in
form of a deep image. This allows for a very flexible compositing workflow, avoiding costly re-rendering of the 3D volume (Images c© 2012
Weta Digital Ltd. All rights reserved).

crepuscular rays to participating media renders such as dust or fog
renders. Elements within the volume will cast shadows through it,
creating distinctive “god rays” in the media. With our technique,
the rays are computed independently to the volumetric render. For
example, the dust cloud of Figure 1 doesn’t need to be re-rendered
if the horse animation changes, only the horse render and its shad-
owmap does. As full volumetric renders can have extremely high
computational cost, the shot turnaround time is greatly reduced.
For many participating media renders such as atmospheric mist,
the volume itself is uniform, low density. The only ‘interesting’
part of the render is the shadows cast through it by other objects.
With our technique, there is no need for a computationally inten-
sive 3D render, since the volume can be created at composite time
and adjusted interactively. In a similar fashion volume renders re-
sulting from high resolution simulations, can have their density aug-
mented within the composite in a spatially varying way. This allows
for cheap fine tuning of expensive renders, where previously a re-
render would be required.
The context visualized in a diagram can be seen in Figure 2. The
core of our technique sits between rendering and compositing and
converts world space shadow information to camera space by em-
ploying a light space acceleration structure. In the following, we
briefly discuss deep images and deep compositing and review light-
space shadow buffers. We then describe our algorithm for convert-
ing light-space shadow buffers. Finally, we explain the process for
applying shadow maps to deep images at composite-time.

2 Background
Deep Images Deep shadow maps were introduced just over a
decade ago, to improve the appearance of shadows cast from ob-
jects exhibiting various kinds of non-refractive transparency such
as hair or smoke with very reduced aliasing [Lokovic and Veach
2000]. This technique has since been adapted for use in composit-
ing [Hillman et al. 2010]. Deep images store a per-pixel list of
samples. Each sample has a depth and a number of color channels,
usually RGBA. Every sample in the image has the same number
of channels. To represent volumes, the sample has an additional
ZBack channel, allowing the front and back depth of the sample to
be represented. The color and optical density of such a sample is as-
sumed to be constant throughout each sample. Where a volume has
changes in color and/or optical density, more samples are required
per-pixel to represent the density.
To convert a deep image to a regular image, the samples are sorted
into depth order and composited from back to front using the over
compositing operator. To combine two deep pixels from multiple
images, the sample lists are simply appended together. Multiple
images can be combined in any order, since the sorting operation
will guarantee the same result. (This order-independence to com-
positing is perhaps the most desirable advantage of deep images,
since they can often be combined automatically with no regard for
the contents of the individual elements). In the case of volumetric
samples, overlaps are possible. In this case, the volumetric sample
must be sub-divided into subsamples which do not overlap using
the Beer Lambert equation.
Deep images can be stored efficiently using the OpenEXR-2.0

8

x

z

x

z

x

z

x

z

Figure 3: The image (left) shows the geometry transformed into perspective light space (x, y, z) with z coming from the light. The dots
visualize the location of the shadow samples, occluded ones (black) are omitted (second image from left). We construct hole-free shafts
towards the light by building a quad tree in (x, y) direction. The tree is visualized with the line segments at the bottom, leaves are shown in
gray in the third image. In the z direction, each quad tree cell stores an interval. Ray tracing this structure is effectively intersecting a ray
with the red surface covering the objects (right image), which allows us to find the shadow volume. The green ray segment represents the data
stored in the deep image buffer.

deepscanline or deeptiled types [Kainz and Bogart 2009] which
supports arbitrary channel names and permits separate storage of
multiple subimages within the same file for 3D Stereo productions.
Compositing packages such as The Foundry’s Nuke can read, pro-
cess and write deep images, and also offer the ability to generate
deep images interactively, for example the ability to turn a fractal
noise field into a volumetric deep image.

Shadows A good overview of recent shadowing techniques in
the real-time context can be found in [Eisemann et al. 2011].
A substantial amount of work has been done to improve the arte-
facts seen in some cases by classic shadow maps [Williams 1978],
most of this work lending itself to a characterization in which the
methods are essentially novel ways of arranging shadow samples
in a buffer. For example, perspective shadow maps [Stamminger
and Drettakis 2002] pull the samples together towards the camera
by distorting the map, and parallel-split shadow maps [Zhang et al.
2006] or cascaded shadow maps [Dimitrov 2007] achieve a simi-
lar result employing multiple maps at different scales, and adaptive
shadow maps [Fernando et al. 2001] use hierarchical grids for the
same reason.
The restrictions on sample locations inside one map are further
loosened by sample distribution shadow maps [Lauritzen et al.
2011], the irregular z-buffer [Johnson et al. 2005] and imperfect
shadow maps [Ritschel et al. 2008].
Multilayer transparent shadow maps [Xie et al. 2007] use a trans-
formation of rays into shadow map space to approximate ray tracing
for soft shadows. We, on the other hand, are looking for a fast vol-
ume compositing workflow. Also we do not introduce any more
approximation over the input, which is a precomputed shadow rep-
resentation already.
Finally, alias free shadow maps [Aila and Laine 2004] use a data
structure that is probably most closely related to our approach:
They use a light-space 2D BSP-tree to perform adaptive rasteriza-
tion of the shadow map at exactly the shadow ray’s sample position.
While we use a similar data structure, we perform ray tracing from
the eye on it, in order to obtain shadow volumes in the form of deep
data buffers to be used for rendering of participating media.
The most accurate method to compute shadows is ray tracing [Whit-
ted 1980] and has received a vast amount of research over the last
thirty years (see e.g. [Havran 2000] for a thourough overview of
the subject). We build on the extensive experience of the ray trac-
ing community to implement a very small and simple specialized
ray tracing core for almost two-dimensional quad trees.

Volumetric Rendering The technique proposed by Engelhardt
and Dachsbacher [Engelhardt and Dachsbacher 2010] uses epipolar
rectification of camera and light source and achieve real-time per-
formance via sub-sampling. While very reasonable in the context
of real-time renders, it was our finding that this method introduces

too much blur for the quality targets of cinematic offline renders.
It has been shown that it is possible to even get away with only a
one-dimensional min-max mipmap [Baran et al. 2010; Chen et al.
2011]. This approach not only rectifies lines to the light, but also
camera rays to gain even more performance. Unfortunately these
techniques can suffer from numerical stability issues when the light
source is inside the camera’s viewing frustum and need to fall back
to different approaches for such configurations.
Our scheme is slightly more general, as it is two-dimensional and
thus gives us more freedom with respect to shadow sample posi-
tions and viewing rays. In particular, it works on the output of
completely arbitrarily sampled shadow buffers, including classic,
perspective and cascaded shadow maps, as well as ray traced point
clouds. Another benefit is that the transformation we propose is in-
dependent of the camera, so that our data structure can be reused
for both the left and right eye in stereoscopic renders of animation,
or even entire frame sequences for static scene configurations.
The only assumption on the light position is that there is a mini-
mum distance between interesting parts of the scene (geometry and
camera rays) and the light source (see Section 4 for details). This is
similar in spirit to the role of the near clipping plane.

3 Algorithm
We start with a high level overview of our proposed technique
and follow with implementation details in Section 4. A schematic
overview of the process can be found in Figure 3.

Camera-Space shadow maps Our shadow maps are rendered
from the point of view of the camera. Each pixel stores every
shadow intersection of the corresponding ray. Each shadow sam-
ple stores its front and back depth, as well as the shadow density,
where 0 implies no shadowing and 1 implies full attenuation. Since
each ray may pass through multiple shadows, there will be an arbi-
trary number of shadow samples per pixel. The shadow maps are
therefore stored as deep images. Note that, in contrast with many
other shadow formats, the shadow density is not cumulative along
the ray; rather, the density of each shadow is stored independently.

Overview The input is any kind of shadow buffer. In an effort to
keep the discussion most general, we assume the data is in the form
of a 3D point cloud with shadow information, that is we assume
each point in the cloud has data about it being in shadow or light.
Classic shadow maps will work as well, and would actually enable
a few performance enhancements during quad tree construction.
In order to produce shadow volumes, we need to connect the sil-
houettes of the shadow casting objects to their respective shadows.
To achieve this, we create a connected surface by inserting the sam-
ple points in light space (x, y) into a two-dimensional quad-tree,
obtaining a closed surface.
We use a quad tree builder as opposed to a meshing algorithm be-

9

Figure 4: To compute the shadow volume between the object and its shadow (left), we create a set of shadow samples on the geometry and
build a min-max quad-tree on this set to fill holes (center). We can do that once per frame and use it for both cameras in a stereoscopic
pair, since the transform only depends on the location of the samples. The quad tree cell outlined in the right picture will be classified as
unoccluded so that the shadow volume will not stick out of the object.

cause it is faster to build and traverse. It is unclear that meshing
would result in better silhouette edges. The cells of the quad tree
live in light (x, y) space, which is mostly smoothed out by integra-
tion over the volume scattering terms as observed from the point of
view of the scene camera. The characteristic sharp lines at god ray
or volumetric shadow boundaries live in the light’s z-dimension.
Unlike [Aila and Laine 2004], we use a quad tree instead of a BSP-
tree to form regular-sized cells, which reduces artefacts in case of
low sampling densities.
Each camera ray is transformed to the same perspective light space
as the shadow samples, and then intersected with the quad tree in
two dimensions, nodes closer to the ray origin being traversed first.
The output depends on strict ordering of the samples, which is also
the reason why we don’t use an object partitioning scheme such
as a bounding volume hierarchy, which would necessitate an extra
reordering step.
Whenever a ray dives below the height field and then finds its way
back to a point in light (that is we have found a ray segment like
the one highlighted in green in Figure 3, right), we record a deep
sample constituted by the enter and exit positions of the ray in the
volume of the shadow.
Once a deep buffer is constructed, the shadows are applied dur-
ing compositing by a simple multiplication operator. Various look
tweaks are possible at this stage, such as reducing the density of the
shadow or modifying its effective colour. The shadow operator can
easily be implemented so that it runs at interactive speeds.
Further, in the case of a dust cloud or light fog, the volumetric el-
ement can be created interactively in the compositing package, so
that no 3D volume rendering is necessary at all (for example, we
have implemented a plugin for The Foundry’s Nuke product that
permits colour and density variations and the application of a height
map to sculpt volumetric deep images).

4 Implementation
Data preparation First we transform the input data into coordi-
nates in the perspective space of the light source, similar to what
would be stored into an ordinary shadow buffer (x and y in a plane
orthogonal to the principal direction of the light and z normal to
that). Also we discard all points in shadow and obtain a point set
that defines a distance field on the light plane. This field can be
thought of as a height map on an arbitrarily oriented plane, against
which we want to trace camera rays.
If irregular (3D or 2D) sample points are used as input, they need
to be transformed with the perspective shadow map transform (as
mentioned in Section 3) in order to map z ∈ [1,∞) to a normalized
range [0, 1). This means that we have to clamp points with z < 1 to
z = 1, in an operation akin to implementing a near clipping plane,

imposing a minimum world-space distance (such as 1 cm or maybe
0.1 world units) between the occluders and the light source.
The full perspective transform takes place in this step, in particular
z is transformed along with x and y, and crucially can’t just be the
distance to the light source (as is often done for shadow maps to
increase precision). This is because the ray tracing that happens
in the final step assumes that rays in the mapped space are straight
lines, whereas leaving z unchanged would map camera rays into
arcs of hyperbolae.

Quad tree construction Given a set of points (x, y, z) in per-
spective light space, we construct a quad tree on the (x, y) dimen-
sions. The tree is represented as a node array of structs containing
a child pointer children and height bounds zmin, zmax.
The array is laid out so that all children of an internal node are con-
secutive and in a canonical order, so the node field children only
needs to index into the node array pointing to the first of the chil-
dren. The other two fields zmin and zmax are the bounds of the
node contents in z. Due to the size of the scenes our implementation
works on, we need double precision in the input data to help with
temporal aliasing of the shadow samples from frame to frame, but
even for smaller scenes using double precision helps substantially
to reduce banding artefacts.
Tree construction is done by recursively sorting the input point ar-
ray so that the partitions for each child quad are contiguous. For
maximum accuracy, this continues until only one sample is left in a
node, or the bounding box of the quad cannot be split in two any-
more due to numerical limits.
As we keep track of zmin and zmax, we don’t need the input
points in the tree after the construction is completed. As a side
effect of this construction scheme, all quad tree cells are filled with
a valid bound, and we end up with a watertight height field (as il-
lustrated in Figure 4).

Quad tree ray tracing Once the quad tree is constructed, tracing
camera rays through it proceeds as follows: first the rays are trans-
formed in a similar manner to how the input points have been. The
transformed rays are then intersected against the two-dimensional
bounding boxes of the quad tree nodes, which we construct on the
fly during traversal. We also keep track of the minimum and max-
imum ray height zmin and zmax while traversing, so that we can
prune the quad tree by comparing the node’s z-interval with the
ray’s z-interval.
When the ray dives below the height field surface and then finds
its way back above it, into the side of the light source, we record
a deep sample, storing the ray distance to the previous occlusion
event tfront, and the ray distance tback where the ray got out of the
shadow volume again together with the maximum distance towards

10

state = in light
push root node to stack
while (1)
{
compute zmin and zmax ray height in [tmin, tmax)
if (leaf)
{
if (node zmax < ray zmin) // ray below node

if(state == in light)
remember transition to shadow,
state = in shadow

else if (node zmin > ray zmax) // ray above node
if(state == in shadow)
record deep sample, state = in light

else if (state == in shadow) // ray through node
record deep sample, state = in light

if (stack)
pop stack

else
check if there is a last sample to record
return

}
else
{
children = sort node.children in reverse ray dir
foreach child in children
{

if (state == in shadow && // in shadow already
node zmax < ray zmin) // and ray below node
prune child

else if (state == in light && // in light already
node zmin > ray zmax) // and ray above
prune child

else if (ray overlap child in x,y)
push child

}
pop stack

}
}

Figure 5: Pseudo code for the quad tree traversal. (x, y, z) has
positive z pointing away from the light into the scene.

the light between a shadow casting object and a point on the ray
segment [tfront, tback). This last bit of information is used during
compositing to infer a rough estimate of in-scattering from multiple
bounces.
In more detail, the algorithm proceeds as in the pseudo-code pre-
sented in Figure 5, where the traversal stack holds an index to the
current node, its bounding box in two dimensions (created on the fly
by recursively splitting the scene bounding box), and the currently
valid ray segment [tmin, tmax).
We initialize the ray state as in light, so that a shadowed camera
will create a deep sample to enter the shadow volume right away.
This is necessary for correct compositing.
A certain amount of care is needed in determining when to record
an entry and exit point into the shadow volume [tfront, tback),
to avoid artefacts at object boundaries. The third branch in the
leaf handling code, where a ray pierces right through a leaf node,
slightly biases the ray towards preferring to be in light rather than
in shadow. This has two implications: Firstly it avoids switching
back and forth when passing a surface close to grazing angle. Sec-
ondly objects are most often modelled as closed meshes so that the
shadow volumes should not stick out of the light side of it. Our bi-
asing ensures that the start of the volume will be inside the object,
resulting in a clean transition on the shadow side (see Figure 4,
right, for an example configuration).

Applying shadow volumes Shadow volumes are applied to
deep images at composite time. Since both images are camera

read input 20.89 s
construct quad tree 4.19 s
ray trace 15.93 s

(1.88Minters/s/core)
write output 40.24 s
total 81.25 s

Table 1: Timing breakdown for the scene in Figure 6, with a screen
resolution of 2048×1152, supersampled with a 3×3 pattern. For
more discussion about the ray tracing performance, see the last
paragraph in Section 5. The overall run time is I/O-bound (the
output here was 400MB, but these files can exceed 3GB). Timings
were done on a dual quad-core Intel E5620 at 2.4GHz.

aligned, processing is pixel aligned. That is, to process pixel ij
of the deep image, only pixel ij of the shadow map is required. Im-
age samples which are entirely within a shadow sample are simply
multiplied by the optical inverse of the shadow value. In the case
that an image sample overlaps a deep sample (i.e. is partly inside
a shadow sample and partly outside it) the sample must be split
into two samples at the edge of the shadow sample, and each part
attenuated accordingly.
The shadow map can be adjusted to apply artistic tweaks before
application, for example selectively softening it, or adjusting its
colour.

5 Results
The results of employing our technique can be seen in Figures 1
and 6, for a medium-sized scene. It does not contain hero char-
acters and all small plants have been removed from Figure 6 for
clarity of the illustration. There are 3.2 million irregularly spaced
input shadow samples. These are obtained from a point cloud pro-
cessed with PantaRay [Pantaleoni et al. 2010] to result in more pre-
cision than a shadow map. We process this example for one camera
front to end in just over 80 seconds, a detailed timing breakdown
can be found in Table 1. We compute just under 2 million deep
intersections per second and per core in this example. Some care
should be taken in comparing this figure to state-of-the art ray trac-
ing cores [Aila and Laine 2009; Ernst and Woop 2011]. An accurate
comparison will take into account that our figure includes transfor-
mation to and from perspective light space, that we use double pre-
cision for all computation and most importantly that our ray cast
operation collects and returns all intersections along a ray, not only
the first one.
The design of our proposed algorithm is quite robust with respect
to increases in depth complexity d of a geometry-camera configura-
tion (it is not uncommon for a scene to have an average d between
10 and 30). Switching on the ground cover (grass and small plants)
in the scenes of Figures 1 and 6 raises the number of intersections
per second per core from 1.88M to 2.2M as an effect arising from
the increased average depth complexity. This effect is most pro-
nounced when the camera is closer to the ground, as one would
imagine.

6 Limitations and Extensions
If irregular shadow samples are used, our technique needs a back-
ground plane to be present, to be able to distinguish between holes
between samples that should be filled by the quad tree, and holes
that are due to geometric features (see Figure 6, top right). It is in-
deed rather easy to insert these automatically when needed and this
is part of our setup.
Motion blur and soft area light shadows are not reflected in our
shadow volumes. While both can be re-introduced by clever deep
blur techniques exploiting more detailed annotations in the deep
samples (such as the distance to the closest occluder and its motion

11

vector), these were not wanted by the compositing artists for this
show. Here, god rays should be sharp and crisp in the final image.
We are introducing this, however, for more recent productions.
While the output deep shadow map can easily support transparent
objects, the input as described here does not. To extend the method
to support this, some sort of depth peeling from the light source
can be applied, and the proposed transformation can be performed
several times.
Very large scenes (bigger than system RAM) could be facilitated by
a bucketing step before tree building [Pantaleoni et al. 2010], and
forcing an adaptive early construction termination, to make the final
tree fit in memory again.

7 Conclusion
We described a simple ray tracing technique which is useful to cre-
ate deep shadow volumes for stereoscopic camera setups for large
input scenes. It works with irregular shadow samples and thus of-
fers very fine control over the local resolution of the results. The
ray tracing stage is negligibly fast compared to the final rendering
and delivers a marked increase in artistic freedom during the com-
positing stage for cinematic lighting design.
The implementation is only a few hundred lines of code and can
reuse the acceleration structure for multiple cameras. The two-
dimensional height field formulation allows practically every con-
stellation of light and camera, the only restriction being a minimum
distance between the light and the first shadow caster, similar to a
near clipping plane.

Acknowledgments
We thank Joe Letteri and Sebastian Sylwan for supporting our
work within Weta Digital Ltd and to Julian Bryant for suggesting
composite-time deep shadows. We are also grateful to Twentieth
Century Fox Film Corporation for allowing us the use of imagery
from the movie Abraham Lincoln: Vampire Hunter. Teaser image
courtesy of Weta Digital Ltd c© 2012 Twentieth Century Fox Film
Corporation. All rights reserved.

References
AILA, T., AND LAINE, S. 2004. Alias-free shadow maps. In Proc.

Eurographics Symposium on Rendering 2004, 161–166.
AILA, T., AND LAINE, S. 2009. Understanding the efficiency

of ray traversal on gpus. In Proc. High-Performance Graphics
2009, 145–149.

BARAN, I., CHEN, J., RAGAN-KELLEY, J., DURAND, F., AND
LEHTINEN, J. 2010. A hierarchical volumetric shadow al-
gorithm for single scattering. In ACM SIGGRAPH Asia 2010,
178:1–178:10.

CHEN, J., BARAN, I., DURAND, F., AND JAROSZ, W. 2011. Real-
time volumetric shadows using 1d min-max mipmaps. In Pro-
ceedings of the 2011 ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games, I3D 2011.

DIMITROV, R., 2007. Cascaded shadow maps. http:
//developer.download.nvidia.com/SDK/10.
5/opengl/src/cascaded_shadow_maps/doc/
cascaded_shadow_maps.pdf.

EISEMANN, E., SCHWARZ, M., ASSARSSON, U., AND WIMMER,
M. 2011. Real-Time Shadows. A.K. Peters.

ENGELHARDT, T., AND DACHSBACHER, C. 2010. Epipolar sam-
pling for shadows and crepuscular rays in participating media
with single scattering. In Proceedings of the 2010 ACM SIG-
GRAPH symposium on Interactive 3D Graphics and Games, I3D
’10, 119–125.

ERNST, M., AND WOOP, S., 2011. Embree. http:

//software.intel.com/en-us/articles/
embree-photo-realistic-ray-tracing-kernels/.

FERNANDO, R., FERNANDEZ, S., BALA, K., AND GREENBERG,
D. P. 2001. Adaptive shadow maps. In Proceedings of the
28th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’01, 387–390.

HAVRAN, V. 2000. Heuristic Ray Shooting Algorithms. Ph.d. the-
sis, Department of Computer Science and Engineering, Faculty
of Electrical Engineering, Czech Technical University in Prague.

HILLMAN, P., WINQUIST, E., AND WELFORD, M., 2010. Com-
positing ”Avatar”. SIGGRAPH 2010 Talks.

JOHNSON, G. S., LEE, J., BURNS, C. A., AND MARK, W. R.
2005. The irregular z-buffer: Hardware acceleration for irregular
data structures. ACM Trans. Graph. 24, 4, 1462–1482.

KAINZ, F., AND BOGART, R., 2009. A technical in-
troduction to openexr. http://www.openexr.com/
TechnicalIntroduction.pdf.

LAURITZEN, A., SALVI, M., AND LEFOHN, A. 2011. Sample dis-
tribution shadow maps. In Symposium on Interactive 3D Graph-
ics and Games, I3D ’11, 97–102.

LOKOVIC, T., AND VEACH, E. 2000. Deep shadow maps. In Pro-
ceedings of the 27th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’00, 385–392.

PANTALEONI, J., FASCIONE, L., HILL, M., AND AILA, T. 2010.
Pantaray: fast ray-traced occlusion caching of massive scenes.
ACM Transactions on Graphics (Proc. SIGGRAPH 2010) 29
(July), 37:1–37:10.

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P.,
DACHSBACHER, C., AND KAUTZ, J. 2008. Imperfect shadow
maps for efficient computation of indirect illumination. In ACM
SIGGRAPH Asia 2008, SIGGRAPH Asia ’08, 129:1–129:8.

STAMMINGER, M., AND DRETTAKIS, G. 2002. Perspective
shadow maps. In Proceedings of ACM SIGGRAPH, Annual Con-
ference Series, 557 – 562.

WHITTED, T. 1980. An improved illumination model for shaded
display. Commun. ACM 23, 6, 343–349.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
In Proceedings of the 5th annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH ’78, 270–274.

XIE, F., TABELLION, E., AND PEARCE, A. 2007. Soft shadows
by ray tracing multilayer transparent shadow maps. In Proc. Eu-
rographics Symposium on Rendering 2007.

ZHANG, F., SUN, H., XU, L., AND LUN, L. K. 2006. Parallel-
split shadow maps for large-scale virtual environments. In Pro-
ceedings of the 2006 ACM international conference on Virtual
reality continuum and its applications, VRCIA ’06, 311–318.

12

http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/
http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/
http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/
http://www.openexr.com/TechnicalIntroduction.pdf
http://www.openexr.com/TechnicalIntroduction.pdf

c©2012 Weta Digital Ltd. All rights Reserved.

Figure 6: Top row: visualization of the volume without and with shadows. Middle left: visualization of the input shadow samples (blue)
and the resulting deep samples (yellow), as seen from the corresponding camera. The deep samples line up with the pixels, so the shadow
volumes can’t be seen. If we move the visualization camera (right) they become visible. Bottom row: the same but with shadows visualized,
to illustrate how they line up with the shadow volumes. For clarity, all smaller scale plants and grass have been removed.

13

14

