
Spectral Light Transport Simulation using

a Precision-based Ray Tracing Architecture

vorgelegt von

Johannes Hanika

Geb. in Waiblingen

Institut für Medieninformatik

Falkultät für Ingenieurwissenschaften und Informatik

Universität Ulm

2010

Dissertation zur Erlangung des Doktorgrades Dr. rer. nat.

der Falkultät für Ingenieurwissenschaften und Informatik der Universität Ulm

Amtierender Dekan: Prof. Dr. Klaus Dietmayer

Gutachter: Dr. Alexander Keller

Gutachter: Prof. Dr. Hendrik P. A. Lensch

Gutachter: Prof. Dr. Jan Kautz

Tag der Promotion: 27.01.2011

3

Abstract

Rendering is one of the main areas of computer graphics. It is the process of
creating realistic images from 3d scene descriptions and reflectance data by
solving the global illumination problem e.g. by taking into account all light paths
connecting the light sources and the sensors and summing up their contributions.
Fields of applications include scientific visualization and simulation, fast rendering
of vast datasets for visual effects in movie production, or product design. These
all have their particular, high demands on a rendering system with a wide variety
of input.

This thesis explores how rendering can be made more robust for these require-
ments. In particular, it is investigated how the calculation of intersections between
light and geometry can be made numerically robust, to guarantee that no inter-
sections are missed due to inaccuracies. Additionally, a novel way to efficiently
handle very large input data is investigated. This method is based on reordering
ray buffers and makes it possible to ray trace complex input data consisting of bil-
lions of micro-polygons. It is demonstrated that expensive creation of procedural
geometry, out-of-core techniques, and large shading data can be used with this
approach. On top of this, a color managed, bispectral light transport framework is
presented, which can handle fluorescent materials. Examples of spectrally and
bispectrally acquired data sets are shown. With these contributions, a rendering
system can be created which can precisely simulate physically-based spectral
light transport and robustly handle very complex geometry and materials.

5

“Ja eine Frage noch, habt ihr noch was auf Lager, wollt
ihr noch jemanden grüßen oder wie? Äah, wir grüßen ..
keinen. Viel spaß damit.”

Die Fantastischen Vier, Jetzt geht’s ab.

Acknowledgements

First, I would like to thank the mental images GmbH for support and funding of
this research. Furthermore, this work has been partially funded by the DFG Emmy
Noether fellowship (Le 1341/1-1).

Special thanks go to my supervisor Alex Keller, for precise, mathematical guid-
ance with a clear view on every detail throughout my academic life, even after he
left University. He helped make this thesis a lot clearer in presentation and more
correct in content. His almost fanatical enthusiasm about rendering algorithms
can really be a driving force!

I’m also glad to thank Hendrik P. A. Lensch to lead me through the second half of
my thesis, who gave me the opportunity to see computer graphics once again from
an all different angle and introduced me to the computational photography part
of the graphics community. This gave me insights into another set of interesting
problems and into the ways people work. Also his ability to keep the big picture in
mind, as well as his sensible, humane guidance made work enjoyable.

I also want to express my gratitude to Jan Kautz, who agreed to take the role of
the external reviewer on such short notice.

In addition, I wish to thank Holger Dammertz for countless productive discus-
sions, and a fun working environment (including rock climbing, sailing, ...).

Further thanks go to Matthias Raab for a lot of help with the mathematical part
of the BRDF chapter, to Matthias Hullin for measuring the bispectral BRDF which
we also used to test large shader data in the Rayes part. Thanks also to Daniel
Seibert, who took the reference pictures of the spectrally measured BRDF, and to
X-Rite for providing the samples.

The fluorescence simulation profited much from great cooperation with Marius
Peters and the measurement equipment at the Fraunhofer institute for solar
energy systems in Freiburg. In this context Marion Bendig’s work on her master’s
thesis was also very helpful.

I’m happy that some people took the time for proof reading this thesis, namely
Holger Dammertz, Leonhard Grünschloß , Sehera Nawaz, and Matthias Raab.

Another necessary mention is the irt/hpg crowd which made the last year of
conferences very enjoyable, as well as Chris Fox and Niko Bellić, who made our
office a better place, along with my fellow nerds on #darktable, who provided a
worthwhile distraction.

7

Contents

1 Introduction 11
1.1 Summary of Contributions . 12
1.2 Structure of this Thesis . 14

2 Spectral Light Transport Simulation 17
2.1 Colorimetry . 18
2.2 The Spectral Global Illumination Problem 21
2.3 The Monte Carlo Method . 22
2.4 Path Tracing . 26
2.5 Implementation of a Spectral Rendering System 31
2.6 Conclusion . 33

3 Reflectance Models 35
3.1 Multi-Layer Material Models . 35

3.1.1 A Multi-Layer Material for Car Paints 37
3.1.2 Simulating Scattering . 38
3.1.3 Probability Density Transformation 39

3.2 BRDF Lobes as Automorphisms on the Unit Disk 40
3.2.1 Photon Map Importance Sampling 42

3.3 BRDF Parameters from Sparse Data 44
3.3.1 Sparse Data Acquisition . 44
3.3.2 Metropolis Fitting . 45

3.4 Results . 47
3.5 Conclusion . 48

4 Simulating Fluorescence 57
4.1 Direct Simulation . 59

4.1.1 Model . 62
4.1.2 Verification by Experiments 62
4.1.3 Rendering . 64

4.2 Fluorescent Surface Radiance Transfer 65
4.2.1 Bispectral Rendering Equation 66
4.2.2 Measurement Setup . 67
4.2.3 PCA-based Acquisition . 69

9

4.2.4 Rendering . 71
4.3 Results . 74
4.4 Conclusion . 76

5 Ray Tracing Precision 83
5.1 Arithmetic . 85

5.1.1 Approximate Computation . 86
5.1.2 Division . 87

5.2 Analysis of Ray/Triangle Intersection Tests 89
5.2.1 Barycentric Coordinates-based Tests 91
5.2.2 Badouel’s Test . 91
5.2.3 Plücker Coordinates-based Test 91
5.2.4 SSE-based Tests . 92
5.2.5 Transformation-based Test . 92
5.2.6 Chirkov-Style Test . 92
5.2.7 Subdivision-based Test . 94
5.2.8 Look-up table-based Test . 95
5.2.9 Improving Shading Normals 96

5.3 Finite Precision Geometry . 96
5.4 Results . 99
5.5 Conclusion . 104

6 The Rayes Architecture 105
6.1 Efficient Ray Tracing of Arrays of Micropolygons 109

6.1.1 Implicit Acceleration Hierarchy in Linear Time 110
6.1.2 Crack-Free Level of Detail Geometry Approximation 111

6.2 Reordering Rays . 113
6.2.1 Top-Level Hierarchy . 113
6.2.2 Tracing Rays in Groups and by Generation 115

6.3 Accelerating Motion Blur by Hierarchies Sharing Topology 116
6.4 Results . 117
6.5 Conclusion . 120

7 Summary 127
7.1 Future Work . 128

A Source Code 129
A.1 Chirkov-Style Integer Ray/Triangle Intersection Test 129
A.2 Chirkov-Style Fixed Point Ray/Triangle Intersection Test 131

10

“Accuracy, heh! Efficiency, hah! The govern-
ment needs not these things.”

The Dvorak Zine

1
Introduction

The goal of rendering in computer graphics is to provide intriguing, realistic images.
This can go as far as predictive rendering, where light transport simulation for
physics research or engineering and visualization for design can be achieved
with the same algorithms. These algorithms, stripped down and tuned for speed,
compute effects for movies or even for modern games in real-time.

Since the days of the first synthesized images based on light transport the
demands have been rising continuously. Nowadays, a renderer has to support
a large number of effects, such as depth of field, motion blur (see Figure 1.1,
bottom), massive geometry (see Figure 1.2, bottom right and Figure 1.1, bottom),
complex materials (see Figure 1.1 top row and middle left), global illumination
(see Figures 1.2 and 1.1), and difficult paths (see the caustics in Figure 1.2). When
evaluating global illumination, some even argue that considering these effects
individually does not help, since the high-dimensional space of light paths is
general enough to model all of these in a unified way.

Being well explored, rendering is used in a variety of fields, each with different
demands, but they all require rendering to be robust for arbitrary input data.

• Robust for artists, architects, and product designers means to get a smooth

11

image in little time, which is as close as possible to the real solution. Espe-
cially faithful material properties and color rendition are important.

• Robust for physicists and engineers means to visualize the correct and
precise solution.

• For the mathematician there is a definition from probability theory where
test statistics can be robust against outliers, i.e. still produce meaningful
results in the presence of very high variance. An example for such a robust
statistic is the median.

• Robust for the movie industry includes to handle arbitrarily complex geome-
try, possibly at the cost of precision.

In this list, two commonly neglected features are present. The first one is spec-
tral rendering, which provides true color rendition and can effectively model true
reflection properties of complex materials. While the fundamentals are well known,
it is rarely implemented in a rendering system, or comes with the disclaimer of
being very slow. Also the opportunity to implement wavelength shifting effects
and a color managed pipeline is not commonly taken.

If spectral rendering is chosen, real physical quantities can be calculated, not
just a pleasing output for display. This is often required for the visualization and
simulation needs of engineers and researchers of other fields than computer
graphics.

The other aspect is precision. Quite the opposite is usually done in high per-
formance computing. Divisions are replaced by approximate reciprocals, GPU
math functions are often stripped down to fast approximations, the denormalized
numbers in the floating point standard are ignored. The outliers resulting from
such erroneous computations are then to be filtered out at the end.

In this thesis, we want to address all of these demands and thus make rendering
algorithms more applicable to a wider field of problems from different disciplines.

1.1. Summary of Contributions

In this thesis, we developed new techniques to make rendering more robust. In
particular, these are:

• A color managed spectral rendering framework which is able to simulate
physical effects such as fluorescence correctly.

• A new analytic BRDF lobe function, which can also be used to create radial
basis functions restricted to the hemisphere.

• A robust ray/triangle intersection method with easy to control, guaranteed
precision in die area-saving fixed point arithmetic.

12

• An efficient way to handle highly complex geometry made up of micro-
polygons which are created on-demand by level of detail rules, in the ray
tracing setting.

Some of these topics have already been published in various publications.

Stefan Menz, Holger Dammertz, Johannes Hanika, Hendrik
Lensch, and Michael Weber. Graphical Interface Models for
Procedural Mesh Growing. In Vison, Modeling and Visualiza-
tion, pages 17–24, 2010 [MDH+10].

Christoph Schied, Johannes Hanika, Holger Dammertz, and
Hendrik Lensch. High Performance Iterated Function Sys-
tems. In GPU Computing Gems 2010, pages to appear,
2010 [SHDL10].

Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hen-
drik Lensch. Edge-avoiding à-trous wavelet transform for
fast global illumination filtering. In Proc. High Performance
Graphics 2010, pages 67–75, 2010 [DSHL10].

Matthias Hullin, Johannes Hanika, Boris Ajdin, Jan Kautz, Hans-
Peter Seidel, and Hendrik Lensch. Acquisition and analysis
of bispectral bidirectional reflectance and reradiation distri-
bution functions. ACM Transactions on Graphics (Proc. SIG-
GRAPH 2010), 2010 [HHA+10].

Johannes Hanika, Alexander Keller, and Hendrik Lensch.
Two-level ray tracing with reordering for highly complex
scenes. In Proc. of Graphics Interface 2010, pages 145–152,
2010 [HKL10].

Holger Dammertz, Johannes Hanika, Alexander Keller, and
Hendrik Lensch. A hierarchical automatic stopping condition
for Monte Carlo global illumination. In Proc. of the WSCG
2009, pages 159–164, 2009 [DHKL09].

Holger Dammertz and Johannes Hanika. Plane sampling for
light paths from the environment map. Journal of graphics,
gpu and game tools, 14(2):25–31, 2009 [DH09].

13

Marion Bendig, Johannes Hanika, Holger Dammertz,
Jan Christoph Goldschmidt, Marius Peters, and Michael We-
ber. Simulation of fluorescent concentrators. In Proc. 2008
IEEE/EG Symposium on Interactive Ray Tracing, pages 93–98,
2008 [BHD+08].

Holger Dammertz, Johannes Hanika, and Alexander Keller.
Shallow bounding volume hierarchies for fast SIMD ray tracing
of incoherent rays. In Computer Graphics Forum (Proc. 19th
Eurographics Symposium on Rendering), pages 1225–1234,
2008 [DHK08].

Matthias Raab, Johannes Hanika, Leonhard Grünschloß,
Manuel Finckh and Alexander Keller. Benchmarking Ray Trac-
ing for Realistic Light Transport Algorithms. http://bwfirt.
sf.net/, 2007 [RHF+07].

Johannes Hanika and Alexander Keller. Towards hardware
ray tracing using fixed point arithmetic. In Proc. 2007
IEEE/EG Symposium on Interactive Ray Tracing, pages 119–
128, 2007 [HK07].

Leonhard Grünschloß Johannes Hanika, Ronnie Schwede, and
Alexander Keller. (t,m, s)-nets with maximized minimum dis-
tance. In Proc. Monte Carlo and Quasi-Monte Carlo Methods
2006, pages 397–412. Springer, 2008 [GHSK08].

1.2. Structure of this Thesis

This thesis proceeds as follows. First, a short overview of the required background
is given in Chapter 2, along with the tools and implementation details necessary
to implement spectral rendering. Chapter 3 proceeds by examining methods to
reproduce the appearance of objects by measuring and simulating the spectral
reflection properties, and Chapter 4 extends this to include fluorescence. In
Chapter 5, precise methods to calculate intersections of rays of light with geometry
are discussed. Chapter 6 takes this further by extending voxel-based intersection
methods to use level of detail and to support massive amounts of geometry in an
efficient way.

14

http://bwfirt.sf.net/
http://bwfirt.sf.net/

Figure 1.1.: Sample renderings showing complex materials with spectral effects
such as thin film interference (top row), fluorescence (middle left),
chromatic aberrations in complex lenses (middle right) and complex
geometry with motion blur (bottom).

Figure 1.2.: Sample renderings showing global illumination in some common test-
ing scenarios with difficult paths such as complex caustics, color
bleeding, and multiple scattering.

“After all, all he did was string together a
lot of old, well-known quotations.”

H. L. Mencken, on Shakespeare

2
Spectral Light Transport Simulation

This chapter summarizes mathematical and algorithmic tools needed throughout
the course of this thesis. Some mathematical basics, however, are assumed to be
familiar to the reader (such as knowledge of the complex numbers, basic algebra
in a Hilbert space, or common tools such as principal component analysis). A
good introduction to the graphics related algorithms can be found in Shirley’s
fundamental book [Shi02].

The foundation of most rendering algorithms is geometric optics, specifically
vacuum transport with extensions to homogeneous media will be of interest to us.
This means that we assume that the structure sizes of the surfaces interacting
with light are much larger than the wavelength, so no diffraction takes place in
our far field computations. That is, rather than working with Huygen’s principle
of wavefront propagation, we will make use of Fermat’s principle which basically
results in light travelling along straight lines in homogeneous media. We also
assume instantaneous equilibrium distribution, i.e. no temporal or relativistic
effects (except motion blur due to long shutter times) are observed, and light
paths are not bent by gravity. We only simulate incoherent light sources and, in
most cases, we can even ignore polarization.

What we want to consider, however, is the dependency on wavelength. More
precisely, the principles of accurate color representation and reproduction are

17

given in Section 2.1, the spectral global illumination problem is described in Sec-
tion 2.2, some principles of the Monte Carlo method are discussed in Section 2.3,
followed by methods to explore path space in Section 2.4. Finally, Section 2.5
develops a spectral rendering system on top of this background.

2.1. Colorimetry

It is widely acknowledged that the reproduction of colors benefits from spectral
treatment above the usual red, green, blue (RGB) channels. A very comprehen-
sive treatment of many questions within the field of color science was given by
Nassau [Nas83]. This section summarizes the very basics needed to convert radio-
metric quantities to color and the other way round. A more gentle introduction to
color can be found in Peter Shirley’s book [Shi02], and definitions of photometric
quantities (vs. radiometric as listed here) are listed in the global illumination
compendium [Dut03].

Physical Quantities. To be able to convert physical quantities into color, we
need to define a few of them.

Flux is the radiant energy flowing through a surface per second Φ = dQ/dt. This
value is proportional to the photon count passing the surface. Since all following
quantities will depend on the wavelength λ, it is convenient to define

Φ =
dQ

dt

[
W =

J

s

]
. (2.1)

Spectral irradiance or Spectral power distribution is the incident spectral
flux per surface area A(x) at position x

E(x, λ) =
d2Φ(λ)

dA(x) · dλ

[
W

m2 · nm

]
. (2.2)

Spectral radiance is the spectral flux per projected differential surface area
dA⊥ω (x) = cos θ · dA(x), and solid angle

L(x, ω, λ) =
d3Φ(λ)

dω · dA⊥ω (x) · dλ

[
W

m2 · sr · nm

]
. (2.3)

Color Input. As input data, directly acquired spectral data is preferred. Some
common input spectra are available, such as the solar spectral irradiance AM
1.5 [Ame], and the CIE standard illuminant data for white balance lighting con-
ditions. The absolute radiance L(x, ω, λ) can be measured by exposure bracket-
ing [Deb98] for every wavelength (see Figure 2.1). Similar measurements can be

18

Figure 2.1.: A sky measured from 400 to 720 nm, in steps of 10 nm. Pictures
of a mirroring ball where acquired through wavelength dependent
filters [HHA+10]. From top left to bottom right: radiance at 400 nm,
550 nm, 720 nm, and the corresponding reconstructed sRGB image.
The first three images have been tone mapped to fit the display.

done for reflectances [HHA+10]. For participating media, the spectral absorption
and scattering coefficients can be acquired by measurement, as we will show in
more detail in Chapter 3.

However, most of the existing input data to rendering systems is given in some
variant of the RGB color space. Since expanding three dimensions to a continuous
spectrum is an ill-posed problem, there exist various methods which yield slightly
different results.

The simplest solutions (i.e. use a box basis with ten dimensions [Smi99] or
use the first three Fourier bases [Dut03]) work well and precise enough for non-
spectral input data.

Color Output. After the incoming spectral irradiance at a pixel of the sensor is
known, it has to be converted to an image for display in the context of computer
graphics. This works equivalently to digital cameras, where CCD or CMOS chips
store the electrons which are freed by the photoelectric effect [Ein05]. One photon
will free one electron, if the light frequency is above the threshold frequency of
the material. The camera’s sensor response will be proportional to the number
of incoming photons (times quantum efficiency) which, in turn, is proportional
to the flux Φ. This is, in contradiction to the classical wave description of light,
independent of wavelength. So real camera sensors actually count photons and

19

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 400 500 600 700 800

[t
ri
s
ti
m

u
lu

s
 v

a
lu

e
]

wavelength [nm]

x
y
z

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 400 500 600 700 800

[t
ri
s
ti
m

u
lu

s
 v

a
lu

e
]

wavelength [nm]

r
g
b

Figure 2.2.: Left: the CIE 1931 XYZ color matching functions. Right: the Stiles &
Burch 1955 RGB color matching functions [SB55].

we can thus directly sum up values proportional to Φ in the accumulation buffer.
To accurately reproduce color, we accumulate in the well defined CIE XYZ color

space. A thorough historical introduction to how this color space was derived can
be found in [FBH98]. The accumulation buffer used for rendering stores E(λ) as
XYZ tristimulus values, since these values are obtained by a linear operator on
the spectral power distribution E(λ):

X =

∫
Λ
x(λ)E(λ)dλ (2.4)

Y =

∫
Λ
y(λ)E(λ)dλ (2.5)

Z =

∫
Λ
z(λ)E(λ)dλ. (2.6)

where the tristimulus value functions x, y, and z (see Figure 2.2, left) are normal-
ized to integrate to the same as the 1924 CIE spectral luminous efficiency function
V (λ). This way, the accumulation over the pixel area A

E(λ) =
1

‖A‖

∫
A

∫
Ω
L(x, ω, λ)dω dx

and the projection onto x via Equation (2.4) can be done in one step

X =
1

‖A‖

∫
A

∫
Λ
x(λ)E(λ)dλdx (2.7)

=
1

‖A‖

∫
A

∫
Λ
x(λ)

∫
Ω
L(x, ω, λ) dωdλdx (2.8)

=
1

‖A‖

∫
Ω

∫
A

∫
Λ
x(λ)L(x, ω, λ) dλdxdω (2.9)

≈
∑
k

x(λk)Lk/pk, (2.10)

20

where Equation (2.10) approximates the integral by summing up Monte Carlo sam-
ples. We can therefore use a memory saving accumulation buffer with only three
XYZ components per pixel instead of one with a spectral resolution. Accumulation
in XYZ will produce accurate results as long as no clamping or gamut mapping is
performed until the full image is accumulated. From XYZ, ICC profiles can be used
to convert to the desired output color space, e.g. sRGB.

The CIE XYZ color space is a common choice of a profile connection space (PCS)
in color management software (e.g. [Mar98]), because it is well standardized.
Another choice would be Lab (and variants), but this is unsuitable for our needs
because L is calculated from a non-linear transform, and would thus complicate
the accumulation buffer. Plus, Lab is not very well suited for high dynamic range
data, because the useful range of L is limited to [0, 100]. XYZ is also preferred over
linear RGB color spaces for spectral accumulation, as the RGB color matching
functions have negative values. This can lead to problems while converting to and
from spectral power distributions, especially when supporting legacy RGB-based
BRDFs.

Tone Mapping (see for example [Shi02]) is commonly applied to computer
created images to fit the displayable or printable range. To make the final images
look more realistic, we either store the results in XYZ as 16-bit digital negatives
(DNG) [Inc04], or use a high-dynamic range enabled photography tool [Han09]
with an XYZ input profile. This way, the data is treated like a real photograph, i.e.
contrast enhancing base curves and gamma shapers from the output profile of
the screen are applied transparently.

Usually, when not outputting images for a calibrated screen, the ICC output
color profile will be sRGB, i.e. the CIE RGB color matching functions [SB59] (as can
be seen in Figure 2.2, right) with the D65 white point and a gamma shaper with a
small linear toe slope.

2.2. The Spectral Global Illumination Problem

To compute the incoming spectral radiance which is then converted to a display
color system, it is necessary to solve the global illumination problem including
the spectral domain. A good reference to find more information about this topic
is for example the state of the art report about spectral rendering [DCWP02]. A
very handy, compact collection of a lot of light transport related definitions can
be found in the global illumination compendium [Dut03]. The following is a list of
essential spectral formulas.

Spectral BRDF. It can be formally defined how light is reflected at the surface of
objects by introducing the spectral bidirectional reflectance distribution function

21

(BRDF) as the outgoing radiance divided by the incoming irradiance [NRH+77]

fr(ωi, ωo, λ) =
dL(x, ωo, λ)

dEi(x, λ)
=

dL(x, ωo, λ)

L(x, ωi, λ) cos θidωi

[
1

sr

]
. (2.11)

Spectral Rendering Equation. The rendering equation [Kaj86] can be formu-
lated to include spectral light transport:

L(x, ω, λ) = Le(x, ω, λ) +

∫
Ω
fr(x, ω, ωi, λ)L(y,−ωi, λ)|〈nx, ωi〉|dωi, (2.12)

where Le defines the light sources, and 〈nx, ωi〉 = cos θi is the cosine of the eleva-
tion angle between the incoming direction ωi and the surface normal nx, to reflect
Lambert’s law. The point y := h(x, ωi) is the closest surface point in direction ωi
from x. If the domain Ω is defined as the whole sphere (and fr is defined to be zero
on the lower hemisphere for solid surfaces), this is a Fredholm integral equation
of the second kind. If Ω is defined to be the incoming hemisphere only, it is called
Volterra integral equation of the second kind, as the integration domain depends
on the location x.

The same equation can be expressed as integral over the boundary V (the
surface of all objects) with the area measure A:

L(x, ω, λ) = Le(x, ω, λ) +

∫
V
fr(x, ω, ωi, λ)L(y,−ωi, λ)

cos θi cos θ

‖y − x‖2︸ ︷︷ ︸
=:G(x,y)

V (x, y)dA. (2.13)

The additional terms G and V are called the geometric term and visibility, re-
spectively. The latter evaluates to one if the two points are mutually visible, and
zero otherwise. The transport operator formulation is often used as a convenient
shortcut to replace the lengthly integral in Equation (2.12):

TL :=

∫
Ω
fr(x, ω, ωi, λ)L(y,−ωi, λ)|〈nx, ωi〉|dωi (2.14)

L =
∞∑
i=0

T iLe. (2.15)

Equation (2.15) is called the Neumann series expansion.

2.3. The Monte Carlo Method

The rendering equation (2.12) cannot be solved explicitly, and when expanding
the Neumann series, its domain has infinite dimensions. Especially the visibility
term or the evaluation of the next intersection with the boundary in a certain
direction are best evaluated using point queries. These properties make the Monte

22

Carlo method a good candidate for the solution, reducing the problem to randomly
finding a lot of paths connecting the sources and the sinks and summing up the
contributions. Before we can summarize the basic principles of the Monte Carlo
method, we want to give a few notations from probability theory.

Random variable. We will mostly use continuous random variables and denote
them by X, and xi as the realizations (i.e. actual outcomes or values of the random
variable).

Probability density function. The distribution of a random variable is described
by the probability density function (PDF) p(x) > 0 which is normalized, i.e.

∫
p(x)dx =

1. To express that xi is a realization following a particular PDF, we write xi ∼ p(x),
or likewise for the random variable X ∼ p(X).

Cumulative distribution function. To measure the probability of an event
such as x ∈ A ⊆ Ω the cumulative distribution function can be used:

P (X ∈ A) =

∫
A
p(x)dx. (2.16)

Expected value. We write the expected value of a random variable X ∼ p(X)
defined in the domain Ω as

E(X) =

∫
Ω
x · p(x)dx. (2.17)

Variance. The variance, i.e. expected squared deviation from the expected value
will be denoted by

Var(X) = E
(
(X − E(X))2

)
(2.18)

= E(X2)− E2(X) (2.19)

=

∫
Ω

(x− E(X))2p(x)dx. (2.20)

The Monte Carlo method has been used for a long time to solve hard high-
dimensional problems such as neutron transport in nuclear facilities (e.g. [MRR+53]).
A deep and thorough reference is Ermakow’s book [Erm75], and there is also a
great, more hands-on overview [Sob94] by Sobol’.

The simple principle of the Monte Carlo method is to replace deterministic
quadrature by random sampling, i.e. replace the integral over a function f(x) by
an estimator: ∫

f(x)dx︸ ︷︷ ︸
=:θ

= E(X) ≈ 1

N

N∑
i=1

f(xi)

p(xi)︸ ︷︷ ︸
=:θ̂

. (2.21)

23

That is, the integral is viewed as the expected value of a random variable X =
f/p, and this expected value is approximated by drawing N random realizations
xi ∼ p(x) of X and taking the mean. This estimator is unbiased, i.e. the bias
B(X) = E(X)− θ̂ = 0 and has the probabilistic error bound

P
(
‖θ − θ̂‖ < 3 · σ

)
≈ 0.99730, (2.22)

where σ2 is the variance of the estimator in Equation (2.21). It can, in turn, be
estimated by

σ̂2 =
1

N − 1

N∑
i=1

(xi − θ̂)2. (2.23)

It follows that the computational complexity required to bring down the (proba-
bilistic, with P ≈ 0.99730) error below a threshold ε is in the order of

O

(√
Var(X)√
N

)
. (2.24)

The important thing to note about Equation (2.24) is that it is independent of the
dimension d of the domain the function f lives on. This is especially nice compared
to the exponential cost of deterministic methods [TWW88]

comp(ε) = O

((
1

ε

)d/r)
, (2.25)

to bring the error below a given threshold ε when the function f fulfills the
smoothness r, i.e. f ∈ Cr. Of course this error bound holds for a different function
class and has the advantage to be deterministic and sharp, that is by no chance
the error lies above ε. The dependency on d in this equation is called the curse of
dimension, and is notoriously hard to overcome. The downside of the Monte Carlo
method on the other hand is the long tail of 1/

√
N . After a quick improvement of

the estimate at the beginning, a small amount of noise is very hard to get rid of.
In this later stage, the variance of the random variable plays a large role.

To reduce variance there exist various methods, among them stratified sampling
and quasi-Monte Carlo methods [Kel98] (which work best in low dimensions for
graphics or when certain smoothness conditions are met, as in finance), control
variates (which are best applied if the integrand can be perfectly sampled up to a
constant difference), and importance sampling. Because of the widespread use in
computer graphics, we explain this last technique in more detail.

Importance sampling draws realizations of a random variable xi as proportional
as possible to the integrand f . If perfect importance sampling is possible, i.e.

24

f(x) ∼ p(X), then

X =
f(x)

p(x)
= c = const. (2.26)

⇒ E(X) = c (2.27)

⇒ Var(X) =

∫
(x− c)2p(x)dx = 0. (2.28)

So every estimator solely based on X will have zero variance and thus give the
right result even after only one evaluation. Of course in this case the value of the
integral is known in advance (= c) and Monte Carlo sampling doesn’t make sense.

An example would be calculating the light leaving a bright diffuse surface
(Spectralon) with normal n lit by a diffuse background with incoming light intensity
Li = 1 from all directions (for an explanation of the integral, see Section 2.2):

L =

∫
Li ·

1

π
· 〈ω, n〉︸ ︷︷ ︸

=:f(ω)

dω (2.29)

p(ω) =
cos θ

π
where cos θ = 〈ω, n〉 (2.30)

X =
f(ω)

p(ω)
= 1. (2.31)

The perfect sampling strategy pursued here is sampling the incoming hemisphere
proportional to the cosine of the elevation angle. Since p needs to be normalized
over this domain, p = cos θ/π, and thus L = X = 1 can be evaluated with just one
sample.

25

Faster Random Numbers Truly in [0, 1). When implementing a rendering
system in floating point precision and using the SIMD Mersenne twister pseudo
random number generator [SM08], the result of the code piece given below can
lead to surprises:

/** is meant to generate a random number in [0,1) (but doesn’t) */
inline static float to_real2(uint32_t v)
{

return v * (1.0/4294967296.0);
/* divided by 2^32 */

}

because the output will be 1.0f at times due to rounding, and thus possibly crash
applications due to division by zero or similar. One solution, which is faster than
the multiplication above and maintains the distribution of the points, is to just
paste the most significant bits of the integer to the mantissa of the float. This
works in the interval [1, 2) because the exponent is constant there (0x3f800000).

/** generates a random number on [0,1)-real-interval (float) */
inline static float to_real2f(uint32_t v)
{

v = 0x3f800000 | (v>>9); // faster than double version.
return (*(float*)&v) - 1.0f;
/* paste 23 bits to mantissa */

}

2.4. Path Tracing

A general approach to view light transport is path space [Vea97]. It is the space of
all paths light can travel by from the source to the sensor, and includes all high
dimensional effects such as depth of field, motion blur, shadows, caustics, and
all other secondary effects without any special treatment. To explore this high
dimensional space (d = ∞ in theory, in practice d > 100 is rarely needed), the
Monte Carlo method can be applied [Vea97, DBB06].

The simplest algorithm is path tracing [Kaj86]. Re-using subpaths can be per-
formed in various ways, by caching virtual point light sources [Kel97] or irradiance
or photons [WRC88, LW95, Jen96, HOJ08, HJ09]. Most of the common algorithms
are implemented in PBRT [PH04], an open source rendering system, or one of the
descendants, such as [VGmm98, Jak10].

26

Ray Tracing. To determine e.g. shadow boundaries, a way to evaluate visibility
of two points is needed. Formally evaluating visibility is computing the term V (x, y)
from Equation (2.13). Ray tracing [Whi80, Gla89, Shi00] solves this for point
queries and point/direction queries, and is accelerated by spatial acceleration
structures such as the Quad-BVH [DHK08].

Path Sampling. To explore path space, i.e. draw samples from this domain,
there exist a few basic techniques we will refer to in the following sections.

Path tracing (PT) starts rays at the camera lens and recursively bounces off the
objects until a light source is hit by chance. Importance sampling is done by the
BRDF of the current surface.

A slight improvement with remarkable impact on variance reduction in diffuse
environments is path tracing with next event estimation, also know as path tracing
with direct light (PTDL). This technique performs a direct connection to the light
sources whenever a non-specular surface is found. This connection is done at
every bounce, i.e. one random walk results in a lot of paths which contribute to
the pixel. To make the estimator unbiased, no radiance may be accumulated when
a light source is hit by chance (without a deterministic connection). Importance
sampling is done by BRDF at each bounce, and by light source for the deterministic
connection.

A light tracer (LT) is the reciprocal of a PTDL. It starts paths at the light sources
and performs the same random walk in the opposite direction. At each bounce, a
deterministic connection to the sensor is performed.

Bi-directional path tracing (BDPT) draws a sample from a PT/PTDL and an LT at
the time, and also performs all deterministic connections of all in-between path
vertices, not only to the light or the sensor [LW93, VG94]. To reduce variance, the
resulting paths have to be weighted in a clever way using multiple importance
sampling (MIS) [VG95].

path expression method
L D .∗ E PTDL
L S+ .∗ D E LT
L {S|S .∗ S} E PT
L S+ D .∗ S E PT + PMAP IS

Figure 2.3.: Path space is partitioned into three disjoint types of paths, which are
each sampled by the most suitable method. The regular expression
is based on Heckbert’s path notation [Hec90]. The last line is a sub-
class of the PT class and uses photon map importance sampling as
additional technique.

27

Path Space Partitioning. While bi-directional path tracing creates a lot of
paths (O(n2) for PT and LT with n bounces), it also needs to trace a lot of visibility
rays to connect the PT and LT paths. Not all of these actually pay off, because
multiple importance sampling will assign a very low weight to them. This is
due to the fact that the deterministic connections don’t follow any importance
sampling strategy and thus find important paths by pure chance. In addition, MIS
is hard to implement right because it requires to explicitly calculate the probability
density functions of all applied techniques. This means that if a new technique is
incorporated, much care has to be taken to get the PDF evaluation right.

A simpler and in some cases more efficient approach is to partition path space
into subsets and use the most efficient unidirectional sampling method for each
set. We use a partitioning as in Figure 2.3. The path expression follows Heckbert’s
path notation [Hec90] where L is a light source, D is a non-specular bounce, S is
specular, and E is the eye or the sensor.

That is, most of the path space is sampled using a PTDL, when a non-specular
bounce before the light source makes a deterministic light connection possible.
Caustics, i.e. paths with at least one consecutive specular bounce after the light
source, are computed using the LT formulation. This technique requires a deter-
ministic connection to the sensor, and thus needs a non-specular surface before
the end. The last disjoint set cannot be sampled by the PTDL or LT because deter-
ministic connections are made impossible by the two specular bounces just before
the light and the sesor, it is handled by a simple PT. A subclass of these paths
LS+D.∗SE, including caustics seen through a mirror, profits from an additional
technique: photon map importance sampling (PMAP IS) [Jen95, LW95, Pha05].
This is convenient in two ways. First, these paths are particularly hard to generate
if light source and sensor are both small. Second, the photons needed for such
a map can be recorded during the LT pass. This will also make good use of an
LT-created path if the deterministic connect to the sensor fails due to an additional
specular surface between the caustic and the sensor. The effect of this technique
can be observed in Figure 2.4.

Another advantage of this approach is that it doesn’t require reciprocal materials
as a condition for convergence, since both unidirectional methods will converge
independently. While reciprocity is desirable for physical plausibility, this gives the
rendering algorithm more freedom, which we can exploit even in physically-based
simulations where reciprocity is not given (see Chapter 3).

In addition, we don’t have to store the light path vertices as possible connection
points. This allows for tight inner loops which write memory only to few registers
and eliminates a possible source of bias, when the number of path vertices is
limited due to memory constraints.

Metropolis Light Transport. An essential technique to improve the way path
space is explored is Metropolis sampling [MRR+53, Has70], which has first been
applied to the light transport problem by Veach and Guibas [VG97]. They used

28

Figure 2.4.: A pool inside a box with caustics under water. The images in the top
row are generated using 100 samples per pixel, the bottom row with
1000 samples. On the left partitioned path tracing is shown, on the
right the same algorithm with an additional sampling technique, using
the photon map for importance sampling.

custom mutation strategies to improve every effect they observed to be hard to
achieve individually. Later on, Kelemen et al. [KSKAC02] simplified the algorithm
by using only one single type of mutation on the random variables used as input
for the path space sampler. A nice, comprehensive introduction to Metropolis light
transport can be found in Cline and Egbert’s technical report [CE05].

Metropolis sampling has both a theoretical and an intuitive appeal. On the
theoretical side it promises perfect importance sampling, that is p(X) will be
proportional to f(X), where X is a random variable living in the infinite dimen-
sional path space. The intuitive version is related to how this is achieved: by a
random walk on path space using small mutations. Variance is often high in very
local regions of the image, as for example inside the pool in Figure 2.4. It seems
counterintuitive to discard a path illuminating this area once it has been found,
and start over with a completely new sample.

This is where Metropolis sampling can help out. It uses the theory of Markov
chain Monte Carlo and small mutations in path space with transition probabilities
T (Xn+1|Xn) to construct a new tentative sample Xn+1. It is then decided randomly
whether to accept this sample or to stay with the current one Xn. Intuitively,
the algorithm stays in interesting regions for a while and explores the local
neighborhood. Formally, it can be proven that this random walk converges to
an equilibrium probability density proportional to the measurement contribution

29

function f(X), if appropriate acceptance conditions for the tentative sample are
chosen.

After equilibrium has been reached (i.e. start up bias is overcome), the image
is formed by calculating the histogram over all states. That is, the random walk
is performed, and the pixel value of the current state Xn is incremented every
iteration. This histogram is then scaled by the mean image brightness b, because
the probability density function has to be normalized such that p(X) · b = f(X).

The acceptance probability a which follows from the detailed balance condition

f(Xn)T (Xn+1|Xn)a(Xn+1|Xn) = f(Xn+1)T (Xn|Xn+1)a(Xn|Xn+1) (2.32)

in the case of the simplified mutation strategy [KSKAC02] is

a(Xn+1|Xn) = min

{
1,
f(Xn+1)T (Xn|Xn+1)

f(Xn)T (Xn+1|Xn)

}
(2.33)

= min

{
1,
f(Xn+1)

f(Xn)

}
, (2.34)

because the transition probabilities T of the mutation on the random variables
are symmetric, T (Xn|Xn+1) = T (Xn+1|Xn).

To calculate the acceptance in the case of a bi-directional path tracer or a light
tracer, which contribute to more than one pixel per sample, we can choose a
as the ratio of the contributions Ci,t(X) of the tentative sample to pixel i to the
contributions Ci,c(X) of the current sample

a(Xn+1|Xn) = min

{
1,

∑
j Cj,t(X)∑
j Cj,c(X)

}
. (2.35)

and accumulate the mean image brightness in each iteration by the fraction of
the contributions to each pixel Ci(X) and the sum for the whole sample

∑
j Cj(X):

ci(X) = b
Ci(X)∑
j Cj(X)

, (2.36)

where Ci(X) are the contributions for each pixel as determined by the standard
path space sampler, and ci(X) the values to accumulate when using Metropolis
sampling. This results in an unbiased estimate, as Equation (2.35) will steer the
rejection sampling on the path space random walk to result in

p(X) =

∑
j Cj(X)

b
(2.37)

and thus the expected value of accumulation at a pixel i is

p(X) · ci(X) =

∑
j Cj(X)

b
· b Ci(X)∑

j Cj(X)
= Ci(X), (2.38)

30

which is the same as with the standard path space sampler. To minimize variance,
this has to be combined with the standard approach of accumulating a rejected
tentative sample with weight (1− a) instead of just discarding it.

One common problem of Monte Carlo methods is the so called firefly problem.
This term refers to paths which have such a low probability to be sampled, that
their value has to be astronomically high to keep the estimate unbiased. For
example, to keep the right mean value in a 100×100 block of pixels, the one
that finds the complicated caustic needs to be 100×100 times as bright as the
correct pixel value. This pixel will probably not converge away in a long time.
Metropolis improves upon this, but sometimes the path sampler is just hopelessly
bad at finding complicated paths and Metropolis will slowly converge to the firefly,
accumulating 1/b at the same pixel over again.

A commonly applied (biased) solution is to limit the number of consecutive
rejects in the Markov chain. This works well in practice, as the resulting image will
be the same, phenomenologically, just overly high spikes will be removed.

In Section 3.3.1, we will also make use of this kind of sampling to fit the param-
eter of an analytic model to measured data.

2.5. Implementation of a Spectral Rendering System

In order to receive faithful, vibrant color rendition, it is necessary to build a color
managed, spectral rendering system. In this chapter, we developed the following
extensions to seamlessly connect existing techniques:

The tristimulus accumulation buffer is used to do spectral accumulation of
Monte Carlo paths in a memory efficient way (see Equation (2.9)), without sacri-
ficing color accuracy. Color profiles can be applied after rendering.

Monochromatic importance sampling is necessary to avoid adding variance
if the spectral domain is also sampled, and takes care that every path is impor-
tance sampled by its proper probability density (see Figure 2.5).

Path space partitioning is used to further reduce variance by avoiding low
probabilities and high contributions of deterministically connected paths, and
to avoid problems when BRDFs are non-reciprocal or wavelength-shifting. In
these cases, deterministic connections would be inefficient. This also offers the
opportunity to store photons along the light tracing paths to guide the path tracing
towards the light sources more efficiently by photon map importance sampling
(see Figures 2.3 and 2.4).

Metropolis light transport refines this path space sampling and has been
shown to work correctly for paths which have contributions to more than one pixel
(Equations (2.35) and (2.38)). Robust random numbers make sure the probabil-
ities can be sampled precisely and the implicitly created path coherence helps

31

Var

XYZ
s = 3

Bias linear RGB
s = 3

λ ∼ p(λ)
s =∞

finite basis
s = N

N �

N �

aliasing/artifacts

inefficient
Russian roulette

stratification

Figure 2.5.: Schematic overview of spectral transport options. Using only one
random wavelength sample per path (λ ∼ p(λ)) comes without bias,
but shows more color noise as finite basis approaches. These methods,
on the other hand, introduce additional variance due to inefficient
Russian roulette at every bounce, which increases with the number of
basis functions. If this number is reduced, bias increases.

to better exploit caching hierarchies of CPUs, at the cost of additional memory
accesses to the random numbers. Consecutive paths will touch similar memory
and thus employ the cache hierarchies of CPU systems better. On top of this,
the shadow cache which can be used in the Quad-BVH [DHK08] will exploit this
coherence to squeeze even more performance out of it for shadow rays.

In order to synthesize images using spectral transport, we combine all the above
mentioned techniques and trace paths in the spectral domain. These are then
projected to the tristimulus accumulation buffer. To transport spectral quantities
with a path, we opted for the simplest and most general solution, and use Monte
Carlo sampling to simulate the spectral domain continuously. While this increases
the dimension of the sampling domain by one, and thus variance in the form of
color noise, it has several advantages. Most importantly, we will find all important
spots in the spectral domain with arbitrary resolution, as opposed to when using
a fixed set of wavelengths (possibly due to stratification) or a finite basis. This
makes sure we don’t introduce any bias.

Concerning variance, the color noise will be more than can be perceived when
only transporting RGB or XYZ values. But when importance sampling is done for

32

surface reflection, it can only be done perfectly for one wavelength. The other
wavelengths will have to go with this sampling and correct the difference with
a sample weight. This will in turn introduce additional variance, which increases
when more basis functions are transported with a path at the time. Also, using
RGB is prone to introduce additional bias due to the often vaguely defined color
space, as well as possible gamut mapping to work around negative values. A
schematic (not to scale) of these relations can be seen in Figure 2.5.

To make evaluation of the many samples required for a final image fast, various
optimizations have to be applied, e.g. by making ray tracing itself faster [IWRP06,
WH06, Wal07, EG07, WBB08, EG08, DK08, SFD09, DHKL09], by improving im-
portance sampling [CJAMJ05, DH09], using stratification [GHSK08, DDK08] or by
filtering the results [DSHL10]. For mono ray traversal in a realistic global illu-
mination setting, there exists a test suite [RHF+07] which creates comparative
overview statistics.

Parallelization via OpenMP, or even OpenMPI can be done on CPU architectures,
if appropriate hardware is at hand [Qui03]. There has been a substantial amount
of work on vectorization via CPU’s SIMD units [Wal04, Ben04, BWSF06, Res07] as
well as for GPU ray tracing [AL09, AK10, Lai10, PL10].

2.6. Conclusion

This chapter described the background needed to implement a physically-based
spectral renderer, and some pointers how to optimize it for speed have been given.
We summed up the basics of colorimetry, provided the notion of the tristimulus
accumulation buffer, and complemented path space partitioning with photon map
importance sampling and Metropolis light transport. Once everything is spectral,
algorithms get simpler. For example there are no more for-all-colors loops, one
can use simple, low-variance importance sampling, and color rendition becomes
more accurate as metamerism is handled correctly. In contrast, RGB can have
a fuzzy meaning, and the color matching functions can be negative. Due to the
smooth XYZ color matching functions at the end of the spectral pipeline, the result
does not include a lot of color noise. High-variance spots will turn up in heavily
colored noise, but the variance will mostly stem from the difficult parts of the
path besides the spectral domain. When used together in a rendering system, the
techniques described here are able to robustly simulate spectral light transport.

33

“Note that the Ward and AS BRDFs are phys-
ically inspired hacks. So don’t think too
deeply about their motivation.”

Peter Shirley, on ompf.org

3
Reflectance Models

This chapter investigates reflection properties of objects, with a focus on detailed
color reproduction. A new lobe model which is defined on the projected hemisphere
is investigated as a way to avoid rejecting samples during importance sampling
and thus to avoid energy loss near grazing angles (Section 3.2). We will also fit
analytical models to materials which have been acquired using sparse samples in
the angular domain, but with a lot of samples in the spectral domain. The X-Rite
MA98 is a standard device for quality control of car paint materials. It is a stripped
down mini-gonioreflectometer and has been used to acquire the materials in this
this chapter (Section 3.3).

3.1. Multi-Layer Material Models

Apart from geometry, the reflection properties at surfaces and in the medium
make up a large part of the visual impression. This is why the bidirectional
reflectance distribution function (BRDF) fr receives some special attention in this
section. In particular, when modeling a function fr, it is necessary to fulfill a few
properties to make it physically plausible.

35

Figure 3.1.: Three types of reflection, from left to right: diffuse (e.g. Spectralon),
glossy (e.g. polished metal), and specular (e.g. a mirror).

Energy Conservation. The surface should not produce energy. Thus, if no
crosstalk between wavelengths is assumed, fr is required to meet

∀ω∀λ :

∫
Ω
fr(x, ω, ωi, λ)L(−ωi, λ)|〈nx, ωi〉|dωi < 1, (3.1)

where the case of equality is not included so that the Neumann series (Equa-
tion (2.15)) converges, because the transport operator norm

‖T‖ < 1 (3.2)

with ‖T‖ = inf
{
c : ‖TL‖ ≤ c‖L‖ ∀L ∈ L2

}
, (3.3)

for all square integrable functions L, i.e. with finite energy.

Helmholtz Reciprocity is the property of surface reflection that light paths are
reversible, i.e. light source and sensor can be exchanged and the same energy
will be transported over a particular path. This property is often used to calibrate
measurement devices. Formally, it can be written as

fr(x, ωi, ωo, λ) = fr(x, ωo, ωi, λ). (3.4)

Types of reflection can roughly be classified into three categories: diffuse, glossy,
and specular (see Figure 3.1). Since diffuse and ideal specular are the extremes of
all possible glossy distributions in between, these are simple to model and sample.
The shape of a glossy lobe leaves much more freedom and gives the possibility to
match real materials.

There exist a number of analytic BRDF models used for rendering. Ideal specular
surfaces such as dielectrics can be handled quite well by implementing Snell’s law
for refraction and using Fresnel’s formulas to distinguish reflection and refraction,
even considering polarization.

A glossy lobe based on micro-facet theory has been introduced by Cook and
Torrance [CT81]. It assumes a rough surface is actually a collection of small
mirroring facets and the lobe is formed by multiple reflection. Such a geometry
can also been scanned using atom force microscopy and then simulated to create
far-field BRDFs [Kem09].

Many BRDF models employ a halfway vector-based formulation (e.g. these
more recent works [AS00, EBJ+06, GMD10, KSKK10]). These work by sampling a

36

halfway vector and using this to reflect the incoming ray as if the halfway vector
was the normal. This can be seen as a trick to assert reciprocity of the model, and
can be founded on micro-facet theory. A micro facet is picked randomly from a
certain distribution, and it’s normal is the halfway vector.

The 2d disk on the projected hemisphere has been used to define BRDF lobes
[NNSK99] and 100% energy conserving models have been constructed [EBJ+06],
at the cost of non-reciprocity. Data-driven BRDFs have been defined [MPBM03a]
and there have been lots of extensions to include for example sub-surface scatter-
ing [JMLH01], rough glass, and variations on the surface [DWT+10].

3.1.1. A Multi-Layer Material for Car Paints

To express a car paint prior in form of a BRDF, we model it as a three-layer material:
the primer is diffuse, on top of that follow a glossy layer of micro facets, and finally
a clear coat layer. As the acquired data is very sparse in the angular domain (see
Section 3.3), the choice of the glossy lobe is rather arbitrary, and no meaningful
improvement in fitting error can be proved with another model, we chose an
isotropic Phong lobe inspired by the anisotropic Phong model by Ashikhmin and
Shirley [AS00]. To combine the layers, we use Schlick’s approximation of the
Fresnel terms [Sch94] and ignore the distance travelled in the medium between
the layers.

Formally, the BRDF is written as a sum of three terms, diffuse, glossy, and
specular:

f(ωo, ωi, λ) = fd(ωo, ωi, λ) + fg(ωo, ωi, λ) + fs(ωo, ωi, λ)

where ωo is the direction towards the eye, and ωi is the direction towards the light
source. As we fit one lobe per wavelength, we omit the parameter λ for clarity
from here on.

We use Schlick’s rational approximation of the Fresnel term, which gives the
amount of perfect reflection at angle θ from the normal with respect to a reflectivity
ρ at normal incidence by the formula

F (ρ, cos θ) = ρ+ (1− ρ) (1− cos θ)5 (3.5)

We denote h = ωi+ωo

‖ωi+ωo‖ as the halfway vector, and n as the surface normal. Note
that naively splitting into layers using the Fresnel term can break energy con-
servation, at least for high albedos [SSHL97]. Given this, we define the three
components of the BRDF:

Specular.

fs(ωi, ωo) =
δ (ωo, ωr(ωi))

〈ωi, n〉
F (ρs, 〈ω, h〉)

where δ is the Dirac distribution and ωr(ωi) is the direction of perfect reflection of
ωi around the normal.

37

Glossy.

fg(ωi, ωo) =
k + 1

8π

〈n, h〉k

〈h, ωi〉max{〈n, ωi〉, 〈n, ωo〉}
· F (ρg, 〈ωi, h〉) · (1− F (ρs, 〈ω, h〉)) ,

where the exponent k controls the glossiness.

Diffuse.
fd(ωi, ωo) =

ρd

π
· [1− F (ρg, 〈ω, h〉) · (1− F (ρs, 〈ω, h〉))]

3.1.2. Simulating Scattering

In the Monte Carlo context, a BRDF model needs to be evaluated explicitly for
deterministic connections and, more importantly, it should be possible to draw
directional samples from a distribution as similar as possible to fr. When fr is
proportional to the probability density function p(ω), variance will be minimal.
If this is not possible, at least large parts of the BRDF should be sampled, for
example a factor in a composite formula. Such a sampling should also be cheap
to evaluate.

The mode of reflection, or the layer of the BRDF is chosen by importance
sampling. As discussed in Section 2.4, we pick a continuous random variable for
λ while spawning a new path and transport a single wavelength at a time. The
following probabilities depend on spectral quantities and thus the importance
sampling simplifies greatly. If more wavelengths were transported with one ray,
importance sampling would have to be done for only one (or an average) of them,
and the other channels would need to be multiplied by correction factors which
would introduce additional variance.

Specular. Since in the case of perfect specular reflection, the normal and the
halfway vectors are the same, it is possible to do perfect importance sampling by
the specular Fresnel term pr = F (ρs, 〈ωi, n〉), resulting in a path weight

X =
f

p
=
F (ρs, 〈ωi, n〉)

pr
= 1.

Glossy. We want to use the glossy Fresnel term for importance sampling similar
to the specular case. Unfortunately, to guarantee reciprocity, this term is not
determined by the incoming direction ωi only. So in a best effort attempt, we
sample the glossy part using

pg = (1− pr) · F (ρg, 〈ωi, n〉),

and account for this in the weight

X = F (ρg, 〈ω, h〉)(1− F (ρs, 〈ω, h〉))/pg

38

after the halfway vector has been sampled. This approach works better for higher
k, and is optimal for the direction of perfect reflection. The rest of fg not contained
in X is sampled using halfway vector sampling proportional to cosk.

Diffuse. This part takes what remains, i.e. pd = 1− pr − ps, and the weight has to
be adjusted by 1

pd
. The outgoing direction ωo is sampled using a cosine distribution,

resulting in

X =
π · fd
pd

.

3.1.3. Probability Density Transformation

The reverse operation to importance sampling is also possible. We can evaluate a
closed-form probability density function py(y) for a random variable y which has
been obtained by transforming an initial random variable x with given probability
density px(x) by a bijection f : x 7→ y:

py(y) =
px(f−1(y))

|Jf (f−1(y))|
(3.6)

where Jf denotes the Jacobian of the function f , and |.| the determinant. This
relation can be explained e.g. by a comparison of the integrand in this example:

P (y ∈ Ωy) =

∫
y∈Ωy

py(y)dy (3.7)

subst. y = f(x)

=

∫
x∈Ωx

py(f(x))|Jf (x)|︸ ︷︷ ︸
=px(x)

dx. (3.8)

This can be used to derive the density of ωo given the density of the halfway
vector h and the incoming direction ωi, as used in many popular BRDF models
such as [AS00], and geometrically explained in [Ren50]:

f(λ, ψ) =

(
2λ, ψ

sin 2λ

sinλ

)
= (2λ, 2ψ cosλ)

Jf =

(
2 0

−2ψ sinλ 2 cosλ

)
|Jf | = 4 cosλ

⇒ p(ωo) =
p(h)

4 cosλ
=

p(h)

4〈h, ω〉
.

For an illustration of the variables, see Figure 3.2. The angles λ and ψ define
the distance between ωi and h. The output direction ωo is obtained by reflecting
ωi about h, as formally expressed in the function f . The density transformation
makes sure that the integral over the transformed probability

∫
p(ωo)dωo is still

normalized.

39

n

ωi

ωo
h

dh dωo

λλ

ωi

ψ

Figure 3.2.: The density p(ωo) viewed as the transformed halfway vector density
p(h): the distance between ωi and h can be expressed in the domain
of the angles λ and ψ.

3.2. BRDF Lobes as Automorphisms on the Unit Disk

Most Phong-like and halfway vector-based analytical BRDF models suffer from
energy loss near grazing angle, when up to half of the lobe points under the
surface. This behavior is also very undesirable when importance sampling by this
lobe is done. Since directions have to be rejected if they point under the surface,
the procedure becomes very inefficient.

One strategy to create new energy conserving lobe models is to start with
the sampling procedure, make sure no directions have to be rejected, and then
create a closed-form expression for the distribution function fg, as has been done
in [EBJ+06] for halfvector-based BRDFs.

Consider the following general conformal mapping on the unit disk

f : z 7→ w, |z| < 1, |w| < 1 (3.9)

w = k
z − z0

z̄0z − 1
, (3.10)

where z, w, k, z0 ∈ C, |k| = 1 and |z0| < 1 is the point the origin gets mapped to. All
conformal automorphisms on the unit disk take this form [Jef05, Bie00]. Without
the rotation (i. e. k = 1), it is sometimes called the Möbius transformation. The
inverse Möbius transformation is given by

f−1(w) =
z0 − w
1− z̄0w

, (3.11)

40

and the complex derivative (f ′(z) = df
dx since conformal mappings are analytic, i.e.

differentiable in the complex sense):

f ′(z) =
z̄0z0 − 1

(zz̄0 − 1)2
. (3.12)

Applying this transformation to a uniform distribution pz(z) = 1
π on the unit disk

and inserting it in Equation (3.6) yields the following density:

pwz0(w) =
pz(f−1

z0 (w))

|Jf (f−1
z0 (w))|

=
1

π

∣∣∣∣(zz̄0 − 1)2

|z0|2 − 1

∣∣∣∣2 , (3.13)

where we used the fact that conformal mappings satisfy the Cauchy-Riemann
equations and thus |Jf | = |f ′(z)|2 and the shortcut z = f−1(w).

We can use this transformation to define a closed-form lobe model. The in-
coming direction ωi is first projected down to to unit disk and used to define the
parameter z0. Then a point w on the disk is sampled and an outgoing direction ωo
is constructed from it by adding the third component to the vector such that it
lies on the upper unit hemisphere. Since the density pwz0(w) is based on sampling
the unit disk followed by an automorphism on the disk, the resulting lobe is 100%
energy conserving, i.e. no samples are discarded due to invalid directions such as
under the surface.

To create a physically plausible lobe from Equation (3.13), we want the outgoing
directions to be centered around the specular reflection, i.e. we choose z0 = −wi
where wi is the complex projection of the incoming direction ωi: wi = 〈ωi, a〉+i〈ωi, b〉,
where the vectors a, b and the normal form an orthonormal basis at the surface
point.

We can test this formula for Helmholtz reciprocity:

pw−wi
(wo) =

1

π

∣∣∣∣(−wow̄i − 1)2

|wi|2 − 1

∣∣∣∣2 6= 1

π

∣∣∣∣(−wiw̄o − 1)2

|wo|2 − 1

∣∣∣∣2 = pw−wo
(wi), (3.14)

which, unfortunately, is not true in general. Since the asymmetry is intrinsic to
the derivative f ′(z), it is very hard to construct reciprocal formulas on the base of
a Möbius transform (using the inverse as initial distribution would work).

To control the appearance of the lobe, a cosine to the power of k distribution can
be used as initial distribution. After the Möbius transform, the following density
results (note that w, z, z0 ∈ C):

p(ωo) =

√
1− |z|2k−1

(k + 1)

2π

∣∣∣∣(zz̄0 − 1)2

|z0|2 − 1

∣∣∣∣2 (3.15)

with w = 〈ωo, a〉+ i〈ωo, b〉, (3.16)

z =
z0 − w
1− z̄0w

, (3.17)

and z0 = −(〈ωi, a〉+ i〈ωi, b〉), (3.18)

fg = ρ · p(ωo), (3.19)

41

static void
moebius_sample(const float *omega_in, float *omega_out)
{

// (a,b,n) form the local coordinate frame
float complex z0 = dot(omega_in, a) + I*dot(omega_in, b);
// sample z ~ cos^k on disc from x1, x2 uniform in [0,1):
float r1 = x1 * 2.0f * M_PI;
float cos_theta = powf(1.0f - x2, 1.0f/(k+1.0f));
float sin_theta = sqrtf(1.0f - cos_theta*cos_theta);
float complex z = cosf(r1)*sin_theta + I*sinf(r1)*sin_theta;

// moebius transform w = f(z):
float complex w = (z - z0)/(conjf(z0)*z - 1);

// store in outgoing direction:
float dir[3] = {crealf(w), cimagf(w),
sqrtf(1.0f - cabsf(w)*cabsf(w))};

for(int i=0;i<3;i++)
omega_out[i] = a[i] * dir[0] + b[i] * dir[1] + n[i] * dir[2];

}

Figure 3.3.: Pseudo code for the Möbius lobe sampling, using c99 complex syntax.
All temporary variables could have been declared const, which is
omitted for brevity.

where again a, b, n ∈ R3 form an orthonormal basis around the surface normal n.
The lobe fg can then be fine tuned by a another spectral parameter ρ to make the
surface darker and colored.

Pseudo code to sample from such a condensed lobe can be found in Figure 3.3,
and the direct evaluation is shown in Figure 3.4.

3.2.1. Photon Map Importance Sampling

In Section 2.4, we mentioned the use of photon map importance sampling as tech-
nique to effectively reduce variance for a part of the path space, e.g. paths that
reflect caustics seen through a mirror. This technique works by sampling outgoing
directions around a preferred direction, where light is known to come from (see
Figure 2.4). This is quite similar to importance sampling of BRDF lobes, and in
fact the best existing implementation [Pha05] so far uses a Phong lobe to create
directions around the incoming direction of the stored photon. This approach has

42

// omega_in pointing toward hitpoint, omega_out away from it.
// includes f_r * cos
static float
moebius_lobe(const float *omega_in, const float *omega_out)
{

// (a,b,n) form the local coordinate frame
float complex w = dot(omega_out, a) + I*dot(omega_out, b);
float complex z0 = dot(omega_in, a) + I*dot(omega_in, b);
float complex z = (z0 - w)/(1.0f - conjf(z0)*w);
float complex dfdx = (z*conjf(z0) - 1.0f)*(z*conjf(z0) - 1.0f)/

(conjf(z0)*z0 - 1.0f);

// make sure float doesn’t kill sqrtf:
float tmp = 1.0f - cabsf(z)*cabsf(z);
if(tmp <= 0.0f) return 0.0f;

// also apply cos^k:
return powf(sqrtf(tmp), k-1.0f) * (k+1.0f)/(2.0f*M_PI) *

(dfdx * conjf(dfdx));
}

Figure 3.4.: Pseudo code for the Möbius lobe evaluation, using c99 complex syntax.
All temporary variables could have been declared const, which is
omitted for brevity.

two problems: firstly, the Phong lobe will result in directions under the surface,
which have to be rejected. Thus great care has to be taken to avoid unknown ray
densities resulting in wrong Monte Carlo weights. The second problem is that the
Phong lobe will not cover the entire incoming hemisphere at the surface point. To
obtain an unbiased estimator it is thus necessary to use diffuse hemisphere sam-
pling as second technique and combine the two by multiple importance sampling.
Using a Möbius lobe instead solves both these problems, as they originate from
the mismatch between the hemisphere that is intended to be sampled (incoming
at point x) and the one that is actually sampled (centered around the direction of
the stored photon). For grazing angles, this previous approach can be as bad that
every second sample has to be discarded because the lobe is halfway under the
surface.

43

sensor light

sample

y ∈ O

x ∈ C
θiθo

z ∈ C ′

Figure 3.5.: The MA98 device geometry. Light travels from points x ∈ C over y ∈ O
to z ∈ C ′, with angles θi and θo between directions to the centers of
the two circles C,C ′ and the normal.

3.3. BRDF Parameters from Sparse Data

We want to acquire data with the X-Rite MA98 portable multi angle spectropho-
tometer [XR10] and use it for rendering. The acquired data is dense in the spectral
domain (31 wavelength samples from 400nm–700nm), while the angular domain
is sampled very sparsely (ten outgoing directions for light positions at 45◦ and
15◦). The question is, whether a credible angular behavior can be achieved from
this data, if an appropriate BRDF model is used for fitting. As the device is mostly
targeted towards car industry, we use the car paint-like multi layer material.

3.3.1. Sparse Data Acquisition

The geometry of the apperatus is illustrated in Figure 3.5. The measurements are
averaged over an oval O of about 12.5 mm2 on the sample, illuminated through a
circular aperture C of about 11mm2. Light travels from points x ∈ C on the light
over points y ∈ O to points z ∈ C ′ on the sensor, with the same circular aperture
as the light. Following the rendering equation (2.13) formulated as integral over
geometry, the sensor response can be written as

S =

∫
C

∫
O

∫
C′

cos θx cos θxy
‖x− y‖2

· V (x, y) · fr(x, y, z) ·

cos θyz cos θz
‖y − z‖2

· V (y, z)dxdydz (3.20)

=

∫
C

∫
O

∫
C′

cos θxy
‖x− y‖2

· fr(x, y, z) ·
cos θyz
‖y − z‖2

dxdydz. (3.21)

In order to extract an approximate BRDF, we replace the evaluation at x, y, z
by the center points of the circles and the oval x̄, ȳ, and z̄, respectively. Setting

44

‖x− y‖ = ‖y − z‖ =: d, we can pull fr out of the integral and solve for it:

S ≈ 1

d4
cos θi · fr(x̄, ȳ, z̄) cos θo

∫
O
dy

∫
C
dx

∫
C′
dz (3.22)

=
A(C)2A(O)

d4
cos θi · cos θo · fr(x̄, ȳ, z̄) (3.23)

⇒ fr(x̄, ȳ, z̄) = S · d4

A(C)2A(O) cos θi · cos θo
. (3.24)

Equation (3.24) shows that fr can be obtained by a simple scaling of the sensor
response S, as even the cosine terms can be assumed to be constant for a given
light/sensor angular configuration. Calibrated sensor output M(ωi, ωo) is normal-
ized so that the almost Lambertian material Spectralon results in M(ωi, ωo) = 99.1
for all directions. To transfer those measurements to valid BRDF values, we there-
fore need to divide them by 100π.

Unfortunately the assumption of local angular invariance does not hold for
sharp glossy lobes or specular reflection. For our car paint like materials we
have posed the restriction k < 500, since sharp lobes cannot be captured by
the measurement device and will cause bogus fittings. But the clear coat layer
exhibits strong specular reflection and needs special care during fitting. One
further measurement gives an indication of the behavior of specular material in
the device: a near perfect mirror resulted in M(ωi, ωr) = 30, 000.

3.3.2. Metropolis Fitting

We fit one set of parameters (ρs, ρg, ρd, and k) per measured wavelength λ ∈
[400nm, 700nm]. This is done by initially evalutating the mean square error E of
the layer BRDF defined by the parameters ρs = 0, ρg, ρd, and k and the measured
data

E =
∑
j

(
fd(j) + fg(j) + fs(j)−

M(j)

100π

)2

, (3.25)

where j enumerates all light/sensor configurations (ωi, ωo) but the perfect reflec-
tion.

A major problem is that the value of ρs is not available, since it can only be
reliably guessed from one single measurement. We work around this by evaluating
the difference of the fitted BRDF and the measurement value at the specular
configuration, and attribute this to the clear coat layer:

F
(
ρs, cos

π

4

)
= max

{
0,

1

30, 000
(M(j)− 100π(fd(j) + fg(j)))

}
(3.26)

with j = (ωi, ωr) this time. Given that, we use a simple look-up table-based numer-
ical inversion of the Fresnel term F (Equation (3.5)) to extract ρs and re-evaluate
the fitting error E with this value.

45

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

fi
tt
e
d
 v

a
lu

e

wavelength bin [0-30]

sample 5 random

rd
rs
k
r

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

fi
tt
e
d
 v

a
lu

e

wavelength bin [0-30]

sample 5 metropolis sampling

rd
rs
k
r

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30

fi
tt
e
d
 v

a
lu

e

wavelength bin [0-30]

sample 5 metropolis sampling

rd
rs
k
r

Figure 3.6.: Comparison of the different fitting methods. From left to right: random,
Metropolis sampling, Metropolis sampling with smoothness term. The
curves labeled rd, rs, k, and r correspond to the parameters ρd, ρg, k,
and ρs, respectively. Note the different scale in the last one, as high
random peaks are smoothed out.

To fit a BRDF which integrates nicely over wavelength, the parameters should
form a smooth spectrum. Even though the material itself might not exhibit a
smooth spectral distribution, this is desirable behavior as for example the rough-
ness of the lobe is more consistent over the wavelengths. This can be enforced by
adding a small penalty value to the error term, consisting of the difference to the
parameters fitted to the previous wavelength sample:

E∗ = E + α · ‖Pλi − Pλi−1
‖2. (3.27)

We used α = 0.05 in all fittings.
With this error measure at hand, we explore the search space by an adjusted ver-

sion of simulated annealing [KGV83]. More precisely, we use Metropolis-Hastings
sampling to get samples with a distribution proportional to the reciprocal mean
square error. This way, parts of the search space with a good fitting are explored
in detail using small mutations. The inherent ergodicity makes sure the algorithm
is not trapped in local minima. During this random walk, the sample with least
mean square error E is kept as output.

A particular strength of this approach is that difficult situations like small peaks
are handled well and no assumptions about the error function have to be made
(such as e.g. differentiability).

The algorithm proceeds as in [MRR+53, Has70], but the acceptance probability
for a tentative sample is replaced by

a = min

{
1,
E∗state
E∗tent

}
, (3.28)

where E∗state and E∗tent are the mean square errors of the current state and the
tentative sample, respectively.

Summing up, for each material do in parallel:

46

last_params = 0
for samples
{

if large step
params = rand

else
params = mutate(curr_params)

m = error(params) + smoothness * sqdist(params, last_params)
if m == new minimum, record parameters

if rand < curr_m/m
{
curr_params = params
curr_m = m

}
}
last_params = params

3.4. Results

Plots of the Möbius BRDF model can be seen in Figures 3.9 and 3.10. A combined
multi-layer behavior can be observed: the lobe will always degenerate to a mirror-
like specular behavior near grazing angle, producing an effect as if the paint was
covered with a clear coat layer. This is also the reason why the BRDF formulation
is unable to capture diffuse surfaces. The Möbius transform takes place regardless
of the Phong exponent, and thus even a uniform input distribution will exhibit the
Fresnel-like effect.

As a comparison with the Phong-based three-layer BRDF from Section 3.3, we
replaced the micro-facet layer with a Möbius lobe. A few rendered results can be
seen in Figure 3.11. These renderings have been obtained using partitioned path
tracing, i.e. the path space has been partitioned into caustic paths (evaluated
using light tracing) and eye-paths (evaluated using path tracing with next event
estimation), to make sure the algorithm converges even using a non-reciprocal
BRDF. The 100% energy conserving property gives a bright look near the object
boundaries as well as in the cavities between the diffuse sphere in the middle and
the sample material.

To asses the performance of the lobe with respect to how it represents real
materials, we fitted it to Matusik et al.’s data sets [MPBM03a] and compared it
to a standard reciprocal and energy conserving halfway vector-based variant of
the Phong model. The results of these fittings can be seen in Figure 3.12. While

47

the absolute scale of the peak values of the BRDF lobe is represented quite
well by the Möbius lobe, the shape of the lobes are not quite as well matched
as by the Phong lobe. This is due to the behavior of micro-facet reflectance
distributions, which exhibit a flatter and wider lobe near grazing angle, due to
the larger projected differential surface dA/ cos θ which covers a broader range
of micro-facet orientations. This is reflected by the density transformation term
1/(4 cos θ) in the halfway vector Phong model.

For an idea of the effectiveness of the fitting algorithm, see Figure 3.6. The
graphs show the fitted parameters for each wavelength for sample number 5
(for photographs and renderings see the third row in Figure 3.7). Pure random
sampling exhibits a lot of noise over the wavelength domain, which indicates the
global minimum has not yet been found. Metropolis sampling eliminates much
of this noise but the algorithm doesn’t seem to be sure whether to attribute the
energy near the reflection direction to a near-specular lobe (k) or to the clear
coat layer (ρs). The smoothness constraint takes care that this decision is taken
consistently over all wavelengths.

In practice, it proved sufficient to use not more than about 10,000 runs per
material to obtain a satisfactory fitting, which is of course not guaranteed to
reach the global optimum. In an unoptimized CPU implementation, we fitted 30
materials in about a minute on a quad core computer.

As the sparse angular sampling makes numerical error analysis only hardly
interesting, we only give visual comparisons of photographs and renderings of
the fitted BRDF. Figures 3.7 and 3.8 show a selection of car paint samples with
micro sparks and uniform paint in various colors.

3.5. Conclusion

We followed a general approach to create new BRDF models by first coming up
with an algorithm for importance sampling new outgoing directions. Through
density transformation, the resulting probability density function can be given in
closed form, so that evaluation of the BRDF is possible. One advantage of this
approach is that 100% energy conserving models can easily created, a drawback
is that it is unclear if reciprocity can be ensured without energy loss.

As one instance, we investigated the use of the Möbius transformation together
with a cosine distribution to create a BRDF lobe which is strictly defined inside
the projected hemisphere, i.e. never samples invalid ray directions. This model is
100% energy conserving, but doesn’t fulfill the principle of Helmholtz reciprocity.

We also fitted analytical models to sparsely measured data. While it is definitely
not possible to capture the exact angular behavior of materials using the approach
pursued in this section, faithful color reproduction as well as a credible fitting to a
BRDF model including prior knowledge about the class of measured materials can
be achieved. One might argue that the simple analytical models commonly used
in computer graphics don’t fit the behavior of real materials very well anyways

48

Figure 3.7.: Visual comparison of rendered images of the fitted three-layer BRDF
(right) with photographs (left and middle columns). The photographs
have been taken in direct sunlight, and the renderings have been
illuminated by the reference solar spectral irradiance [Ame]. This
figure is continued in Figure 3.8.

Figure 3.8.: Continuation of Figure 3.7.

(see for example the supplemental material of [NDM05]), so it is questionable
how much better one can do with a more complex measurement device while still
fitting the same BRDF model.

When not used as BRDF lobe, the property of the Möbius lobe to be nicely
restricted to the hemisphere while still being non-zero everywhere on this domain
can be used for other applications such as simplifying photon map importance
sampling (see Section 2.4) or to construct radial basis functions on the hemisphere
for scattered data interpolation.

These techniques contribute to robust rendering in two ways. First, spectral
acquisition and rendering of reflection properties robustly reproduce color. Second,
a function which creates samples exactly on the hemisphere can be used to create
robust sampling strategies for BRDF lobes, as well as for importance sampling.

51

log fr for k=1
ωi

log fr for k=1
ωi

log fr for k=1
ωi

log fr for k=1
ωi

log fr for k=1
ωi

log fr for k=1
ωi

log fr for k=1
ωi

log fr for k=1
ωi

log fr for k=1
ωi

log fr for k=1
ωi

log fr for k=1
ωi

log fr for k=1
ωi

log fr for k=4
ωi

log fr for k=4
ωi

log fr for k=4
ωi

log fr for k=4
ωi

log fr for k=4
ωi

log fr for k=4
ωi

log fr for k=4
ωi

log fr for k=4
ωi

log fr for k=4
ωi

log fr for k=4
ωi

log fr for k=4
ωi

log fr for k=4
ωi

Figure 3.9.: The Möbius lobe for k = 1 and k = 4 and various incoming directions ωi.
The top row is a polar plot of a slice through the BRDF. To compress the
values, the graph shows the logarithm of fr. The bottom row shows
the sampling density p(ωo) = fr · cos θo on the projected hemisphere,
for visualization purposes normalized to the maximum.

log fr for k=16
ωi

log fr for k=16
ωi

log fr for k=16
ωi

log fr for k=16
ωi

log fr for k=16
ωi

log fr for k=16
ωi

log fr for k=16
ωi

log fr for k=16
ωi

log fr for k=16
ωi

log fr for k=16
ωi

log fr for k=16
ωi

log fr for k=16
ωi

log fr for k=64
ωi

log fr for k=64
ωi

log fr for k=64
ωi

log fr for k=64
ωi

log fr for k=64
ωi

log fr for k=64
ωi

log fr for k=64
ωi

log fr for k=64
ωi

log fr for k=64
ωi

log fr for k=64
ωi

log fr for k=64
ωi

log fr for k=64
ωi

Figure 3.10.: This shows the same information as Figure 3.9, but for k = 16 and
k = 64. Note how the lobe approaches a specular behavior with larger
k as well as for grazing angles, while the lobe will always stay above
the surface.

Figure 3.11.: These images show some of the samples from Section 3.3 rendered
with Möbius lobes fitted to the data in the three-layer BRDF instead
of the Phong model. This results in a different look, most notably the
boundaries are brighter and the third image in the third row (sample
17, compare to the third row in Figure 3.8) nicely shows the smooth
transition from glossy to specular for greater incoming elevation
angles.

measured
moebius

phong

measured
moebius

phong

measured
moebius

phong

measured
moebius

phong

measured
moebius

phong

measured
moebius

phong

data-based Möbius Phong

Figure 3.12.: Plots of fitted Möbius and Phong lobes in the three-layer BRDF. The
Möbius lobe is in some cases able to fit the maximum peaks better
than Phong (as in the first three rows: aventurnine, black obsidian,
and brass), but fails to match the shape of the lobe (especially
apparent in row four: alum-bronze). Row five (chrome-steel) is not
represented well at all in the three-layer BRDF, so fitting results in
random colors for both lobes. The last row shows an almost diffuse
material (blue-rubber), where the energy conserving property of the
Möbius lobe actually makes the shadows too bright.

“Es ist doch gerade die unendlich lange
Kette wirrer Verzweigungen und Zufälle?
die uns so fasziniert und dann gibts auch
noch ein schönes Bild .. !”

Dr. Quade 4
Simulating Fluorescence

In fluorescent materials, light from a certain band of incident wavelengths is
reradiated at longer wavelengths, i.e., with a reduced per-photon energy. While
fluorescent materials are common in everyday life, they have received little
attention in computer graphics.

Fluorescent materials change the wavelength of light upon reflection. This
applies to many everyday materials, for instance human teeth, utility vehicle
paints, detergents (fabric whiteners), or even ordinary photocopying paper. This
shift of wavelength causes compelling visual effects if it occurs within the visible
spectrum or turns UV radiation into visible light. In particular, many fluorescent
surfaces appear brighter than perfectly white surfaces.

The underlying physical mechanism is well understood. A fluorescent medium
consists of atoms or molecules that absorb incident photons at a given wavelength,
and re-emit them after a short time (in the order of 10−8 s). During this time
interval, the electrons of the fluorescent molecule remain in an excited state above
the ground energy level. The re-emission of a photon occurs as the fluorophore
relaxes to its ground state. Due to mechanical interaction with the surrounding
molecules, some of the excitation energy is lost during this process, leading to
a change of wavelength, or Stokes shift. As required for conservation of energy,
except in the case of multi-photon interactions, this shift always occurs towards

57

longer wavelengths, corresponding to a loss in per-photon energy.
We include fluorescence into light transport simulation as an advanced spectral

effect (Section 4.1), verify our simulation against measurements, and show an
application of volumetric fluorescence from solar cell research. In Section 4.2, a
combined way to express reflection and fluorescence at the surface is introduced
and formalized for the first time, and measurements as well as renderings of such
materials are discussed. This section is joint work with Matthias Hullin, who is
the expert on the measurement side, whereas I joined the project mainly for the
bispectral rendering. Both projects are rendered in the same framework.

Related Work. There are several publications about simulation of fluorescent
light in various fields of science, for example by Welch et al. [WGRK+97], and
Susila and Naus [SN07]. In computer graphics very little research in this domain
has been done. Glassner [Gla94] presented a formulation of the rendering equa-
tion including phosphorescence and fluorescence, i.e., a mathematical model for
global energy balancing which includes these phenomena. After his work, appar-
ently there has not been any further investigation of fluorescence phenomena
in computer graphics until 2001. Wilkie et al. implemented a rendering system
including fluorescence and polarization using Stokes vectors and Müller matri-
ces [WTP01]. In 2006 they provided an analytical BRDF model for fluorescent
surfaces [WWLP06], but this approach only works for a finite set of wavelengths.

Heidler [Hei82] developed a Monte Carlo model for fluorescent concentrators
in 1982. His model was made for an efficiency analysis for the concentrator.
Carrascosa et al. [CAU83] were first to describe ray tracing of fluorescent concen-
trators. In the last few years Burgers et al. [BSKvR05, BSBvR06] and Schüler et
al. [SKG+07] used Monte Carlo ray tracing for simulations of fluorescent concen-
trators and quantum dot solar concentrators, respectively.

The history of data-based BRDF models in the context of computer graphics
goes back to the early nineties, when Ward [War92] measured and modeled the
BRDF of anisotropic materials. The first larger material database of 61 different,
albeit sparsely sampled BRDFs emanated from the CUReT project [CUR96]. Later
on, Matusik et al. [MPBM03a] measured more than 100 different materials (similar
setup to Marschner et al. [MWLT00]), from which they derived a generative BRDF
model. Ngan et al. [NDM05] compiled an overview of different models and how
well they approximate BRDF measurements. Many of these BRDF models allow
for spectrally varying reflectance distributions, such as the Cook-Torrance BRDF
[CT81], but do not model bispectral distributions as needed for the reproduction
of fluorescence.

Within the field of fluorometry, bispectral measurements are a long-established
technique [LJA97]. In fact, the concept of a reradiation matrix dates back over
half a century [Don54]. Due to the high dimensionality of the reflectance and
reradiation function, researchers usually put more focus on the spectral dimension
and constrained themselves to very sparse angular sampling of BRDFs, typically

58

at 0◦/45◦ or 0◦/10◦ when performing spectral or bispectral measurements [AM01,
GT94, HDC07]. In order to vary between these angular settings Holopainen et
al. [HMI08] proposed a carefully calibrated bispectral goniometer setup, but the
limited angular range and resolution prevents sampling a full BRRDF.

More within the field of reflectance capture, [PB96] constructed a spectral
BRDF measuring gantry featuring a tunable monochromatized light source and
broadband receiver, which makes it suitable for spectral, but not for bispectral
measurements.

For computer graphics purposes the phenomena of reradiation and reflection
can be treated in an unified manner, albeit being physically different. We will
henceforth refer to both phenomena as “bispectral reflectance” while keeping our
terminology as compatible as possible with the metrology and physics literature.

4.1. Direct Simulation

Figure 4.1.: Photograph of the fluorescent concentrator samples which we used
for the measurements.

To correctly handle fluorescence in the computer graphics context, a simulation
model has to be chosen, input data needs to be acquired for the spectral charac-

59

Figure 4.2.: Schematic of a fluorescent concentrator. The absorbed light is re-
emitted at a different wavelength in the dye and then guided to
the solar cell, with a very low probability of re-absorption. One can
improve this by using a concentrator stack, as shown in the figure.

teristics of the material, and the simulation needs to be verified against measure-
ments. We performed these steps in the context of solar cell research [BHD+08],
in particular for fluorescent concentrators (see Figures 4.1 and 4.2).

Fluorescent concentrators have been developed to enhance the production of
energy via solar cells and to reduce costs for this. They can concentrate both
direct and diffuse light, which increases the efficiency of solar cells especially in
cloudy weather.

A fluorescent concentrator is made from PMMA (acrylic glass) and contains a dye.
Figure 4.2 illustrates the basic setup for one application of a fluorescent concen-
trator: If light enters the concentrator and hits a dye molecule it will be absorbed
and re-emitted at a different wavelength according to the photoluminescence
spectrum (PL-spectrum).

Since the PL-spectrum is shifted to longer wavelengths as compared to the
absorption spectrum (see Figure 4.4), light is unlikely to be re-absorbed and
therefore travels through the medium mostly undisturbed. By designing the
fluorescent concentrator in a certain shape, light is trapped inside and can be
guided to the solar cell due to total internal reflection.

Our work is based on the dissertation of Zastrow [Zas81] and the publications of
Peters, Goldschmidt et al. [GGGW06, PGL+07] about fluorescent concentrators. It
focuses on the physically correct simulation of fluorescent concentrators in order
to gain deeper knowledge about the physical processes involved and to optimize
the concentrator.

60

Figure 4.3.: Left: the full apparatus with the integrating sphere. Right: schematic
of the measurement of transmission (left) and reflection (right) in the
Ullbricht sphere.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 300 400 500 600 700 800

[d
im

e
n
s
io

n
le

s
s
]

wavelength [nm]

Absorption and Photoluminescence Spectra

absorption
photoluminescence

Figure 4.4.: The absorption and mean photoluminescence spectra.

Figure 4.5.: Processes in a fluorescent concentrator.

4.1.1. Model

Parts of the processes in a fluorescent concentrator are well known and can
be described by analytical models. But for example the behavior of the dye is
still not fully understood and difficult to measure in an experimental setup. The
required input parameters are reconstructed from the measured absorption and
mean photoluminescence spectrum. The photoluminescence spectra are hard to
measure because of multiple scattering which takes place in the dye. Therefore we
restrict ourselves to a mean PL-spectrum which is used for simulation, independent
of incoming wavelength λi. We used a range from 300 to 800 nanometers of the
AM 1.5 spectrum [Ame] for the input wavelengths. The dye in the concentrator
we used to test our model was BA241.

4.1.2. Verification by Experiments

To evaluate and improve the correctness of our simulation model we reproduced
a couple of measurements that were made with real fluorescent concentrators.
Amongst others we determined the absorption and the reflection of the concentra-
tor through simulation. The measurements were made using a photospectrometer
and an integrating sphere (see Figure 4.3). The challenge of the experimental
measurement is the adjustment of the apparatus and the determination of the
desired quantity in spite of measurement errors. For a comparison with the mea-
sured data it is necessary to fit the simulation parameters as best as possible to
the experiment.

Transmission Experiment. This experiment captures all light which passes
through the sample without absorption event and without being reflected at the
top. The sample is attached in the apparatus as shown in Figure 4.3. This way, the
transmittance of the material can be measured. The Ullbricht sphere is used to
integrate all light entering the sphere, which can then be measured with a single
sensor. The simulation results match the experimental data pretty closely, as
can be seen in Figure 4.6 (top). The curve of the simulation data is a bit lower as
the experimental curve for wavelengths above 500 nm and a bit higher for lower
wavelength. This might be an indicator for inaccuracies in the calculation of the
absorption that was used as an input for our simulation.

Reflection Experiment. The name of this experiment stems from the fact that
most light detected here is due to reflection on the boundary (see Figure 4.3,
right). The incoming light beam hits the sample with an angle of 8 degrees. The
sensor will detect all light reflected or leaving the sample at the top. There might
also be some rays that are scattered in the concentrator material (or absorbed
in the dye and re-emitted) and led back to the sensor without being reflected
anywhere. The results of this experiment are shown in Figure 4.6 (bottom). As in

62

 0

 20

 40

 60

 80

 100

 300 400 500 600 700 800

tr
a
n
s
m

it
te

d
 r

a
y
s
 [
%

]

Wavelength [nm]

Transmission Spectrum

experimental data
simulation data

 0

 20

 40

 60

 80

 100

 300 400 500 600 700 800

ra
y
s
 d

e
te

c
te

d
 i
n
 r

e
fl
e
c
ti
o
n
 d

ir
e
c
ti
o
n
 [
%

]

wavelength [nm]

Reflection Spectrum

experimental data
simulation data

 0

 20

 40

 60

 80

 100

 300 400 500 600 700 800

ra
y
s
 w

it
h
 a

t
le

a
s
t
o
n
e
 a

b
s
o
rp

ti
o
n
 [
%

]

wavelength [nm]

Absorption Spectrum

experimental data
simulation data

Figure 4.6.: Results for the transmission experiment (top), the reflection experi-
ment (middle), and the absorption experiment (bottom). The top two
graphs show data from our simulation in comparison to the measured
data, the absorption graph compares the simulation to the data that
was calculated using the data from the transmission and the reflection
experiments.

the transmission experiment the simulation curve is a bit higher for wavelengths
lower than 500 nm.

Absorption Experiment. Using the data from the transmission and the re-
flection experiment the fraction of light experiencing at least one absorption
event on its way through the concentrator can be calculated as Absorption ≈
1− Reflection− Transmission. In our simulation we can directly estimate the rays
that had an absorption event. Figure 4.6 (bottom) shows the comparison of the
calculated absorption and the absorption in our simulation, which fits perfectly.
This proves the correctness of our absorption simulation.

Figure 4.7.: Top: a dragon with fluorescence in the medium (left) and the same
dragon with absorption only. Bottom: a photograph of a fluorescent
concentrator (left) and a rendering (right).

4.1.3. Rendering

The spectral data obtained this way was included in the spectral rendering frame-
work described in Chapter 2. Light tracing (i.e. starting at the light sources) is
done exactly as Figure 4.5 suggests. In the event of fluorescence, a new wave-
length λo is importance sampled according to the mean PL-spectrum, using the

64

inversion method [Sob94]. Adjoint transport (i.e. starting at the camera is slightly
less efficient, as λo is already fixed when a fluorescent particle is reached. That is,
the PL-spectrum needs to be evaluated and applied to the path weight before a
new incoming wavelength λi can be sampled. This essentially means we have to
rely on Metropolis sampling to importance sample the right wavelengths when
starting new paths at the camera.

Resulting images can be seen in Figure 4.7. The dragon on the top left is
rendered with the data acquired from the sample in the photograph just under
it. The image on the top right is the same dragon, but rendered with absorption
only, to visualize the Stokes shift. The simulated light guiding effect can be clearly
observed in the bottom right rendering.

4.2. Fluorescent Surface Radiance Transfer

In this section, we integrate the concepts of fluorescence and bi-directional re-
flectance distribution functions into the bispectral BRRDF that can describe gen-
eral fluorescent (and non-fluorescent) materials and the bidirectional dependency
of their wavelength-preserving reflectance and their wavelength-shifting reradia-
tion.

In optics, the bispectral luminescent radiance factor is commonly used to
describe fluorescent materials. This is inconvenient for our purposes, as it defines
fluorescence relative to a perfect, non-fluorescent diffuser.

Note that reflection and reradiation are different physical mechanisms and
are treated as such throughout the scientific literature. In a computer graphics
context, however, it makes sense to abstract reradiation as an instantaneous
phenomenon and treat it in the same way as reflectance.

Fluorescence is a phenomenon taking place in particles of a participating
medium. For practical purposes, it is desirable to incorporate fluorescence into
the standard surface reflection notion of a bidirectional reflectance distribution
function (BRDF). In particular, this approach includes directional effects without
wavelength shift, such as Fresnel reflection.

That is, we extend the well-known concept of the BRDF to account for energy
transfer between wavelengths, resulting in a Bispectral Bidirectional Reflectance
and Reradiation Distribution Function (bispectral BRRDF). Unfortunately, no bidi-
rectional reradiation measurements of fluorescent materials have been available
so far. Using a bidirectional and bispectral measurement setup, we acquired
reflectance and reradiation data of a variety of fluorescent materials, including ve-
hicle paints, paper and fabric, and compare their renderings with RGB, RGB×RGB,
and spectral BRDFs [HHA+10]. Our acquisition is guided by a principal component
analysis on complete bispectral data taken under a sparse set of angles. We show
that in order to faithfully reproduce the full bispectral information for all other
angles, only a very small number of wavelength pairs needs to be measured at a
high angular resolution.

65

Radiance L(ω)
[

W
sr·m2

]
Spectral Radiance L(ω, λ)

[
W

sr·m2·nm

]
Spectral Irradiance E(λ) =

∫
Ω L(ω, λ)dω

[
W

m2·nm
]

Irradiance E =
∫

Λ

∫
Ω L(ω, λ)dω dλ

[
W
m2

]
Table 4.1.: Definitions of spectral quantities; ω refers to directions and λ to

wavelengths.

4.2.1. Bispectral Rendering Equation

Light transport considering energy transfer from one wavelength to another, in
order to account for fluorescence, can be expressed by the bispectral rendering
equation:

L(ωo, λo) = Le(ωo, λo) + (4.1)∫
Ω

∫
Λ
L(ωi, λi)fr(ωo, ωi, λo, λi) cos θdλi dωi, (4.2)

which in contrast to the standard rendering equation (2.12) requires an additional
integration over all incident wavelengths λi. In order to stay consistent with
Glassner [Gla94], we denote the wavelengths by λo and λi (as opposed to λ and µ
that are often used in optics and other engineering fields).

Bispectral BRRDF. The bispectral rendering equation includes the bispectral
BRRDF fr(ω o, ω i, λ o, λ i) that describes the angularly dependent reflectance for
any pair of wavelengths. Its definition is different from the well-known definition
of a spectral BRDF (Equation (2.11)), which cannot represent fluorescent mate-
rials. Furthermore, it is more general than the use of directionally independent
reradiation matrices as proposed by Donaldson [Don54].

Before we provide the general bispectral BRRDF, let us briefly recall the def-
inition of a spectral BRDF. The required spectral quantities are repeated from
Section 2.2 in Table 4.1. Note that the spectral quantities feature a different
unit compared to their non-spectral counterparts. Following Nicodemus et al.
[NRH+77], the differential reflected spectral radiance dL o(ω o, λ o) due to the inci-
dent differential spectral irradiance dE(λ) from direction ω i is given as:

dL o(ω o, λ) = dE(λ)fr(ω o, ω i, λ)

[
W

sr ·m2 · nm

]
, (4.3)

66

with ω i and ω o being the incident and outgoing directions. The spectral BRDF
fr(ω o, ω i, λ) for a single wavelength is therefore defined as the ratio of differential
reflected spectral radiance to differential incident spectral irradiance:

fr(ω o, ω i, λ) =
dL o(ω o, λ)

dE(λ)
=

dL o(ω o, λ)

L i(ω i, λ) cos(θ i)dω i

[
1

sr

]
. (4.4)

It follows that the unit of the spectral BRDF is
[

1
sr

]
, which is the same as for

non-wavelength dependent BRDFs fr(ω o, ω i), although the units for L and E differ
in the spectral vs. non-spectral case.

We now generalize Nicodemus’ derivation of the BRDF to account for cross-
wavelength energy transfer by the bispectral BRRDF and show that its unit differs
from the spectral BRDF. Referring to the bispectral rendering equation (Eq. 4.1)
the differential reflected and reradiated spectral radiance (differential with regard
to the incident direction ω i and the incident wavelength λ i) is due to incident
double differential (non-spectral) irradiance for ω i and λ i:

d2L o(ω o, λ o) = d2E · fr(ω o, ω i, λ o, λ i)

[
W

sr ·m2 · nm

]
, (4.5)

and hence the bispectral BRRDF may be defined as

fr(ω o, ω i, λ o, λ i) =
d2L o(ω o, λ o)

L i(ω i, λ i) cos(θ i)dω i dλ i

[
1

sr · nm

]
. (4.6)

The bispectral BRRDF is a general way to represent fluorescent materials as it
does not make any assumptions about the material.

In the discretized case, an individual sample of the bispectral BRRDF for the
directions (ω i, ω o) expresses the energy transfer from the incoming spectrum to
the reflected spectrum as a matrix over λ o and λ i, see Figure 4.17. While the
diagonal entries refer to reflection at the same wavelength, the fluorescent effect
is represented by the off-diagonal part. As there is typically no transfer from longer
to shorter wavelengths (towards higher energy), the upper triangle will remain
black.

4.2.2. Measurement Setup

In order to acquire isotropic bispectral BRRDFs, we have built a fully automated,
image-based measurement device. It closely follows the design of Matusik et al.
[MPBM03a] for isotropic BRDFs but with the added capability to emit and acquire
at specific wavelength bands (Figure 4.8).

Measurement Device. The spectral filters used are LCD-based Lyot filters (CRi
VariSpec VIS10/35 mm) whose transmission bands are about 10 nm–20 nm wide
and range from 400 nm to 720 nm. We apply additional polarization scrambling

67

Figure 4.8.: A depiction of our setup. A sample sphere (1) is mounted on a turntable
(2), to which a digital monochrome still camera (3) is attached. The
camera is equipped with a visible-spectrum tunable filter (4). The
sphere is illuminated by a light guide coupled xenon light source
(5) with another tunable filter (6) mounted in front; near-UV light is
generated with LEDs that can be selected using a motorized wheel (7).
On the exit aperture of (6) and the entry aperture of (4), we attach
optical depolarizers.

optics to undo the linear polarization from the LCD filters so as not to bake any
unwanted side effects into the measured BRRDF. Figure 4.9 illustrates the strong
influence of polarization both on the specular and the diffuse reflection for a
sample with clear coat. Our experiments show that even non-coated, apparently
diffuse surfaces do not necessarily completely decorrelate the polarization state.

As light source we employ a xenon arc lamp coupled into a light fiber (XION
medical Xenon R180), whose light has a flat and stable spectrum (measured
using a spectroradiometer) but rather weak blue and UV output, especially after
passing the spectral filter. We therefore add LEDs for better coverage of this
range (370 nm–420 nm in 10 nm steps). The camera is a monochrome, digital still
camera (Jenoptik ProgRes MFcool), with which we acquire high-dynamic-range
images using exposure series from 1 ms to 16 s.

68

Avg. H/H H/V V/V V/H

Figure 4.9.: Influence of polarization on reflection from a sphere: Average image
and difference images (red: negative) depending on the polarization
state of light source and observer, where “H/V” stands for “horizontal
in, vertical out”. Near the Brewster angle, the specular highlight is
contained almost exclusively in the V/V component. Also, note the
variation in the diffuse regions.

Data Acquisition. The straightforward way of acquiring a bispectral BRRDF is
to capture images at all turntable rotations β for every pair of wavelengths (λ o, λ i).
For practical reasons we constrain ourselves to 20 nm steps in the range from
380 nm to 720 nm for λ i and 400 nm to 720 nm for λ o, amounting to 170 images
per β as the upper triangle of the bispectral matrix can be ignored. We vary β in
the range of 5◦ to 170◦. For highly specular materials a stepping of 5◦ is chosen to
sufficiently sample the sharp highlight while we take a coarser sampling of 10◦ for
materials of lesser angular bandwidth.

Sample Geometries. Depending on the material, we use two different sam-
ple geometries: coated spheres for the paints and a custom-made piecewise
cylindrical object (Figure 4.19) wrapped in stripes of paper or fabric.

Due to the varying normals of the shapes each surface point will be illuminated
and viewed from a slightly different direction. From simple geometric considera-
tions we can determine (ω o, ω i) for every pixel captured under a specific turntable
rotation β.

4.2.3. PCA-based Acquisition

For storage and further processing, we discretize the data for each wavelength
pair in 323 bins using the (θ o, θ i, φdiff) parameterization chosen in [MPBM03a]. For
the strongly specular materials, 643 bins are used. Bins that are not populated
due to the coarse sampling of the turntable position are filled in by diffusion.

We perform an adaptive, PCA-steered measurement, i.e. we first acquire full
bispectral data sets for a small number of turntable angles. After performing the
PCA decomposition, we acquire dense angular data only for the sparse bispectral

69

Avg. B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Fl. yellow

Fl. red

Green

Day-glo red

Pink

White paper

White cloth

Figure 4.10.: Average and the first 10 principal components B i.

basis that is required for a good reconstruction. Only a small set of wavelength
pairs needs to be measured.

We opt for a data-driven representation of the bispectral BRRDF because we
do not want to make strong a priori assumptions about the spectral and angular
behavior of the material. Particularly, we know that due to the different nature of
fluorescent reradiation and specular reflection, the overall spectral and angular
variation of most bispectral BRRDFs (say, a diffuse red material with a white
highlight) is not strictly separable in the form

fr(ω o, ω i, λ o, λ i) = fλ(λ o, λ i)f
ω(ω o, ω i). (4.7)

This is unfortunate, since it would have allowed us to measure angular and spectral
dependencies fω and fλ separately and simply compute the bispectral BRRDF as
the outer product of both functions. On the other hand, it is always possible to
expand fr into a series of separable terms:

fr(ω o, ω i, λ o, λ i) =
∑
n

fλn (λ o, λ i)f
ω
n (ω o, ω i). (4.8)

Since fluorescence, due to its physical nature, is only weakly directional, a PCA
will yield such a decomposition of low rank. We exploit this insight and perform
a dense bispectral measurement under only a sparse set of turntable angles
(0◦, 70◦ and 150◦, each of which corresponds to a 2D slice of the BRDF). The

70

measurements from this sparse set of turntable positions contain samples from
a lot of different angles of incidence and exitance. The bispectral correlations
found in these measurements can then be transferred to other angles. Figure 4.15
illustrates this for measurements taken at two turntable positions.

We assemble a matrix F which contains all bispectrally-valued BRRDF samples
with the average value f̄ subtracted, and compute its SVD. Selecting the n eigen-
vectors with the greatest eigenvalues the basis B is assembled. Examples of such
eigenvectors can be seen in Figure 4.10.

Measurement Basis. Since our narrowband filter assembly only allows for
the sampling of wavelength pairs (λ o, λ i)k, we cannot measure in the PCA basis
directly. The estimation of a bispectral sample f from the sparse measurement
f ′ = {fk(λ o, λ i)} calls for a basis transformation P+, which we obtain as the
pseudo-inverse of the matrix P which in turn is composed of the subset of rows of
B corresponding to (λ o, λ i)k:

f ≈ BP+(f ′ − f̄) + f̄ . (4.9)

The selection of suitable wavelength pairs (λ o, λ i)k influences the stability of
the approximation which is correlated to the condition number of P . Starting
with the wavelength pair corresponding to the greatest entry in B, we follow a
greedy strategy selecting the set which brings cond(P) closest to 1. Our approach
is inspired by Matusik et al. [MPBM03b] who reduced the number of measured
directional samples for ordinary BRDFs using a similar analysis.

4.2.4. Rendering

For the renderings, we used the framework as described in Chapter 2, i.e. we split
path space in two unidirectional parts. This is quite necessary in this setting, as
paths will change their wavelength on the way, making deterministic connections
between paths almost impossible. These would be simpler if a full spectrum (not
only a continuous random variable in that domain) would be transported. But
given the problems with this approach mentioned in Chapter 2 and the fact that
deterministic connections often suffer from bad importance sampling, we believe
partitioned path tracing is the right choice. One additional criterion comes into
play with fluorescence: the materials are not reciprocal by nature (the wavelength
shift is the other direction). So connecting paths from different directions at
different wavelengths deterministically by simply evaluating the bispectral BRRDF
is possible, but will also make the problem of bad importance sampling worse by
one dimension.

We use Metropolis sampling to guide sampling by global importance, also
including the spectral domain. This is more general than partial importance
sampling by fitted, analytical BRDF models for each (λi, λo) pair, which would also
not represent the shape of a measured lobe very well. Data-driven importance

71

#Comp. 1 2 3 4 5 10 20 30 1% 0.1%

Dull red 2 5

Orange 4 7

Green 2 6

Pink 2 7

Speckled 4 8

Figure 4.11.: Image-based same-angle reconstruction of full bispectral data (20 nm
resolution) from a small number of acquired bispectral samples. As
a reference, we provide ground truth in the top half of each image,
and the number of basis vectors required for the residual energy
to drop below 1% and 0.1%, respectively. Note that in the case of
strong specular highlights (Orange, Speckled), the numerical error
does not reflect the visual difference well.

sampling by bins (i.e. multi-dimensional wavelet importance) with correction
factors for linear interpolation would be an improvement.

When evaluating the bispectral BRRDF fr(θ o, θ i, φdiff , λ o, λ i), a specific reflectance
sample is obtained by multilinear interpolation from our bispectral BRRDF repre-
sentation. Memory requirements can be stripped down by storing the BRDF as
very few coefficients along with the PCA bases created during acquisition.

As polarization has already been scrambled during measurement, it is ignored
while rendering.

In Figure 4.21, we demonstrate that fluorescence does in fact require bispectral
modeling of sufficient resolution. After reducing the measured bispectral BRRDF
samples to a 3×3 (RGB×RGB) matrix by integrating over the RGB spectral curves,

72

Figure 4.12.: The Speckled sample, while not a homogeneous BRRDF, represents
the class of mixed materials with angularly dependent visibility of
the individual components. Note the red shift towards grazing angles
in the defocused shot (right). Photos taken under 420nm light.

Figure 4.13.: As saturation function x̃ = sat(x), we chose the inverse of x =
sign(x̃)(x̃2 + |x̃|), which is linear for small values of |x|, but of O(

√
x)

asymptotically.

the renderings show clear differences to the full bispectral BRRDFs. Especially
for the Yellow sample, the coarse RGB×RGB representation is unable to repro-
duce reradiation, which is sharply centered around 540 nm. We also integrate the
bispectral BRRDF into a spectral BRDF by assuming a uniform illuminant spec-
trum. Again, the differences can clearly be seen. While they are less pronounced
because the illumination in this scene is similar to the spectrum used for the
conversion, slight deviations in color and intensity can still be made out. Reducing

73

#Comp. 1 2 3 4 5 10

Orange

Speckled

Figure 4.14.: By applying a saturation function on the covariance matrix, the
convergence in the non-specular parts is significantly improved.

the bispectral BRRDF to a simple RGB BRDF (again assuming a uniform incident
spectrum) shows obvious differences. These differences are most pronounced for
non-white spectra as demonstrated in Figure 4.20.

4.3. Results

Using our measurement device and acquisition scheme, we have captured bispec-
tral BRRDFs of a number of fluorescent materials, including fluorescent paints with
or without clear coating as well as paper and white cloth (shown in Figure 4.16).

The strength of the reradiation therefore depends heavily on the illuminating
spectrum as demonstrated in Figure 4.18 and Figure 4.19. In Figure 4.19, RGB
photographs are compared against renderings under a 5600K illuminant. As our
illumination system contains near-UV LEDs, we can even capture materials such as
the paper sample which exhibit significant reradiation in the blue to UV range. The
effect is clearly visible in Figure 4.18. Our captured bispectral BRRDFs faithfully
reproduce the fluorescence in both images.

Same-angle Reconstruction Using Standard PCA. In Figure 4.11, we show
a reconstruction of a single-angle bispectral measurement from the PCA basis
for the same angle. The error measure provided is given by the residual energy
as determined by the SVD and relates to the full bispectral dataset with 170
wavelength pairs, not just the resulting sRGB color vectors as shown in the figure.

74

0◦ measurement 35◦ reconstruction 70◦ meas.
standard PCA saturated PCA

PSNR (specular): 21.2 dB 22.1 dB
PSNR (non-specular): 29.0 dB 45.1 dB

Figure 4.15.: Reconstruction of an intermediate angle, which was not sampled for
the PCA, from 5 wavelength pairs using the standard and saturated
PCA approaches. Again, the top half of the reconstructed images
is ground truth. The PSNR has been computed separately for the
highlight area and the rest.

Although the fidelity increases with the cardinality of the measurement basis,
the visual appearance even at a numerical error as low as 1% or 0.1% is not
always fully satisfactory. It is due to the least-squares nature of the SVD that
materials with particularly strong specular highlights (Orange, Speckled) attract
the attention of the first few eigenvectors at the expense of a slower convergence
in the nonspecular regions. Remarkably, a decent reconstruction is often achieved
even before the inclusion of the first measurement of an off-diagonal wavelength
pair. In all five examples, the first 9 components were based purely on wavelength-
preserving measurements.

Speckled Dataset. The “Speckled” material (Figure 4.12) is a fluorescent yel-
low sphere onto which we manually applied a non-uniform layer of red speckles.
While this sample does not have a homogeneous BRRDF, we included it as it repre-
sents a material with complex microstructure resulting in directionally dependent
fluorescence, as can be seen in the defocused image (Figure 4.12 right).

Taming the Specular Highlight. It is to be expected that a signal decomposi-
tion based on a L1 measure would no longer overemphasize the importance of the
specular highlight. However, the few L1-PCA approaches in existence are compu-
tationally rather expensive and, due to their nonlinear optimization scheme, offer
no guarantee of global convergence [BBdF96, KK03]. In order to emulate a similar
behavior using a standard PCA, we apply a saturation function on the values in

75

the covariance matrix (and its inverse after the reconstruction), which dampens
the high pixel values in the highlight region (Figure 4.13). As a consequence, the
visual convergence is sped up considerably (Figure 4.14).

Angular Dependency. For most materials (except Speckled), the resulting
principal components show that the fluorescent entries in the reradiation matrix
λi 6= λo, taken for themselves, carry a rather weak angular dependency, i.e.,
indicating reasonable separability. However, as soon as the full matrix, the full bis-
pectral BRRDF including the non-fluorescent elements, is considered, at least two,
most often even more separable functions are required for faithful reproduction.

Angle Transfer. Earlier on, we assumed that the bispectral decomposition of
an angular BRRDF slice can be transferred to the spectrally sparse measurements
taken under different angles. In Figure 4.15, we provide experimental evidence
for this assumption. Using a PCA basis that was computed using fully bispectral
measurements at turntable angles of 0◦ and 70◦, we reconstruct a fully bispectral
intermediate slice at 35◦ out of only five measured wavelength pairs.

Our PCA-guided measurement routine allows us to drastically reduce the acqui-
sition cost. As an example, let us assume a sampling of 5◦ steps from 0◦ to 150◦

for the turntable position. If all 170 bispectral entries are captured for each angle,
the total time of optical exposure amounts to approx. 45 hours. By performing
the full bispectral measurement under three turntable orientations only, and
by measuring only 5 out of 170 wavelength pairs for the remaining angles, the
acquisition time drops to 5.5 hours.

4.4. Conclusion

We conducted a physically based Monte Carlo simulation of fluorescent concentra-
tors employing ray tracing. The fluorescent dye in the participating medium was
measured in a complex apparatus using an integrating sphere and a photospec-
trometer which results in a fine resolution in the wavelength domain. Unfortunately
multiple scattering in the concentrator probe prevents simple measurement of
the photoluminescence spectrum of a dye molecule, so the mean PL-spectrum
had to be used.

For simple rendering of fluorescent surfaces we have provided the definition
of the bispectral BRRDF, which enables us to model directionally-dependent
fluorescent behavior. The proposed image-based measurement setup can acquire
such bispectral reflectance and reradiation functions efficiently.

Even though real-world BRRDFs are not directly separable into spectral and
angular functions, we can apply a PCA-steered acquisition scheme that only
measures relevant bispectral samples of the BRRDF, resulting in a significant
speedup (approx. 9:1), rendering such acquisition practical.

76

One of the shortcomings of a standard PCA in this context is its optimization of
an L2 error function. As a consequence, the importance of specular highlights is
often overemphasized, which leads to slower convergence in the non-specular
regions. While a L1-based decomposition could potentially resolve this issue, we
reached a simpler solution that is just as effective. By reweighting the covariance
matrix before performing the SVD, we are able to improve the reconstruction
fidelity for very small numbers of measured components. This also extends to
spatially varying materials. For most of our materials, we can reach a visually
indistinguishable reconstruction using only 5 or even fewer measurements per
angle (as compared to 3 for a standard RGB measurement). This should allow for
efficient acquisition of even higher-dimensional functions (anisotropic bispectral
BRRDFs, bispectral BTFs or reflectance fields) in the future.

Summing up, this chapter included the rendering of fluorescence into light trans-
port simulation, both in a fluorescent medium and at the surface. The robustness
of both simulations has been verified against measured data.

77

Figure 4.16.: Six measured BRRDFs, rendered using two-directional Metropolis
guided path sampling (LT+PTDL), illuminated by a spectrally mea-
sured sky. From top left to bottom right: fluorescent yellow, red,
green, pink, day-glo red, and white paper.

Figure 4.17.: The angular configurations viewed in reradiation matrices for the
same materials as in Figure 4.16. From top left to bottom right:
fluorescent yellow, red, green, pink, day-glo red, and white paper.
The input wavelength λi is left to right, and λo is top to bottom.

(a) Yellow (b) Red (c) Green (d) Dull Red (e) Paper

Figure 4.18.: Renderings (top row) and photos (bottom row) of different materials
under UV light (400 nm).

(a) Yellow (b) Red (c) Green (d) Dull Red (e) Paper

Figure 4.19.: Renderings (top row) and photos (bottom row) of different materials
under 5600K illumination.

(a) bispectral BRRDF (b) RGB BRDF

Figure 4.20.: Measured fluorescent red bispectral BRRDF (a) compared to a simple
RGB vector valued BRDF (b) under blue illumination. Note the cross-
color reflectance from blue to red in the case of the full bispectral
BRRDF. The RGB BRDF cannot represent these complex color shifts
and fails to reproduce the fluorescent effect.

(a) Spectral (b) RGB×RGB (c) RGB
(16 bands)

Figure 4.21.: Comparison renderings using 3 different measured fluorescent mate-
rials. Full bispectral BRRDF measurements (right half of each sphere)
are compared to spectral measurements, RGB×RGB reradiation ma-
trices, and standard RGB BRDFs.

“Many people regard arithmetic as a trivial
thing that children learn and computers
do,...”

D. Knuth, The Art of Computer
Programming, Vol. 2 5

Ray Tracing Precision

One of the seemingly most trivial long-term problems in ray tracing is self inter-
section. It has been well known for a long time and studied in literature quite
a lot (e.g. [WPO96, Wäc08]) and results from numeric inaccuracies in floating
point arithmetic. It describes the situation, when a secondary ray is unfortunate
enough to start below the actual surface due to rounding errors and quantization.
This is just one example where special code is needed to work around calculation
errors. Incorrectly reported intersections can also result in light leakage through a
triangle. Possible workarounds include ε-thresholds in the form of offsets which
are applied to the intersection points, or re-evaluation of the intersection in double
precision.

This gives rise to the question whether general floating point arithmetic could be
replaced by a specialized number system to save area and power on specialized
hardware and at the same time be able to give exact error bounds and warranties
about the intersection point.

In this chapter, we compare a variety of common ray/triangle intersection tests
with respect to precision and their suitability for a fixed point implementation
in custom hardware. The division as most complex operation will receive some
extra attention and the impact of approximation is studied. Finally, one particular

83

ray/triangle test turned out to give the best results and an example implementa-
tion is given in C as well as a pipelined VHDL version.

Related Work. The most general algorithm to compute visibility is ray trac-
ing [Whi80, Gla89, Shi00], where one differentially small ray of light is traced
through the scene, i.e. a line segment is intersected with the geometry and the
closest intersection is returned. A lot of work has been done to make ray tracing
fast, see for example Havran’s thesis [Hav01] and Wald et al.’s state of the art
report [WMG+07] and references in both these documents for a starting point. A
main drawback of ray tracing is the random memory access, which can easily be
the bottleneck of the whole computation [Dre07].

A coherent way to determine visibility of a whole raster at the time is rasteriza-
tion. This technique iterates over all geometry and intersects it with a pixel raster
by scanline conversion. The closest intersection is chosen by a z-buffer, where
distances to the eye point are stored. A particularly nice feature of this method is
that it potentially has a constant memory footprint (the z-buffer), independent of
geometric complexity. This is not true any more as soon as bounding volume hier-
archies are used to accelerate geometry sorting, or transparency comes into play.
Raster-based methods have their application mostly in games, as raster points
don’t always lie exactly where an underlying algorithm needs the evaluation.

The Reyes architecture [CCC87] is worth a special mention here, as it has
been very successfully used in movie industry ever since it was introduced. This
algorithm is using stochastic sampling to include motion blur and depth of field
effects. Subdivision surfaces and displacements are used to create sub-pixel-sized
micro-polygons which give a lot of geometric detail.

Although introduced to create images from a view port, rasterization can be
used to compute various secondary effects in the same way. This includes for
example shadow maps for direct illumination, and cube maps and convolutions
for specular and glossy reflections.

The main difference between ray tracing and raster-based algorithms is the or-
der in which computations are performed. While ray tracing can generally explore
the whole path space at once and precisely cull away unneeded geometry, raster-
based approaches exploit coherence much better and perform all computations
on a block of memory (i.e. a texture) in one block after which the memory can
be freed. On the other hand, Monte Carlo ray tracing comes with a complexity
independent of the dimension (see Section 2.3), whereas always processing the
full raster results in exponential running time.

Advanced composite techniques employ precomputation of potentially visible
sets (PVS), e.g. [BMW+09], or use baked visibility maps [PFA+10] for precomputed
radiance transfer (PRT) [KSL05].

Geometry. To represent geometry in a digital form, there exist a few approaches.
These can be classified into explicit and implicit representations. Implicit ones,

84

such as distance fields and iso-surfaces only give information about the surface
location with respect to a point to test. Explicit representations on the other hand
give direct access to the surface points. The simplest one, which is often used in
real-time rendering and fast ray tracing, is triangle meshes. This is sometimes
done in vertex-index form, where shared vertices are only stored once and trian-
gles only refer to it via an index. Real-time ray tracing systems often store their
meshes in redundant 9-floats per triangle form, duplicating the vertex data, to
increase locality in memory accesses. If this piecewise linear (C1-continuous) rep-
resentation is not smooth enough it is common to interpolate per vertex shading
normals.

More sophisticated smooth geometry can be created by subdividing polygon
meshes, e.g. using Catmull-Clark subdivision [CC78]. This geometry can then be
approximated by b-splines [LS08] to gain random access to sampling points on
the surface. The same is given for non-uniform rational b-splines (NURBS) [PT95],
another common way to store geometry. This property can be used to create quad
or triangle meshes for simple rendering of these high-level primitives. Random
access is especially important when level-of-detail (LOD) is used to simplify the
meshes in unimportant areas, e.g. far away from the camera.

A special case worth mentioning is the class of Bézier patches, especially bi-
cubic Bézier patches. These consist of 16 points arranged in a 4×4 grid, where
only the corner points lie on the surface, and the rest is used to define the tangent
planes.

On top of these surfaces, additional detail can be created using bump- or
normal maps, or parallax mapping [Tat05]. These techniques are increasingly
better approximations of displacement maps, where a surface is sampled with a
sufficiently large number of vertices, which get displaced along their normal by a
value read from a displacement texture. This way, a lot of detailed geometry can
be created.

5.1. Arithmetic

Looking at our problem definition above, it now remains to choose an appro-
priate number system. There are two issues to be identified as challenge in
Equation (5.5). The first is the range of the variables, where the volume will be
the largest. The other is the division, which is slow in some number systems. For
example in Cuda, computation of the reciprocal is still four times as expensive as
multiplication or addition [NVI09, Sec. 5.1].

Integer, fixed point arithmetic is very simple to implement on custom hard-
ware, and the analysis about precision can easily be done. The only concern is the
dynamic range of intermediate values in the calculation, if excess bit widths have

85

to be avoided. This has been studied in the context of ray/triangle intersection by
statically discarding bits [HK07, HRB+09].

Rational numbers seem an intuitive way to handle the division. For ray/triangle
intersection, however, there is really only one division to be done. This would
be necessary with rational numbers as well in order to convert the output result
at the very end. The same applies when using polynomials for numerator and
denominator [Knu81].

Floating point (ANSI/IEEE Std 754-1985) is the most commonly used num-
ber format on computers. It is the base of CPU’s SSE instructions (e.g. i686,
PowerPC, IBM Cell) as well as general purpose GPU computing, and has been
studied in depth [Gol91].

For single-precision, the 32 bits are interpreted as se7e6 · · · e0m22m21 · · ·m and
the corresponding value would be f = (−1)s · 1.m22m21 · · ·m0 · 2e−127, in the regular
case (i.e. no denormalized number or not-a-number or infinity is indicated).

That is, the range of representable numbers is divided in two stages: the
mantissa bits m are the equispaced fixed point, and the exponent bits e switch the
scale to larger steps when moving away from zero. As an intuitive error measure
for calculations, units in the last place (ulp), are used. The advantage of this
measure is that it depends on the exponent, and thus gives a meaningful error for
the full range of values. This has been exploited for ε-tricks in ray tracing [Wäc08].

Logarithmic numbers are a bit similar to floating point numbers. They store
the logarithm of the absolute value of the number along with its sign. This ap-
proach promises fast division by just subtracting the logarithms. Regular sum-
mation gets a lot more complicated though, and we want only one division per
ray/triangle test, but possibly three dot products. So just to avoid the division, we
need one logarithm and one exponentiation, to convert to and from the logarith-
mic number system. These calls are unfortunately slower and less precise than a
regular reciprocal (e.g. the regular Cuda log2 has an error of 3 ulps, and only the
approximate function __logf achieves the same speed as the division). So this
number system is only useful for us, if very cheap approximations of logarithm
and exponentiation can be found.

5.1.1. Approximate Computation

To approximate functions numerically, there exist various iterative methods. Most
of them are based on series expansions which sum up simple to evaluate terms
until the desired precision is met.

86

The Taylor series is a fundamental series expansion which uses the derivatives
of the function at a point x0:

f(x) ≈
∞∑
n=0

f (n)(x0)

n!
(x− x0)n

is also called Maclaurin series for x0 = 0. Conditions for convergence and order of
the approximation error have to be evaluated for the particular function and the
domain x lives on.

Newton’s method is a general technique to find the zeroes of a function by
improving an initial coarse estimate. It works by evaluating the first order Taylor
approximation (i.e. the tangent) at the coarse guess and using the zeroes of the
tangent to find a better guess. This can be shown to have quadratic convergence
and is especially useful to refine division (Newton-Raphson division).

Complementing this, it is possible to track the ranges of the required intermedi-
ate values for integer and fixed point, as well as the errors caused by quantization
and rounding, using some well-studied techniques.

Interval arithmetic can be used to move an interval through the computations
(see for example [Moo66, Kea96] for an introduction):

x + y = [x+ y, x+ y], (5.1)

x− y = [x− y, x+ y], (5.2)

x ∗ y = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}], and (5.3)

1/x = [1/x, 1/x] if x > 0 or x < 0, (5.4)

where x and y are input intervals. While this is great to propagate uncertainty
about the input, error bounds are always worst-case and tighter bounds for a
more restricted input might exist. This is addressed by an extension which uses
the first order Taylor expansion, called affine arithmetic [dFS04].

5.1.2. Division

Division it is the most complex and costly operation in ray tracing, both in terms
of die area and clock cycles. There are lots of efforts to make this instruction
faster, e.g. by replacing the division by an approximate reciprocal and requiring
additional iterative refinement. The Cuda platform for example generates an error
of 2 ulps for x/y and 1 ulp for 1/x if the switch -prec-div=true is not explicitly
given [NVI09]. Unfortunately, distance calculation (via division) and rejection of
the intersection point by depth test are closely related and thus this part is also
very sensitive in terms of precision. This is why this section takes a closer look at

87

some approximations and the impact on the intersection point. Formally, we want
to calculate the unsigned division

n/d =
⌊n
d

⌋
, for d 6= 0,

and expect the result for signed input to have the sign of n · d. Additionally, we
are not interested in the remainder, but need to make sure that the result already
includes all the necessary precision.

Precise calculation in fixed point. If we want to store the largest and the
smallest possible result, the fixed point division would occupy

Q:q :=
N:n
D:d

:= N+d:(n+D)

bits, where the notation indicates the number of bits before the decimal points
followed by a colon followed by the number of bits after the point. It follows that
the distance from a point O to the triangle (a, b, c) with normal n along the ray
direction ω

t =
〈a−O,n〉
〈ω, n〉

∈ n:m
1:2m

= n+2m:1+m,

when world space points are quantized in n:0 and directions in 1:m bits. Since we
are only interested in distances on a discrete grid quantized in n:0 bits, we can
constrain the output to n+1:0 (one bit more to be able to represent lengths on
the diagonal) and optimize the divide unit with respect to that [Han07]. Another
optimization is to strip the same number of leading zeroes from the numerator
and the denominator before computation [Knu81]. Unfortunately, the number of
required clock cycles is still in the order of output bits, which is usually much more
than needed for the rest of the triangle intersection test.

Approximate reciprocal in fixed point. A fast, coarse approximation of the
reciprocal for fixed point values can be obtained by a right shift [War02]. This is
precise when dividing by a power of two. We can also take advantage of the bits
which are discarded by the right shift and use these for a linear interpolation to
the result when dividing by the next power of two. The c source code to calculate
the approximate reciprocal of a 32-bit fixed point number in [0, 1) is as follows:

uint32_t arcp32(uint32_t d)
{

// no interpolation:
// return (1 << (__builtin_clz(d)));

88

const uint32_t i = __builtin_clz(d);
// linear interpolation:
const uint32_t mi = 31 - i;
const uint32_t m = d ^ (1 << mi);
uint32_t ms;
if(mi > i) ms = m >> (mi - i + 1);
else ms = m << (i - mi - 1);

return (1 << i) - (ms);
}

Where __builtin_clz() is the gcc intrinsic to count leading zeroes. The corre-
sponding function for the intel compiler would be _bit_scan_reverse(). The
result of this function can then be refined using Newton-Raphson iteration:

uint32_t arcp32_newton(uint32_t d)
{

int64_t r = arcp32(d);
// newton iteration + rounding: (int)(r*(2.0 - r*d) + 0.5)
return (r*(0x100000000ll - r*d) + 0x40000000) >> 31;

}

Repeated evaluation of this iteration might well be worth the effort, as it has
quadratic convergence. Error plots for the approximate reciprocal and after appli-
cation of one iteration Newton-Raphson can be seen in Figure 5.1.

5.2. Analysis of Ray/Triangle Intersection Tests

As an essential element of any ray tracer, there are a lot of ray/triangle intersec-
tion tests, and a lot of publications have been made about it (e.g. [Bad90, MT97,
Jon00, HM00, GD03, Chi05, KS06, Woo06]). Just about all approaches thinking
about a ray and a triangle have been tried, and applied to various specialized
architectures. This includes barycentric coordinates [Bad90], spatial triple prod-
ucts [MT97, GD03] (one cross and one dot product), as well as Plücker coordi-
nates [Jon00], and all that also vectorized in SSE-code [Ben04].

When thinking about all these tests in a formal way, it can be quickly shown
that all these approaches are algebraically equivalent, just different in the way of
thinking about the problem [Eri07].

Formally, we search the distance t a ray has to travel along direction ω starting
at the ray origin O, such that the intersection point h = O+tω will lie in the triangle
spanned by the vertices a, b, and c, if there is an intersection. To test a hit point
for inclusion in a triangle, the barycentric coordinates u, v, 1− u− v can be used

89

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ar
cp

(x
)-

rc
p(

x)

x

arcp-1/x
arcp-1/x (1 it newton)

Figure 5.1.: Approximate fixed point reciprocal for 32-bit fixed point values in
[0, 1) (interval only shown up to 0.5). Even after one iteration Newton-
Raphson, the error still exceeds 1 ulp for small input values. This will
show up in the triangle intersection at grazing angles, where 〈ω, n〉 is
small.

and the point is inside the triangle, iff u, v ≥ 0 and u + v ≤ 1. The barycentric
coordinates are defined as the ratio of the areas A:

u =
A(a, h, c)

A(a, b, c)

v =
A(a, b, h)

A(a, b, c)
.

Extending this to the volumes V yields:

u =
V (O, a, h, c)

V (O, a, b, c)
=
〈ω, (h− a)× (c− a)〉
〈ω, (b− a)× (c− a)〉

(5.5)

t =
〈a−O, (b− a)× (c− a)〉
〈ω, (b− a)× (c− a)〉

, (5.6)

90

and these volumes can be expressed in multiple ways (as faces of the pyramid
triangle/ray origin [Chi05], barycentric coordinates [Bad90], volumes [GD03],
determinants [MT97], or Plücker coordinate tests [Jon00]), since the cross product
can be expressed in terms of area, or the normal vector:

n = (b− a)× (c− a) and ||n|| = 2 ·A(a, b, c).

The remainder of this section describes some common ray/triangle intersection
tests and discusses their properties with respect to precision.

5.2.1. Barycentric Coordinates-based Tests

Möller and Trumbore [MT97] as well as Guigue and Devillers [GD03] in their ad-
dendum describe a ray/triangle intersection test based on barycentric coordinates.
Both classify a point by testing the barycentric coordinates and then perform a
division to calculate the distance of the intersection point. The difference is that
Möller and Trumbore calculate the determinant of a matrix consisting of edge
vectors and the ray direction, whereas Guigue and Devillers calculate signed
volumes of tetrahedra.

5.2.2. Badouel’s Test

This test has been described by [Bad90], optimized by [Wal04] and implemented in
integer arithmetic in VHDL [HK07]. It is also based on barycentric coordinates, but
uses some clever precomputation and projection to a 2d domain before evaluating
the barycentric coordinates, which saves instructions. Since the intermediary
values are stored instead of the original triangle to keep the same memory
footprint, animations are a bit harder to achieve. Also these values are hard to
quantize without loss of precision in the case of fixed point arithmetic.

5.2.3. Plücker Coordinates-based Test

This test was introduced in [Jon00] and is based on the theory of Plücker coordi-
nates. First, two lines are transformed into their Plücker coordinate representation
(which consists of six numbers for 3d lines), and then the relative orientation can
be tested by an inner product in that space. A brilliant summary can be found
on Christer Ericson’s Blog [Eri07], along with an explanation why this is actually
equivalent to the barycentric coordinate approach. Since expanding a triangle to
three Plücker coordinates either uses a lot of memory for precomputed values or
has to be amortized by intersecting a lot of rays at the time, this test has mainly
been used in the context of ray packets in a SIMD fashion.

91

5.2.4. SSE-based Tests

Employing vector instructions to speed up computations by either intersecting
multiple rays with one triangle at the time, or one ray with multiple triangles has
received quite some attention (e.g. [Wal04]). Unfortunately these instructions
often operate on a subset of the full IEEE floating point standard (there are no
denormalized numbers), so these tests are usually less precise.

5.2.5. Transformation-based Test

It is possible to reduce a general ray/triangle intersection to the intersection of a
transformed ray with the unit triangle (i.e. with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0)).
This was described in [HM00, AMH02] and later used as a clever way to reduce
die area in custom hardware, by reusing the transformation unit [Woo06]. On the
downside, this involves a 3× 3 matrix inversion and the transformation of the ray
as other sources of numerical inaccuracy.

5.2.6. Chirkov-Style Test

This test is based on Chirkov’s article [Chi05]. One of the ideas is to use the
three planes spanned by the ray origin and each edge of the triangle to test
the ray direction for intersection with the triangle. It turns out that the resulting
equations are algebraically equivalent to the tests for the barycentric coordinates,
with one important difference. The intermediate results (the normals of the three
planes) directly correspond to intuitive quantities in world space, and therefore the
precision analysis is simplified. So if we can guarantee to be able to classify a point
correctly as inside or outside the triangle given a quantized edge plane normal,
this test will operate correctly, even at reduced precision. Naturally, coarser
quantization comes at a cost in terms of precision, but in this case the quantization
gap can be visualized in world space, as margin around the boundary of the
triangle (see Figure 5.2). This property can be used to construct a conservative
test, i.e. assure that no rays tunnel through triangles.

Deriving a numerically robust variant of the algorithm results in the following
steps:

• Calculate the edge normal vectors eab := (O − a)× (b− a).

• Calculate the corresponding barycentric coordinate u := 〈eab, ω〉/D with
D = 〈ω, n〉, and make sure this dot product is rounded conservatively towards
zero for values > 0. Calculate v similarly.

• Calculate t = abcO/D with abcO = |a, b, c, O| = 〈u, c− a〉

• If just the hit point and not the distance is required, but the division needs
to be avoided, this last step can be replaced by calculating the intersection

92

point using u, v, and sorting by the l1-norm ||O − h||1 to find the closest
intersection.

a

b

c
(c− a)× (a−O) (c− b)× (b−O)

(b− a)× (a−O)

Figure 5.2.: Inclusion in the triangle is tested by the three dot products 〈ω, e∗〉
between the ray direction and the three normals visualized in this
figure. The dashed lines indicate the boundary of the area where
〈ω, e∗〉 ≤ 0 in machine precision.

Quantization of the Normal. One source of excess bit widths is the calculation
of the normal, as the cross product involves multiplications, which usually double
the required bit width. Fortunately, we are only interested in the precise direction
of the normal. Actually we only want to classify a point to be on the correct side of
the plane, even after quantization of the cross product.

Since the input points are already quantized to world space positions (say, in m
bits), it is enough to put the error below one half of a world space unit (to match a
correctly evaluated and rounded value):

ε

(
〈p− a, n〉
‖n‖

)
<

1

2
, (5.7)

where a is a point on the plane, n the surface normal and p a point to test.
Suppose we want to strip the normal by s bits. We will introduce an error ε = 2s−1

when round to nearest is applied. In world space, the error we get on the distance
measure will be

ε =
3 · 2m · 2s−1

‖n‖
. (5.8)

This suggests to make the shift dependent on the magnitude of the normal. If we
choose s to depend on the largest normal component in a way that ‖n‖∞ < 2s+m+2

‖n‖∞ = 0 · · · 0 0s+m+2 1s+m+1∗ · · · ∗s ∗s−1 · · · ,

93

i.e. we keep m+ 2 bits for the normal and choose s = max{0, dlog2 ‖n‖∞e −m− 2},
we can get an estimate of ε:

ε =
3 · 2m+s−1

‖n‖
≤ 3 · 2m+s−1

‖n‖∞
<

3 · 2m+s−1

2m+s+2
=

3

8
<

1

2
, (5.9)

since the L2 norm ‖n‖ ≥ ‖n‖∞.
This calculus assumes that the dot product is evaluated precisely, which is

easily possible, but will need 3 · 2 + 2m + 2m+2 bits to store the result. To save
bits here we can strip off some of the least significant bits, but will introduce
additional quantization errors. For the Chirkov-style intersection test, this error
can be represented in world space, as distance to the edges of the triangles. That
is, it is easy to apply conservative rounding in a way so triangle edges will become
larger and thus avoid holes between triangles at the cost of some false positives.

5.2.7. Subdivision-based Test

Approximate intersection calculation using subdivision (i.e. approximation of a
surface with patches of lower degree) has a long tradition (e.g. [Pat93, CMP96])
and has been applied to intersection calculation for ray tracing [DK06]. This
approach lends itself well to integer arithmetic: the triangle (a0, b0, c0) is subdivided
into four triangles (a1, b1, c1), the ray is intersected with the four bounding boxes
of these sub-triangles, and the algorithm recurses if there is an intersection. The
recursion stops if the bounding box size is [0, 1)3 units, i.e. cannot be subdivided
any further in machine precision. One disadvantage is obvious, the algorithm will
need O(log l) steps to terminate, when l is the longest side of the triangle along the
axes. This is the best case, when always just one bounding box actually intersects
the ray. The worst case occurs when the triangle is viewed under grazing angle,
and all boxes of size [0, 2)3 are intersected and all [0, 1)3-sized boxes are missed.
The complexity is as bad as O(l) in this case, as all boxes have to be intersected.

The advantage is that only divisions by two are needed for the subdivision. This
operation can be done in a lossless way in floating point arithmetic, within bounds:
just decrease the exponent. When integer arithmetic is used or the exponent
is already at the lowest value, or the numbers are stored in an absolute scale
(i.e. in world space, not as edge lengths), rounding errors occur by shifting out
the least significant bit. Holes between triangles are still avoided because two
triangles which share an edge will perform the same computations on that edge.
This even works for different rays, provided that the ray/axis aligned bounding
box intersection works precisely. This is due to the nature of the test which only
depends directly on the world-space representation of the primitive to intersect,
not the ray or some intermediate value.

When a triangle is subdivided in fixed point, a worst-case rounding error of
εr = 0.5 (the least significant bit is stripped) occurs. So for example subdividing

94

rounding mode ε(h)

round half to nearest even (standard float) 5 ulps
truncation 7 ulps
round half away from zero 8 ulps

Table 5.1.: The effect of different rounding modes applied to a one-dimensional
recursive subdivision: worst-case error for the intersection point h,
measured in units in the last place.

triangle j into four triangles j + 1, the following point will be calculated:

aj+1 :=
aj + bj

2

⇒ ε(aj+1) =
ε(aj) + ε(bj)

2
+ εr,

the two previous errors are added up and a potential new rounding error is
introduced. In the worst case, this happens every iteration between the two points
with the worst error so far.

Luckily, the default rounding mode of floating point arithmetic avoids exactly
this case: rounding is performed to the next even number equally far away. That
is, as always only one bit is shifted out, the number is either precise (the sum
was even) or exactly in the middle (the sum was odd). So rounding up in only half
the cases distributes the rounding error up and down and it is thus cancelled out
stochastically.

The effect of this rounding mode can be seen in Table 5.1. The first scenario for
this test is as simple as possible. A one-dimensional interval has been subdivided
given a certain coordinate t (in analogy to the barycentric coordinates u, v for
the case of the 3d-triangle). The bits of this coordinate are directly used as path
through the recursion and the corresponding point of intersection h is calculated
this way and directly using the closed-form formula. The error of the recursive
method is then measured in units in the last place. The test is run over all input
parameters in the range of floating point numbers in [1.0, 2.0), which is equivalent
to a 23 bit fixed point number.

5.2.8. Look-up table-based Test

A reader of Dr. Dobb’s Journal suggested to use a precomputed look-up table for
small (16×16 pixels) triangles in 2d [Had00]. This thought experiment ended up
with 8 MB of memory. Also, memory accesses seem to be the limiting factor on
new computing architectures, and for 3d there is no intuitive smallest voxel unit,
except the machine resolution. So as interesting as it sounds, it will not be feasible
this way. Nevertheless, this finite way of thinking about geometry is the same that

95

inspires voxel-based renderers, such as sparse voxel octrees (as made popular by
John Carmack, also see Section 5.3).

5.2.9. Improving Shading Normals

No matter which triangle intersection algorithm is used, it might be desirable to
use per-pixel normals to make the geometry appear smoother. Shading normals
are a powerful tool to make meshes with low triangle counts look smooth. Unfor-
tunately they also introduce a lot of problems, e.g. with adjoint transport [Vea97],
or the so called terminator problem [WPO96], which can be seen in Figure 5.3
(left). The triangle boundaries are clearly visible due to shadow rays which expose
the real geometry. A trick to overcome this (fighting a hack with another hack) is
to push the intersection point out of the triangle similar as if the shading normals
defined the tangent planes of a Bézier patch.

Such a behavior can be achieved in a few lines of code, as in Figure 5.3 at
the bottom. The shading normals n are stored in a struct of the same type as
the triangle tri. The intersection point hit is updated by projecting the three
distance vectors from the three triangle vertices to the intersection point hit.hit
onto the planes defined by the shading normals. These three candidates are then
averaged using the barycentric coordinates of the hit point. This ensures smooth
transitions at the edges to the neighboring triangle.

As a side effect, this will also solve the self-intersection problem inside the
triangle. But for transparent surfaces, it will actually worsen it and thus can’t be
used.

5.3. Finite Precision Geometry

All machine computations have to be done in finite precision. This effectively
reduces the 3d space to a finite grid of representable points. It is thus possible
to create all geometry in voxels of appropriate size stored in a sparse octree and
just intersect this geometry representation, which is the acceleration structure at
the same time (e.g. [Han03, CS08]). This way, no more triangle data is needed,
procedural geometry can be represented the same way, and data can be modified
individually by a user. On the downside, this will use a lot of memory. So to make
it possible to ray trace such geometry, a very compact data representation is
needed, as well as out-of-core techniques.

For an impression of the data usage, see Figure 5.4. This scene consists of an
octree of depth 12, which needs 1.7 GB of memory. Still the detail in the close-up
is insufficient. As a node has on average about four non-empty children, memory
increases quite significantly when one more level is added.

As an experiment, we created a cache of octree nodes with a memory layout
as shown in Figure 5.5. This structure stores data for eight voxels and a pointer
to potential children. That is, we store the hash key to the child entry in data,

96

float hitu[3], hitv[3], hitw[3];
for(int k=0;k<3;k++)
{ // get distance vectors from triangle vertices

hitu[k] = hit.hit[k] - tri.v[2][k];
hitv[k] = hit.hit[k] - tri.v[1][k];
hitw[k] = hit.hit[k] - tri.v[0][k];

}
// project these onto the shading normals n
const float dotu = fminf(0.0f, dot(hitu, n.v[2])),

dotv = fminf(0.0f, dot(hitv, n.v[1])),
dotw = fminf(0.0f, dot(hitw, n.v[0]));

for(int k=0;k<3;k++)
{ // and push the distance vectors out onto the planes

// defined by the shading normals
hitu[k] -= dotu*n.v[2][k];
hitv[k] -= dotv*n.v[1][k];
hitw[k] -= dotw*n.v[0][k];

}
// the final hitpoint is the barycentric mean of these three
for(int k=0;k<3;k++) hit.hit[k] =

(1-hit.u-hit.v)*(tri.v[0][k] + hitw[k])
+ hit.v *(tri.v[1][k] + hitv[k])
+ hit.u *(tri.v[2][k] + hitu[k]);

Figure 5.3.: The terminator problem with shading normals, solved by adjusting the
hit point similar as if the normals defined a Bézier patch. The source
code shows the simple adjustment.

Figure 5.4.: A car rendered using an octree with texture information at the leaves.
The images were created using an octree of depth 12, i.e. the smallest
possible resolution is AABB width times 2−12. The close-up to the star
reveals this.

typedef struct octree_cache_entry_t
{

uint64_t data; // key << 8 | mask
uint8_t normal[14]; // 8(nr:2 np:6) 8(nq:6)
uint8_t cr, cb;
uint8_t Y[8];
uint8_t shader[8];

} // 8 + 32 bytes
octree_cache_entry_t;

Figure 5.5.: The octree structure stored in one cache line.

together with an eight-bit mask which indicates non-empty children. Additionally,
a normal (using 14 bits, as the look-up table approach of [RL00]) is compressed
as a point on a cube: nr stores two bits indicating the side of the cube (normals
are flipped towards the ray, so only three sides have to be stored), and np and nq
give the position on that square. The base texture of the voxel is compressed in
Y CbCr using chroma subsampling. Finally, a shader index is stored per voxel.

This layout enables geometry MIP-mapping (or levels of detail), as the inner
nodes already contain all information needed for rendering.

For the ray traversal, we use a combination of a parametric algorithm [RUL00]
and path coding [Mor66]. Since we store the Morton code in one 64-bit integer
(3× 18 = 56 and 8 reserved bits), the tree depth is limited to n = 18, which means
the voxel grid resolution is limited to 4 mm inside a 1 km3 cube. The tree traversal
returns the intersection point along with its box size, so self-intersection can be

98

effectively avoided.
The Morton code is also used to create a hash for the node cache (as [Eri05])

and to address the voxel position and size when it has not been found in the cache.
In this case, the least recently used octree node is removed from the cache to free
a slot for the requested node. The data is then streamed from disk or procedurally
computed, depending on the input data. Isosurfaces or procedural noise are
evaluated using interval arithmetic to create consistent voxel boundaries.

An interesting aspect about such a cache is that it can be used to create infinite
detail: the tree traversal has to be adjusted to use entry points at deeper levels in
the tree, the Morton code can be used to find the neighbor without stepping up to
the parent. This way, the root node and the coarser levels can be swapped out
and the cache slots can be used for more local detail.

Figures 5.6 and 5.7 show procedural isosurfaces and perlin noise, respectively.
The performance on a single core of an Intel Core2 Duo processor was about 50k–
500k rays/second, but varying largely depending on the cache size, the level of
detail selection, the camera position, how expensive the procedural computation
was, as well as how coherent the rays were cast. While for eye rays the cache hit
rates quickly exceed 99% when the camera position is not changing and the cache
is large enough, the performance stays underwhelming. Also, a single cache will
not scale over multiple cores very well, because of lock contention. It might also
be argued that this kind of procedural geometry is not very practical as input,
and it would be beneficial if the representation used for rendering would be more
closely related to the representation used for modelling. Another concern is the
use of secondary rays, which is the only good reason to use ray tracing over
rasterization-based approaches. In such an application, the cache hit rates will
not be as friendly as reported above.

We will address these issues in the next chapter. Instead of machine-precision
boxes, we will use micro-polygons, which are used as smallest units in production
renderers. This makes it possible to use acceleration structures which adapt better
to the geometry than a mid-split octree, such as bounding volume hierarchies.
The caching system will be replaced by a reordering scheme which transparently
increases locality of memory accesses and computations.

5.4. Results

To be able to compare the algorithms for different number systems, the input
vertices have been transformed to be equally well representable in all systems:
the scene has been scaled to fit the range [1, 1.5) in floating point, where the
mantissa directly corresponds to fixed point in [0x0, 0x3fffff]. The full width
of the mantissa, [0, 0x7fffff] is then needed to encode the distance to the
triangle, as t ≤

√
3· AABB width.

The results can be seen in Table 5.2 as well as Figures 5.8 and 5.9. This test is
designed not only to compare 23-bit fixed point directly to floating point, but is also

99

Figure 5.6.: Isosurfaces ray traced in real-time using an octree as cache.

very floating point friendly: inside the bounding box, no switching of exponents is
required (actually, it is not even possible). To show the effect of mixing floating
point exponents, the bounding box has also been scaled by 104 and 10−3. As
ground truth, a long double version of the Chirkov-style test has been used.

Rays are also generated the same way for floating point and fixed point: the
mantissa is randomly chosen and converted to floating point and fixed point rays.
In total, 100,000 rays are generated this way and intersected with all triangles
(69,451 for the bunny and 12,748,510 for the power plant), resulting in about
7 · 109 and 1012 intersection tests for Figure 5.8 and 5.9, respectively. A typical
bi-directional path tracer for a global illumination application would require to cast
thousands of paths per pixel, i.e. 1280 · 1024 · (5 + 5 + 25) · 1000 = 45 · 109 rays for a
eye path and light path length of five bounces and a moderate screen resolution.
So assuming only one ray/triangle intersection per ray, the numbers in Table 5.2
give a rough idea of how many wrong intersection one can expect for one image.

The single false positive intersection in the Chirkov-style integer test stems from
an intersection on the edges of the triangle. It is not due to distance calculation,
as the distance t was always evaluated correctly. Using the approximate reciprocal
arcp32 with one iteration Newton-Raphson (see Section 5.1.2) creates a lot of
falsely reported intersections, which can be seen in column Chirkov int arcp.

100

Figure 5.7.: Nine octaves of perlin noise ray traced using an octree as cache. The
images are all taken in the same landscape.

-0.04

-0.02

 0

 0.02

 0.04

c
h
ir
k
o
v
 f
lo

a
t

m
o
e
lle

r
fl
o
a
t

b
a
d
o
u
e
l
fl
o
a
t

b
a
ry

c
e
n
tr

ic
 f
lo

a
t

b
a
d
o
u
e
l
s
s
e

p
lu

e
c
k
e
r

s
s
e

c
h
ir
k
o
v
 i
n
t

b
a
d
o
u
e
l
in

t

b
a
ry

c
e
n
tr

ic
 i
n
t

u
v
t

-0.04

-0.02

 0

 0.02

 0.04

c
h
ir
k
o
v
 f
lo

a
t

m
o
e
lle

r
fl
o
a
t

b
a
d
o
u
e
l
fl
o
a
t

b
a
ry

c
e
n
tr

ic
 f
lo

a
t

b
a
d
o
u
e
l
s
s
e

p
lu

e
c
k
e
r

s
s
e

u
v
t

-0.04

-0.02

 0

 0.02

 0.04

c
h
ir
k
o
v
 f
lo

a
t

m
o
e
lle

r
fl
o
a
t

b
a
d
o
u
e
l
fl
o
a
t

b
a
ry

c
e
n
tr

ic
 f
lo

a
t

b
a
d
o
u
e
l
s
s
e

p
lu

e
c
k
e
r

s
s
e

u
v
t

Figure 5.8.: Precision analysis for the Stanford bunny scan model. Top row: the
bounding box has been scaled to fit [1.0, 1.5)3. Middle: the same scaled
up by 104. Bottom row: the same scaled by 10−3. The bars indicate the
mean value and the minimum and maximum deviation. The precision
is evaluated over the correctly classified intersections. So the SSE
version of the Badouel test seems to be more precise, but the wide
deviations are cut off because the test failed in that case.

E
rr

o
r

ty
p
e

C
h
ir

ko
v

fl
o
a
t

M
ö
lle

r
fl
o
a
t

B
a
d
o
u
e
lfl

o
a
t

b
a
ry

ce
n
tr

ic
fl
o
a
t

B
a
d
o
u
e
lS

S
E

P
lü

ck
e
r

S
S
E

C
h
ir

ko
v

in
t

C
h
ir

ko
v

in
t

a
rc

p

B
a
d
o
u
e
li

n
t

b
a
ry

ce
n
tr

ic
in

t

[1, 1.5]2 α 1 0 2 0 2 1 1 11 134 2
β 0 0 1 3 2 2 0 59 150 5

104 · [1, 1.5]2 α 1 1 3 1 2 1
β 0 0 2 2 2 6

10−3 · [1, 1.5]2 α 3 3 3 3 6 5
β 3 3 2 2 2 7

Table 5.2.: Precision analysis of different triangle tests with respect to α- (false pos-
itives) and β-errors (missed intersections). These numbers have been
generated using 100,000 random rays intersected with the 69,451
triangles of the Stanford bunny.

-0.04

-0.02

 0

 0.02

 0.04

c
h
ir
k
o
v
 f
lo

a
t

m
o
e
lle

r
fl
o
a
t

b
a
d
o
u
e
l
fl
o
a
t

b
a
ry

c
e
n
tr

ic
 f
lo

a
t

s
u
b
d
iv

 f
lo

a
t

c
h
ir
k
o
v
 i
n
t

b
a
ry

c
e
n
tr

ic
 i
n
t

b
a
d
o
u
e
l
in

t

u
v
t

Figure 5.9.: This graph shows the same statistics as 5.8, but with the power plant
model scaled to fit [1.0, 1.5)3. The subdivision algorithm has only been
tested on this model, as it contains large triangles which reveal the
numerical issues.

5.5. Conclusion

In this chapter, we investigated a number of ray/triangle intersection tests with
respect to their suitability for numerically robust hardware implementations. The
epsilon-free Möller-Trumbore test does not perform too badly after all. However it
exhibits problems when different exponents are in play. The subdivision-based test
does not always coincide with the long double version. But this test assures that
no ray can tunnel through a crack between two triangles. A carefully implemented
Chirkov-style integer test gives the same safety, at the cost of some false positives
on the edges of the triangle (but fewer as the subdivision-based test). As the dot
products used to decide whether the ray passes the edge inside or outside the
triangle are calculated the same way for neighboring triangles (permuting the two
vertices only gives a sign and is the same even in floating point arithmetic), the
worst thing that could happen is that both triangles claim the first intersection.
Also, false positives are not as fatal as missed intersections. For example, a ray
connecting to the sun might easily transport such a lot of energy that a whole
region might be illuminated due to tunneling through the triangle.

The error in the u, v coordinates shown in Figures 5.8 and 5.9 are to be read
very carefully: as triangles are very small, the barycentric coordinates can easily
refer to a hit point which is not representable in this precision. So most of the time
u and v have more bits then could possibly be filled with useful information.

As it turned out to work best for fixed point arithmetic and is thus a candidate
for a robust, precise hardware implementation, the C source code for the Chirkov-
style test can be found in Appendix A.1. A pipelined VHDL version of this test (8
clock cycles deep, synthesizes with 390 MHz on a Xilinx Virtex5 FPGA) is listed in
Appendix A.2. This code has been tested in the context of a VHDL implementation
of a Quad-BVH [EG08, DHK08] ray tracer.

104

“If displacements are nice and easy, you’re
writing a rasterizer. If it is ugly and slow,
it’s a ray tracer”

Pete Shirley at Eurographics 2009

6
The Rayes Architecture

This chapter discusses an approach to ray trace micro-polygon geometry with
motion blur, defocus, and global illumination [HKL09, HKL10]. This ray tracing
scheme is able to handle highly complex geometry modeled by the classic ap-
proach of surface patches tessellated to micro-polygons, where the number of
micro-polygons can exceed the available memory. Two techniques allow us to
carry out global illumination computations in such scenes and to trace the result-
ing incoherent sets of rays efficiently. First, we rely on a bottom-up technique for
building the bounding volume hierarchy (BVH) over tessellated patches in time
linear in the number of micro-polygons. Second, we present a highly parallel two-
stage ray tracing algorithm, which minimizes the number of tessellation steps by
reordering rays. The technique can accelerate rendering scenes that would result
in billions of micro-polygons and efficiently handles complex shading operations.

In movie production, extreme geometric detail, complex shaders, and mo-
tion blur are needed to obtain visually compelling images. The Reyes architec-
ture [CCC87] successfully deals with these challenges using a rasterization ap-
proach. The use of physically-based ray tracing is getting more and more common
in the movie production, partly because the artists’ experiences from real-world
lighting design can be easily carried over. For this benefit, even the long render
times are accepted [Gri09]. To retain the strengths of the Reyes architecture in

105

a general ray tracing setting, we propose a two-level hierarchy approach, us-
ing reordering of computations instead of caching. After traversing a top-level
hierarchy, rays are sorted to bundle those, which intersect the same bounding
volume. Any necessary operation to be carried out in this volume, e.g. tessellation
or loading a complex shader or bidirectional reflectance distribution function
(BRDF) [NRH+77], is thus performed a minimum number of times. This results
in significantly improved data locality, which allows us to fully ray trace compu-
tationally complex (procedural) displacements efficiently, i.e. corresponding to
billions of micro-polygons without instancing (see Figure 6.1). Existing produc-
tion pipelines can easily be extended to use our method, since the algorithm
works on the same two-level data, such as displaced subdivision surfaces and
sub-pixel-sized micro-polygons.

Rendering such scenes requires one to tessellate the free form patches or pro-
cedural displacements, which can be quite expensive with regard to computation
and memory consumption. We accelerate ray tracing and global illumination by
exploiting the two-level hierarchy of such scenes: The top-level hierarchy (Section
6.2) organizes the list of surface patches. After traversing the top-level, all rays
are sorted according to patches they possibly intersect, increasing locality and
minimizing the number of tessellation steps. The bottom-level consists of the
micro-polygons which are tessellated on-the-fly on-demand. The micro-polygons
of one patch are diced into a micro-polygon buffer, and a high-quality bounding vol-
ume hierarchy (BVH) is constructed in linear time in the number of micro-polygons
(Section 6.1), exploiting the regular topology of a diced patch. Furthermore, the
number of tessellation steps during rendering is reduced by adapting the level of
detail (Section 6.1.2).

Altogether, the architecture collapses the inherent recursive nature of ray trac-
ing to allow for better vectorization and combines the strengths of tracing ray
packets [WBWS01], fast incoherent mono-ray traversal [DHK08], and rasteriza-
tion: Our technique inherently handles displacements and procedural geometry,
supports simple shader authoring and large depth complexity. It optimizes the
utilization of memory bandwidth and coherence and furthermore is highly parallel.

Related Work. A lot of work has been done to be able to render complex
geometry [SBB+06, LYM07, LYTM08] not specialized for the Reyes architecture.
The fundamental assumptions and design principles of the Reyes image rendering
architecture have allowed to model and render diverse and complex content, as
postulated in the original publication [CCC87]. The concepts were so fundamental,
that the many extensions (e.g. [HL90, LV00]) seamlessly complemented the basic
architecture. As one of the design principles was to keep expensive ray tracing to
a minimum, it is not surprising that the addition of minimal ray tracing turned out
to be restrictive. The most recent ray tracing extension was profoundly described
in [CFLB06]. With our technique we demonstrate how a ray tracing system can
deal with the same complexity in geometry modeling and shading while adding

106

Figure 6.1.: A forest with 100 trees and geometry shaders including displacements
for bark and leaves. Fully tessellated, it would consist of over 108 · 109

triangles. Thanks to level of detail on-demand geometry creation and
ray sorting, only around 170 million triangles are actually created,
without the use of caching. The geometry is created and fully path
traced without instancing, evaluating global illumination from the sun
and sky, and motion blur at a resolution of 1920× 768 with 32 samples
per pixel in 5:04 minutes on a 2.83 GHz quad core Q9550 (bottom
image).

the benefit of simple Monte Carlo-based global illumination computation using
path tracing.

Key to our system is the reordering of rays to increase locality for ray trac-
ing massive data which, in rather general settings, has been investigated be-
fore [LMW90, PKGH97, NFL07, BBS+09]. Our approach, however, directly benefits
from the intrinsic data locality of the common two-level modeling approach:
large surface patches in the top-level, and displacements or procedural details

107

and complex shading at the bottom-level. This approach is particularly common
in games, for example using parallax occlusion mapping [Tat05]. Ray tracing
displaced primitives using tessellations [SB87], caches [PH96] or direct grid-
like traversal [SSS00] has been investigated in depth, also on the GPU for ge-
ometry images [CHCH06]. The GPU can also be used to dice/tessellate Reyes
patches [PO08, EL10]. In [BBLW07], an on-demand, recursive BVH traversal
scheme for subdivision surfaces without displacements was introduced which
is optimized for ray packets. Acceleration structures for ray tracing have been
build in complexity below O(N logN) before [HMF07]. In Section 6.1 we describe
a simple method to explicitly construct a hardware-friendly acceleration structure
in linear time.

In our two-level approach rays are reordered, grouping active rays which po-
tentially intersect the same patch. Similar to the approach taken in the Kilauea
render system [KS02] the resulting (ray, patch) lists can then be processed in
parallel without caching strategies.

Related work [HQL+10] evaluates only the first few dimensions of the light
transport problem (defocus, motion blur, and limited transparency) on the GPU
and achieves about the same time as our system to render one frame.

The Razor architecture [SMD+06] was designed to alleviate similar problems
of ray tracing, to obtain better data access and computation patters. It uses
current results of that time to accelerate ray tracing for the processors available
by then. Today, cache lines (and fetches) get larger and data parallelism is getting
wider, GPUs being the extreme example. Thus, linear memory access has become
more important, and simple streaming of large blocks is often more efficient than
highly recursive tree traversals and on-demand builds with a lot of branches. The
Razor system does neither use displacements or pluggable artist-driven geometry
shaders, so it is not optimized to avoid these computations, nor does it perform
well for the excessive level of detail needed for production. To implement level of
detail, the authors use a set of pairs of kd-trees for every two adjacent levels of
detail, which are merged together in one acceleration structure. Additionally, at
the lowest level, the vertices are stored in a 5x5 grid, which is created on-demand
and traversed as in [SSS00]. Our method on the other hand comes along with
two levels of hierarchy, has implicit levels of detail (in the upper levels of the
bottom-level BVH), and can be diced, displaced and built with improved memory
access and data parallelism.

An impressive, cache-based system was introduced by Pharr et al. [PH96,
PKGH97]. It relies on a set of different caches for the rays, geometry and textures.

A very fast out-of-core micro-polygon ray tracer running on the GPU [PFHA10]
has been used to precompute visibility for production. It uses tessellated micro-
polygon meshes with level of detail already applied as input and takes advantage
of intrinsic coherence of the rays to maintain very high cache hit rates.

Our ray reordering technique is simpler and transparently increases locality
for rays, textures, BRDF data and geometry at the same time. Additionally, as

108

Figure 6.2.: The top row shows a surface patch and the teapot without (left) and
with displacement mapping (right). In the bottom row the bounding
volume hierarchies implied by the micro-polygon array topology are
visualized by rendering them transparently and darkening their con-
tours. Differences between the hierarchies are difficult to spot, which
indicates that reasonable displacement does not much affect the
efficiency of the implied acceleration data structure.

soon as the required cache sizes get too large, caching did not perform well in our
target setting with incoherent rays.

Level of detail (LOD) has been added to both Reyes [CHPR07] and ray tracing ar-
chitectures, e.g. using multi-resolution meshes [SMD+06] or simplification [YM06].
For ray tracing, the choice of LOD is commonly based on ray differentials [Ige99].
We show that in the case of our architecture, simpler mechanisms may be used.

6.1. Efficient Ray Tracing of Arrays of Micropolygons

To intersect a bottom-level patch with a set of rays, it has to be diced and dis-
placed, evaluating geometry shaders. The resulting micro-polygons are stored
in the micro-polygon buffer, which represents 2m × 2m micro-polygons as a two-
dimensional array of (2m+1)× (2m+1) vertices, where each four adjacent vertices
define one micro-polygon.

Surface patches must implement a tessellation method, that computes the
micro-polygon vertices by either sampling or subdividing a surface patch, applies
trimming and displacement, and stores interpolated (s, t) texture coordinates.
Vertices are displaced along interpolated per-vertex displacement normals. To
avoid holes between adjacent patches with different level of detail, conservative
bounding boxes are needed for coarser tessellations, i.e. coarse displacements
have to span all the possible range of the finer ones. This is done by min-max
MIP maps on textures and interval arithmetic on procedural noise and patch
geometry. Afterwards a loop over all micro-polygons evaluates whether or not the

109

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

sah
m

idsplit

im
plicit

to
ta

l
ti
m

e
 [
s
]

one patch

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

sah
m

idsplit

im
plicit

to
ta

l
ti
m

e
 [
s
]

teapot

dicing
build bottom-level
trace bottom-level

trace top-level
shading

Figure 6.3.: Timings comparing bottom-level construction strategies. On the left, a
full SAH build of the micropolygon BVH is done, in the middle, a spatial
median was used as split plane candidate, on the right is implicit
construction. The one-patch scene and the teapot is as is Figure 6.2
(displaced version). These timings have been taken for primary rays
only.

micro-polygon is clipped or trimmed. Unless the micro-polygon is discarded, its
bounding box, color from texture, and normal by vertex differences are computed
and stored.

Such a tessellation method must be aware of the resolution of the micro-polygon
buffer. In case of insufficient resolution, surface patches must be split and the
parts have to be processed separately.

6.1.1. Implicit Acceleration Hierarchy in Linear Time

The number of 4m = 2m × 2m micro-polygons and their topology suggest using a
complete quad-tree of axis-aligned bounding boxes as acceleration hierarchy for
ray tracing.

Constructing the bottom-level hierarchy starts by determining the conservative
bounding boxes for each of the 4m micro-polygons by calling the tessellation
method. The bounding volumes of the inner nodes of the hierarchy are updated in
a bottom-up manner using min-max MIP maps (similar to [CHCH06]). Trimming is
implemented by marking bounding boxes as empty. They do not need to update
their parent boxes and can also be handled transparently during ray traversal.
Since the memory for the micro-polygon buffer data structure is allocated once
for the whole rendering process, we always store the complete tree and do not

110

compress empty bounding boxes.
Although, in general, complete trees for ray tracing cannot be recommended

[Wäc08, Sec. 2.4.1], this concept is very appropriate for tessellated surface
patches: Unless the patch is overly curved or extremely displaced, the array
topology very well represents spatial proximity as illustrated in Figure 6.2 and
results in fast ray tracing (see Figure 6.3).

While the construction time for a spatial acceleration structure typically is
O(n log n) in the number of triangles [WH06, Wal07], our bottom-up construction
of the complete quad-tree is linear in the number of nodes

∑m
i=0 4i ∈ O(4m) and

thus linear in the number of micro-polygons of one surface patch. In contrast
to [HMF07], this can be done without an explicit input hierarchy and in a non-
recursive manner, thus featuring a better memory access pattern.

Rays are then intersected with the acceleration structure using single ray
traversal. Improved memory access by tracing ray packets did not pay off at this
stage, as even these pre-sorted rays for one patch are very incoherent with regard
to traversing the bottom-level hierarchy in the case of path tracing. Similar to
the discrete geometry approach followed in Section 5.3, we tessellate down to
sub-pixel size and use the boxes of the leaf nodes directly as geometry, as this
accuracy is sufficient [DK06].

In order to assess the quality of the implicit BVH construction for patches, we
tested two very simple scenes, to avoid the effect of a complicated top-level
hierarchy in the timing figures. In Figure 6.3, timings are plotted for a scene
containing only one patch, and the displaced teapot scene (see Figure 6.2). The
bottom-level ray tracing time can be slightly improved when using a general
surface area heuristic (SAH) [GS87] when constructing the acceleration structure
for the teapot (0.119 seconds SAH vs. 0.121 seconds implicit). For the simple one-
patch scene, our implicit tree can even be ray traced faster (0.041 seconds SAH vs.
0.028 seconds implicit). This might also be due to the fact that our bottom-level
QBVH traversal implementation exploits the special memory layout of the implicit
BVH, using skip lists. It also explains the difference to the ray tracing time of the
midsplit tree (0.048 seconds), which results in quite similar topology.

6.1.2. Crack-Free Level of Detail Geometry Approximation

While it is common understanding that the availability of different levels of detail
can vastly enhance rendering efficiency, care needs to be taken in order to avoid
rendering artifacts due to the approximative nature of simplifications.

The level of detail is selected by choosing the resolution parameter m (see
Figure 6.4) from Section 6.1 as the smallest m such that 4m ≥ R/spp, where R is
the number of rays that intersect the axis-aligned bounding box of the patch under
consideration and spp is the number of samples per pixel. In order to ameliorate
the self-intersection problem, secondary rays are offset by ε = l/2m along normal
direction, where l is the length of the longest side of the bounding box of the

111

Figure 6.4.: Illustration of the surface approximation by selecting the level of detail
m = 1, 2, . . . , 8 (from left to right).

actually intersected patch.
The intuition behind the selection heuristic is simple: Regions with high ray

density (for example regions traversed by a bundle of specularly reflected rays)
require a finer level of detail as compared to regions with less rays (as for example
after diffuse reflection).

The selection heuristic does not guarantee that a ray intersects adjacent patches
at the same level of detail. We therefore require all bounding boxes to be conser-
vative. In our case this is guaranteed by the min-max MIP maps from Section 6.1.1,
the use of interval arithmetic on the noise function, and the convex hull property
of the control polygon of the Bézier patches. If now adjacent patches share an
identical boundary, bounding boxes of adjacent patches at different levels of detail
are guaranteed to touch at least and overlap most of the time. As a consequence,
using intersections with the bounding boxes of the bottom level hierarchy instead
of intersections with micro-polygons guarantees hole free rendering.

While this method is simpler than other state of the art techniques like for exam-
ple stitching together adjacent geometry [CFLB06, Sec. 6.6] or DiagSplit [FFB+09],
it requires to select a sufficiently fine level of detail such that the resulting hole
free approximation of the surfaces by boxes remains invisible [DK06].

For directly visible geometry the selection heuristic results in marginally smaller
than pixel-sized boxes, which reliably avoids level of detail popping artifacts
during animation. However, if for example a patch only partially overlaps the
viewport, then the visible part of the patch will have a much higher ray density as
compared to what is determined by the selection heuristic. Note that due to the
X-ray characteristic of the top-level intersection candidate selection, our heuristic
does not fail in the case of partial occlusion: the rays see through the occluder
as far as LOD selection is concerned. In a similar way, shading differences due to
changing level of detail may become visible for secondary effects as for example
self-shadowing.

While the selection heuristic rarely does not determine a sufficiently fine level
of detail, ray differentials [Ige99] provide a widely used alternative and are easy
to approximate in our system as all rays of a generation are traced at once
(see Section 6.2.2). This allows for selecting the level of detail depending on the
smallest distance between individual rays and complementing the coarse levels
with directional opacity information as in [LBBS08], or using frequency domain
filtering [HSRG07].

Because the bottom-level acceleration structure is a complete quad-tree, the

112

upper levels always represent the coarser levels of detail. Shading information
such as color from texture, uv coordinates, and normals from vertex differences
can be filtered on demand and rays can be terminated at individual levels of detail.
Note that this will result in a slightly more complicated memory access pattern.

6.2. Reordering Rays

Our rendering system follows the two-level modeling approach commonly applied
by artists who create coarse geometry using free form surfaces and then refine it
by adding geometric detail and complex shaders.

6.2.1. Top-Level Hierarchy

In order to minimize the number of dicing operations we introduce an active ray
buffer. Directly after traversing the top-level hierarchy, all potential intersections
(maximum N per ray per iteration) are sorted by patch ID. Then the geometry
and the shaders of each patch are prepared only once for this iteration. Lastly, all
rays associated with the patch are now processed in one block of computation. As
new rays might be generated due to recursive ray tracing the loop of top-level
traversal, sorting, tessellation and bottom-level processing is iterated as needed.
Finally, the result of the first hit point is added to the accumulation buffer.

Partitioning the computation this way greatly facilitates parallelization in each
of the four processing steps. Even for global illumination computations where rays
are typically incoherent after the first bounce, the explicit sorting step maximizes
coherence for further processing.

The top-level hierarchy is represented by a Quad-BVH (QBVH or mBVH) [DHK08,
EG08], whose leaves are the conservative bounding boxes of single patches. Ray
tracing starts by generating rays and storing them in an active ray buffer. The
traversal of the top-level hierarchy can then be executed in parallel by partitioning
the ray buffer.

Rather than computing the first intersection directly, we gather N intersection
candidates per ray. Each potential intersection with a leaf bounding box is recorded
in pairs of the form (rayid, leafid). In an optimal case all possible intersections
would fit into this buffer. Given a number R of rays and a memory size M , N
is proportional to M/R. The intersection candidates are then sorted by leafid
in order to group all rays intersecting the same leaf, thereby reducing multiple
accesses to the same leaf node. This approach may resemble [NFL07], however,
specific details are not disclosed in their work and only simulated memory traffic
statistics are provided.

For each leafid in the array, the leaf object is tessellated and the rays corre-
sponding to the leafid are traced through the leaf object (see Section 6.1). In
a parallel implementation each thread picks the next leafid as a task. Writing
back intersection results to rays is either serialized by implementing a few locks

113

Figure 6.5.: The buffers used to sort the rays. Top: main buffer holding the actual
ray structs, containing information such as hit distance, normal, ray
origin, reciprocal direction. This buffer is not sorted and can be used
to derive pixel indices. After one iteration of QBVH intersection, the
second buffer is filled in parallel with entry points and all inactive
rays are removed. Finally, all patches with a possible intersection on
the way are stored in the third buffer. In this example, if another ray
terminates, enough memory will become available for each of the
three remaining rays to store one more intersection in order to tackle
a larger depth complexity (four in this illustration).

for larger blocks of rays or, more efficiently, by writing the ray intersections to
small buffers for each thread, which are synchronized at the end.

We conservatively determine for which rays the closest intersection has already
been found by comparison against the following patch bounding box. These rays
are terminated.

Once all rays are intersected, the top-level traversal is continued for all non-
terminated rays using the last leafid along the ray direction as an entry point.
These entry points have been stored explicitly per ray in an additional buffer (see
Figure 6.5), because the original order of the (rayid, leafid) array is destroyed
during reordering. Since traversal is ordered by ray direction, it is always clear
which children to process next after the entry point, when stepping up in the
hierarchy.

As the resulting number R′ of non-terminated rays is typically significantly
smaller than R, the next iteration can handle more potential intersections N ′ ∼
M/R′, fully reusing the allocated buffers. This way, the process does not have to
be repeated often, as the depth complexity of most scenes (the forest scene in
Figure 6.1 has an overdraw of about 200) is reached quickly.

114

This scheme enables two more optimizations. First, in the presence of shaders,
which require to access large memory blocks (such as measured BRDF data),
many rays intersecting the respective surface will have an early out event at the
same time and thus the memory does not have to be accessed several times.
Second, to further reduce the need for repeated dicing over generations of rays,
the early termination event can be used to shade a terminated block of rays, and
spawn new ray directions, which can directly be intersected with the already diced
originating patch and then be re-injected into the top-level traversal.

6.2.2. Tracing Rays in Groups and by Generation

Physically-based rendering requires a lot of rays to be traced. This number is
typically too large to fit the required ray buffer into main memory. Also, at the
beginning, not all rays are known. Some effects (such as soft shadows, ambient
occlusion, reflections and so on) require several passes to be rendered, i.e. another
generation, or wave, of rays to be shot.

There are several choices, which balance depth complexity, re-dicing, and
memory requirements:

1. Re-inject rays as needed after an early termination event. This is done by
replacing the terminated ray by a newly spawned one, instead of removing it
from the buffer. This will always utilize the ray buffer well and use the (rayid,
leafid) buffer for new rays rather than to tackle depth complexity.

2. Group rays by generation. This fixes the memory requirements for this wave
of rays, but suffers from re-dicing for each pass.

3. Tile the screen. This can exploit some locality for first generation lens con-
nection rays, but as rays quickly become divergent, re-dicing is as bad as in
the previous variant.

Our current implementation uses the second approach. In general it is most
efficient to trace as many rays as possible (i.e. fit into main memory) at a time.

For a simple path tracer, it is sufficient to update a single (spectral or RGB) path
contribution value in the ray at each bounce. In the presence of complex reflection
shaders with splitting into S sub-paths, each new ray needs to be assigned the
correct weight 1/S, but great care has to be taken not to exceed the buffer limits.
A similar approach could be taken to implement ambient occlusion.

Bidirectional path tracing can be done by first tracing a wave of S paths from
the sensor and T paths from the lights at the same time (resulting in S + T rays at
a time). After that, S · T connection rays have to be spawned with the respective
weights, for example calculated using multiple importance sampling [VG95]. To
bring the number of connection rays down to S+T as well, Russian roulette based
on these weights can be used.

115

Figure 6.6.: The tree scene with exaggerated motion blur, which was used for the
timings in Table 6.1

dice [s] bottom [s] top [s] shade [s] sort [s] #diced total [s]
mb 211.06 86.90 27.70 25.20 34.84 1497633 179.0
no mb 104.10 56.50 24.76 25.36 28.82 1313136 133.0

Table 6.1.: Timings for the forest scene with exaggerated motion blur (seen in
Figure 6.6) on a Core 2 Quad. Motion blur results in a slowdown of a
factor of two for the dicing stage, and micro-polygon intersection is
slightly slower. As more patches have to be diced in the presence of
motion blur, also the sorting time is increased. All times are total times,
except dice and bottom-level times, which are accumulated over all
four cores.

6.3. Accelerating Motion Blur by Hierarchies Sharing
Topology

Motion approximated by linear splines is standard in production (see e.g. [CFLB06,
Sec.6.3] or [Grü08, Sec.2.4]). Given the instants t0 < t1 < · · · < tn defining the time
intervals [ti, ti+1), tracing a ray at time t ∈ [ti, ti+1) is accomplished by instancing
two micro-polygon buffers, one at time ti and one at time ti+1. The actual bounding
boxes and micro-polygons used during ray traversal then are determined by linear
interpolation. We use this method for the bottom-level hierarchy.

Concerning the top-level hierarchy, the same principles can be applied. However,
due to the cost to construct the hierarchy, we chose to use only one hierarchy
based on bounding boxes conservatively covering the whole time interval [t0, tn).
See Table 6.1 for a comparison of render times with and without motion blur.

116

dicing 1000 trees 100 trees
cache 10 1,897,385 1,161,468
cache 100 943,669 772,491
cache 1000 825,808 606,371
reordering 482,405 354,534

Table 6.2.: This table shows how often patches have to be diced using a cache
with 10, 100 and 1000 patches and our reordering method. Numbers
are acquired using top-level traversal (i.e. independent of LOD) for
the two forest scenes with motion blur at 1920 × 768 × 64 rays. The
reordering method only requires to store one diced patch per thread.

eye bounce 1 bounce 2 bounce 3
R N R N R N R N

23592960 8 21589447 8 15585868 12 10052438 18
19009592 9 16419230 11 10886646 17 6707465 28

5840016 32 4549352 41 1529033 100 298166 100
1115814 100 406945 100 14093 100 82 100

1062 100 17 100 - - - -

23592960 8 20674988 9 11985885 15 7311443 25
11479199 16 11145131 16 4617303 40 1775062 100

2110951 89 1241408 100 59364 100 204 100
7509 100 333 100 - - - -

Table 6.3.: Tackling depth complexity: when rays are terminated early due to
sorted BVH traversal, the memory can be used to store more patch
intersections N for the remaining rays R. This is an example for the
forest in Figure 6.8 (top table) and Figure 6.1 (bottom table) for the
four waves of path tracing with next event estimation. N is clipped to
100 to avoid excessive fragmentation of memory for simple cases.

6.4. Results

We implemented a Monte Carlo global illumination renderer on top of our ray
tracing architecture. We chose a simple path tracer with next event estimation,
i.e. paths are traced from the eye and with a depth of three, additionally sampling
the direct light contribution at each interaction point. Russian roulette is used
to decide whether to sample the hemisphere or the light sources. This way, a
maximum number of width × height × samples per pixel × 4 rays is traced per
frame. While uncommon in movie production, this is a good demonstration of the
generality of our method.

To achieve equivalent detail in a regular mesh-based renderer, the micro-
polygons would have to be dumped to a triangle soup which would exceed the

117

scene maximum accessed
100 trees (Figure 6.1) 108 · 109 170 · 106

1000 trees (Figure 6.8) 1, 058 · 109 317 · 106

dinosaur (Figure 6.9, left) 59 · 109 11 · 106

displaced dinosaur (Figure 6.9, right) 59 · 109 34 · 106

Table 6.4.: Impact of LOD and early ray termination due to occlusion: ratio of
micro-polygons actually created to a constant LOD of m = 10 while
path tracing.

capacities of these rendering systems. We therefore do not show comparisons with
these. We tested the system on a variety of scenes ranging from trivial (Figure 6.2
left, equivalent to 260k triangles) over simple (Figure 6.2 right, equivalent to 16
million triangles), moderately complex (Figures 1,6.7 and 6.9) to massive scenes
with detail equivalent to a mesh with over 1050 billion triangles (Figure 6.8), and
scenes using reflection shaders accessing very large measured BRDF data sets
(Figure 6.12). The trees are procedurally generated using L-systems with procedu-
ral displacement textures for the patches. The rest of the scenes is modeled in
Bézier patches.

As all available rays are intersected with the scene at once before shading is
started, complex reflection shaders benefit from this deferred shading architec-
ture. If a second sorting step is inserted after all ray intersections have been
found, even one single data load operation per bounce can be guaranteed. This is
necessary, if not all used BRDF data sets fit into main memory at the time. In the
case of our test scene (Figure 6.12), this was not necessary, but the time spent
to sort the ray buffer can almost be neglected compared to the time spent in
shading (less than 10 seconds compared to 263 seconds for shading 960× 640× 64
rays).

We compare our ray reordering to a caching based system, similar to [PH96].
Our results in Table 6.2 indicate that for highly complex scenes caches need to
be very large to be efficient. With our reordering method, they are not necessary,
and the implementation becomes thus simpler than [PKGH97].

The table indicates that significantly more than 1000 cache lines, each represent-
ing one tessellated patch, are necessary in order to reduce the number of dicing
steps to those achieved with our reordering. Besides the top-level hierarchy, our
scheme requires a fixed memory footprint independent of geometry complexity.
For path tracing at 1920x768x64 rays, our implementation needs 6120 MB for
representing the ray buffers (68 bytes per ray: 3× float position, 3× float direction,
3× float normal, 1× float hit distance, 3× float color, 3× float path tracing weight
RGB, 1× int16 shader index and 1× int16 additional flags to mark e.g. shadow
rays). To represent the full tree of a single diced patch at LOD m = 10 (1024× 1024
micro-quads with bounding boxes, color, texture coordinates and normals at two
time instances and every level of detail), 120 MB are required. Our approach

118

requires a single buffer (corresponding to a single cache line), while the cache will
grow linearly with the number of cache lines.

For an example how depth complexity is handled by the limited (rayid,leafid)
buffer (see Section 6.2), see Table 6.3. It can be seen that even for scenes with
very large overdraw, only few iterations are required. As some rays terminate, the
buffer is quickly available for the remaining rays to store many more intersection
candidates in the next iteration.

To get an impression of the impact of LOD, see Figure 6.11. The rendering
times are dominated by dicing, so the graph shows only timings for top- and
bottom-level traversal and shading. As expected, dicing and bottom-level tree
construction seems to be linear and tracing bottom-level rays is about logarithmic.
Top-level traversal does not change in this graph, as the top-level hierarchy is not
affected by the LOD changes. Obviously a lot of time can be saved by reducing
the number of micro-polygons per patch.

As illustrated in Table 6.4, our system is very efficient due to choosing the appro-
priate LOD and avoiding dicing for occluded patches altogether. The comparison
here is carried out between actually created micro-polygons and the number of
polygons in a triangle mesh with equivalent detail (maximum LOD m = 10). Note
that this number is not overly large, this LOD is also chosen for some patches by
the algorithm and becomes especially necessary for heavily displaced patches.
The figures show that our system can robustly handle a vast amount of geometry,
which surpasses the complexity demonstrated by the Razor system [SMD+06].
Also, we do not need to keep any diced micro-polygons, which avoids the problem
of flushing on-demand geometry.

GPU Implementation and Frustum Tracing. In our setting, a GPU implemen-
tation did not increase performance compared to the quad core CPU version,
because due to the different work package sizes the algorithm did not scale to
hundreds or thousands of threads. Also the memory limitations on GPU hardware
play a role here.

To cut down memory requirements for the ray buffer, we packed the rays into
small frustums on the fly, following [Res07] similar to [GL10]. This removes a lot
of memory accesses, since the frustum data is very compact as compared to the
full ray buffer. Also intersection calculation can be performed very quickly, and
frustums created on the fly, even for secondary rays. For simplistic scenes and
very coherent rays, this works very well (see Figure 6.13, left). Unfortunately even
for moderately complex geometry (see Figure 6.13, right), this approach is unable
to cull the rays tightly. That is, the whole bundle of rays needs to be intersected
with a lot of geometry because the frustum does not cut off space around the
rays effectively enough. This is especially apparent in the presence of high depth
complexity, and already shows up for primary rays.

119

6.5. Conclusion

We presented a ray tracing method, which is able to efficiently handle large
amounts of data resulting from free form surface patches, details added by micro-
polygon tessellation, and data intensive shaders. Expensive geometry and shaders
(in terms of computation or memory access) are handled well due to reordering
of computations, which results in great data locality. Parallelization is simple as
all rays traverse one phase before the next one is started. We introduced only
one additional sorting step on the ray buffer, which has negligible impact on
rendering time. The core of our contribution is the two-level ray tracing system
with reordering, which can be easily augmented by other advanced rendering
techniques, as we have demonstrated for simple LOD selection and path tracing.
The same two-level approach with reordering can be combined with general global
illumination algorithms or even accelerate out-of-core rendering.

There are no restrictions imposed on ray tracing. However, there are some
limitations when using the method in a rendering system. First, the shading
language needs a mechanism to dispatch a ray and correctly account for its
contribution by the time it finishes (see Section 6.2.2). If rendering is based on
BRDFs, this is straightforward.

Second, the presented LOD assumes good importance sampling. That is, it as-
sumes that if rays are diverging, the contributing radiance is low frequency. It will
thus result in blocky shadows if sampling a small direct light source over the hemi-
sphere instead of the geometry. If this is recognized by the rendering algorithm, it
can be used as a feature to speed up low-frequency indirect illumination.

In the straight forward implementation, our bottom-level tessellation is bound
to 2m steps along one edge for an integral m. While the voxels always remain
sub-pixel-sized for eye rays, popping artifacts for wildly displaced patches could
be ameliorated by smaller steps between levels of detail. This can be achieved by
using unbalanced quad-trees in our framework.

For artist-driven displacement shaders, the evaluation of interval arithmetic
of the noise can be a restriction. By enforcing bandlimited noise functions, this
calculus could be replaced by slightly larger worst-case bounding boxes.

In future work, the method can be complemented by specialized rendering
algorithms which better exploit its strengths by reflecting the two-level nature,
such as local high-frequency ambient occlusion inside a diced patch together
with a far-field approximation for global illumination, similar to [KK04, AFO05].
Also stereo renderings could profit from coherence between rays for the two view
positions. With the algorithm presented in this chapter, robust rendering of large,
out-of-core or procedural micro-polygon data is possible with respect to rendering
time.

120

Figure 6.7.: A tree rendered using our architecture. If it was dumped to a triangle
mesh, it would consist of around 8.4 billion triangles (micro-polygons
from 12k displaced Bézier patches). Due to the on-demand procedural
geometry generation and the level of detail system, our system does
not even create all these, and is able to render this scene with global
illumination in a few minutes.

Figure 6.8.: Stress test: this forest consists of two million patches, which would
need a triangle mesh equivalent of more than 1050 billion triangles if
fully tessellated. Fully path traced with motion blur, the image renders
at 1920× 768× 16 samples in 2:24 minutes on a four core machine.

Figure 6.9.: A dinosaur (taken out of the natural history museum from the lighting
challenge site and converted to Bézier patches using vertex normals),
with 56k patches. On the left, around 11 million micro-polygons out of
59 billion potential have been created and rendered using path tracing
in 18 seconds on a Core 2 Quad. On the right, a noisy displacement has
been applied, resulting in about 34 million created micro-polygons and
an increased render time of 37 seconds. Both images are rendered at
960× 640× 16 samples. Some of the time is spent in the (intentionally)
expensive procedural displacement texture.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400

ti
m

e
 [

s
]

frame number

dicing
bottom-level

top-level
shading
sorting

total

Figure 6.10.: Statistics for the video where Figure 6.1 are still frames from. These
numbers have been generated on a Core 2 Quad, using 32 samples
per pixel in 1920 × 768 resolution, path traced up to path depth
of three (plus evaluation of direct light at each bounce). Again all
times are total times, except dice and bottom-level times, which are
accumulated over all four cores. Near the end, the camera closes
up to a branch, so one patch has to be tessellated very finely (the
maximum m = 10 is reached).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

ti
m

e
 [

s
]

number of micro-polygons

bottom-level
top-level
shading

Figure 6.11.: Rendering time is determined by the programmable parts of the
system, i.e. shading and surface patch tessellation (tessellation time
is linear and takes over 100 seconds for 4 · 106 micro-polygons and is
therefore omitted in the plot). Timings are obtained for the displaced
teapot example (Figure 6.2).

Figure 6.12.: Four teapots rendered with measured BRDF data. One BRDF data
set alone is over 300 MB large, and each teapot consists of over 16
million triangles. Thanks to reordering of shading computations, it
can be guaranteed that each BRDF data set is loaded only once per
bounce.

Figure 6.13.: Real-time Rayes test scenes. Left: two motion blurred cubes, right:
two motion-blurred trees. For close to non-trivial geometry as on the
right, the performance of the shaft culling method suffers severely,
and does thus not provide a real improvement over the mono-ray
approach of the original Rayes. The left image was ray traced with
about 4 mrays/sec on a quad core computer, whereas for the trees
the performance drops to only a few hundred thousand rays per
second, because the coarse shafts cannot be terminated early.

“I know I know, Otto. You’ve been a very
good assistant. And you brought in some
good parts. That Manus was perfect. But
what we really need now is the perfect. . . ”

Nasum 7
Summary

In this work, we assembled tools and extended algorithms to implement a robust
spectral rendering system. Building on top of this, the special demands of various
fields have been considered, to make rendering more robust for arbitrary input
data. In the next few sections, a brief summary of the most important results is
given.

Spectral Rendering. We collocated a lot of well known facts and techniques
and complemented them by some new bits, to create a color managed, spec-
tral rendering system. Chapter 2 can be seen as detailed instruction on how to
implement such a rendering system that just works.

Spectral Reflection. Faithful color rendition using spectrally measured BRDFs
can be achieved using a color managed rendering pipeline. Chapter 3 shows this,
and presents experiments with a novel BRDF lobe function, the Möbius lobe, which
has some advantages over existing functions because it is defined exactly on the
upper hemisphere.

Fluorescence. Spectral light transport can also be used to simulate complex
light interaction such as fluorescence, as shown in Chapter 4. Fluorescence can
also be rendered in a combined way with reflection, by measuring BRDFs in the

127

angular domain and the bispectral domain at the same time. We showed how to
do this efficiently by upsampling sparse data to dense data sets using principal
component analysis. The bispectral light transport simulation described here was
also used to to support optimization of solar cells.

Precise Intersections. In Chapter 5, we investigated precise ray/triangle inter-
section tests targeting custom hardware, which produced more accurate results
than the floating point versions. These algorithms have the potential to be im-
plemented in less die area than full floating point computation. While precision
is most interesting for scientific simulation, the associated area savings can be
beneficial for graphics applications, too, and render the algorithm interesting for
hardware producers.

Micro-Polygon Ray Tracing. To make massive, possibly out-of-core, micro-poly-
gon ray tracing efficient, we investigated reordering of computations to make
good use of memory once it is loaded, and construct specialized acceleration
hierarchies in linear time (see Chapter 6).

7.1. Future Work

While we showed how to solve these problems individually, it remains to integrate
all the different demands into a unified system. On this way, there are some
challenging tasks, such as to implement a precise ray/triangle intersection test
in off-the-shelf hardware, after optimizing it for the target architecture, die area,
clock speed, and SIMD processing.

This would enable us to ray trace Reyes-style geometry with precisely inter-
sected micro-triangles, which can replace the voxel rendering. Since these C1

surfaces are somewhat more explored than voxels, it would be straightforward to
fix the cracks between tessellated patches, include more sophisticated level of
detail, adaptive tessellation, and more input primitives.

To find compact representations for data on the hemisphere or for scattered
data interpolation it can be useful to have radial basis functions restricted to the
hemisphere. This can be achieved using a weighted sum of multiple Möbius lobes.

Even though ray tracing is widely used throughout all rendering applications,
finally and possibly most challenging, it remains to make accurate light simulation
practical for all fields of rendering, by trading error for speed to create plausible
images quickly enough for time-critical applications.

128

A
Source Code

A.1. Chirkov-Style Integer Ray/Triangle Intersection
Test

This is the C source code which has been used to verify the theoretical precision
analysis given in Section 5.2.6 in software. Note that temporary values have
to be stored in int64_t, and the unneeded bits can only be stripped after the
calculation. These wide values can be avoided in specialized hardware, which can
be built to only calculate the necessary bits.

static inline void
triangle_shiftcross
(const int64_t *a, const int64_t *b, int *n, int *shift_n)
{

// 23 bits without sign bit
int64_t longn[3];
crossproduct(a, b, longn);
uint64_t dreggn = llabs(longn[0]) | llabs(longn[1]) | llabs(longn[2]);
const int lz = __builtin_clzll(dreggn);

*shift_n = 64 - 23 - (lz > (64-23) ? 64-23 : lz);

129

for(int k=0;k<3;k++) n[k] = longn[k] >> (*shift_n);
}

static inline void
triangle_intersect_chirkov_int
(const triangle_int_t *t, const ray_t *ray, rayhit_t *hit,
const uint32_t i)

{
// (assume 23-bit fixed point, do precise 64 bit calculations)
int64_t ac[3], ab[3], bc[3], aO[3], bO[3], cO[3];
for(int k=0;k<3;k++)
{

ab[k] = (int64_t)t->v[1][k] - (int64_t)t->v[0][k];
ac[k] = (int64_t)t->v[2][k] - (int64_t)t->v[0][k];
bc[k] = (int64_t)t->v[2][k] - (int64_t)t->v[1][k];
aO[k] = (int64_t)ray->ipos[k] - (int64_t)t->v[0][k];
bO[k] = (int64_t)ray->ipos[k] - (int64_t)t->v[1][k];
cO[k] = (int64_t)ray->ipos[k] - (int64_t)t->v[2][k];

}
// out facing normals for ccw tris:
int a[3], b[3], c[3];
int shift_a, shift_b, shift_c;
triangle_shiftcross(ab, aO, a, &shift_a);
triangle_shiftcross(bc, bO, b, &shift_b);
triangle_shiftcross(cO, ac, c, &shift_c);

const int64_t dotra = ((dotproductl(a, ray->idir)>>15));//14)+1)>>1;
const int64_t dotrb = ((dotproductl(b, ray->idir)>>15));//14)+1)>>1;
const int64_t dotrc = ((dotproductl(c, ray->idir)>>15));//14)+1)>>1;

if(((dotra >= 0LL) && (dotrb >= 0LL) && (dotrc >= 0LL)) ||
((dotra <= 0LL) && (dotrb <= 0LL) && (dotrc <= 0LL)))

{
int n[3], shift_n;
triangle_shiftcross(ab, ac, n, &shift_n);
// d : 15 + 2 + 23 = 40 (>> shift_n, << 15) (dir: 1 ^= 1<<15)
const int64_t d = dotproduct(ray->idir, n);
if(d == 0) return;
// 23 + 23 + 2 + 15 = 63
const int64_t dist = -(dotproduct(aO, n)<<15)/d;
if(dist > 0 && dist <= hit->idist)
{

hit->idist = dist;
hit->dist = tomant(dist);
hit->tri = i;
int64_t u = (dotproduct(a, ray->idir)<<(23 + shift_a - shift_n))/d;
if(u < 0) u = 0;
if(u > 0x7fffff) u = 0x7fffff;
hit->u = tomant(u);

130

int64_t v = (dotproduct(c, ray->idir)<<(23 + shift_c - shift_n))/d;
if(v < 0) v = 0;
if(v > 0x7fffff) v = 0x7fffff;
hit->v = tomant(v);

}
}

}

A.2. Chirkov-Style Fixed
Point Ray/Triangle
Intersection Test

This section lists the VHDL source
code of the Chirkov-style fixed point
ray/triangle intersection test. It synthe-
sized on a Virtex5 FPGA using the Xilinx
toolchain at 390 MHz using 17 bits for
the bounding box quantization, to ex-
ploit the 18×18 multiply element avail-
able on this piece of hardware. The
pipeline is 8 clocks deep, but only tests
for intersection and does not compute
the distance. Optimized, precise division
was given in [Han07].

--
-- converts a wide temporary value to mini float format
-- only works for 2*18 bit in, 32 bit lzd
-- copyright (c) 2007 johannes hanika, hanatos@gmail.com
--

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.intrt_p.all;

package minifloat_p is

component minifloat3 is
generic (win : integer := 32; wshift : integer := 4);
port
(
clk : in std_logic;
d0 : in std_logic_vector(win-1 downto 0);
d1 : in std_logic_vector(win-1 downto 0);
d2 : in std_logic_vector(win-1 downto 0);
s : out std_logic_vector(wshift-1 downto 0);
q0 : out std_logic_vector(frac_width-1 downto 0);
q1 : out std_logic_vector(frac_width-1 downto 0);
q2 : out std_logic_vector(frac_width-1 downto 0)

);
end component;

end package;

library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

-- detect leading zeroes
entity lzd16 is
port
(

d : in std_logic_vector(15 downto 0);
q : out std_logic_vector(2 downto 0)

);
end entity;

architecture rtl of lzd16 is
signal l2 : std_logic_vector(7 downto 0);

begin
main : process(d, l2)

variable p : std_logic_vector(2 downto 0);
begin

for i in 1 to 7 loop
l2(i) <= d(2*i) or d(2*i+1);

end loop;
p(2) := l2(7) or l2(6) or l2(5) or l2(4);
p(1) := ((l2(7) or l2(6)) and p(2)) or ((l2(3) or l2(2))

and not p(2));
case p(2 downto 1) is
when "11" => p(0) := l2(7);
when "10" => p(0) := l2(5);
when "01" => p(0) := l2(3);
when others => p(0) := l2(1);
end case;
q <= p;

end process;
end architecture;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use work.intrt_p.all;

entity shift18 is
port
(

d : in std_logic_vector(2*18-1 downto 0);
s : in std_logic_vector(2 downto 0);--(3 downto 0);
q : out std_logic_vector(frac_width-1 downto 0)

);
end entity;
architecture rtl of shift18 is
begin
process(d, s)
begin

case s is

when "000"
=> q <= d(2*18-1) & d(21 downto (21+2)-frac_width);

when "001"
=> q <= d(2*18-1) & d(23 downto (23+2)-frac_width);

when "010"
=> q <= d(2*18-1) & d(25 downto (25+2)-frac_width);

when "011"
=> q <= d(2*18-1) & d(27 downto (27+2)-frac_width);

when "100"
=> q <= d(2*18-1) & d(29 downto (29+2)-frac_width);

when "101"
=> q <= d(2*18-1) & d(31 downto (31+2)-frac_width);

when "110"

131

=> q <= d(2*18-1) & d(33 downto (33+2)-frac_width);
when others

=> q <= d(2*18-1) & d(35 downto (35+2)-frac_width);

end case;
end process;
end architecture;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use work.intrt_p.all;
use work.minifloat_p.all;

entity minifloat3 is
generic (win : integer := 32; wshift : integer := 4);
port
(

clk : in std_logic;
d0 : in std_logic_vector(win-1 downto 0);
d1 : in std_logic_vector(win-1 downto 0);
d2 : in std_logic_vector(win-1 downto 0);
s : out std_logic_vector(wshift-1 downto 0);
q0 : out std_logic_vector(frac_width-1 downto 0);
q1 : out std_logic_vector(frac_width-1 downto 0);
q2 : out std_logic_vector(frac_width-1 downto 0)

);
end entity;

architecture rtl of minifloat3 is

component lzd16 is
port
(
d : in std_logic_vector(15 downto 0);
q : out std_logic_vector(2 downto 0)

);
end component;
component shift18 is
port
(
d : in std_logic_vector(2*18-1 downto 0);
s : in std_logic_vector(2 downto 0);
q : out std_logic_vector(frac_width-1 downto 0)

);
end component;

type reg_t is record
d0, d01 : std_logic_vector(2*18-1 downto 0);
d1, d11 : std_logic_vector(2*18-1 downto 0);
d2, d21 : std_logic_vector(2*18-1 downto 0);
s : std_logic_vector(2 downto 0);
lzd_in : std_logic_vector(15 downto 0);

end record;

signal lzd_in : std_logic_vector(15 downto 0);
signal lzd_out : std_logic_vector(2 downto 0);
signal dreggn : std_logic_vector(win-1 downto 0);
signal r, rin : reg_t;

begin

comb: process (d0, d1, d2, r)
variable x, res : std_logic_vector(15 downto 0);
variable v : reg_t;
begin

v := r;
v.d0 := d0;
v.d1 := d1;
v.d2 := d2;
v.d01 := r.d0;
v.d11 := r.d1;
v.d21 := r.d2;

x := (others => d0(win-1));
res := x xor d0(win-1 downto win-16);

x := (others => d1(win-1));
res := res or (x xor d1(win-1 downto win-16));

x := (others => d2(win-1));
res := res or (x xor d2(win-1 downto win-16));

v.lzd_in := res;

v.s := lzd_out;
rin <= v;

end process;

lzd0 : lzd16 port map(r.lzd_in, lzd_out);
shift0 : shift18 port map(r.d0, lzd_out, q0);
shift1 : shift18 port map(r.d1, lzd_out, q1);
shift2 : shift18 port map(r.d2, lzd_out, q2);
s <= lzd_out;

regs: process(clk)
begin

if rising_edge(clk) then
r <= rin;

end if;
end process;

end architecture rtl;

--
-- tests a ray against a triangle
-- unprojected chirkov-style, algebraically equivalent to
-- moeller trumbore/3d barycentric
-- takes 8 clock cycles @ 390 MHz
-- unfortunately also without calculating the distance.
-- copyright (c) 2007 johannes hanika, hanatos@gmail.com
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;
use work.intrt_p.all;

package tritest_chirkov_p is
type tritest_in_t is record

ray : ray_t;
tri : tri_t;
en : std_logic; -- enable
trinum : std_logic_vector(15 downto 0);
newray : std_logic;

end record;

type tritest_out_t is record
far_x : std_logic_vector(aabb_width-1 downto 0); -- tfar
far_y : std_logic_vector(aabb_width-1 downto 0);
far_z : std_logic_vector(aabb_width-1 downto 0);

hit : std_logic; -- hit or not
rdy : std_logic; -- output valid
trinum : std_logic_vector(15 downto 0);

u : std_logic_vector(aabb_width-1 downto 0);
v : std_logic_vector(aabb_width-1 downto 0);
abco : std_logic_vector(aabb_width-1 downto 0);
d : std_logic_vector(frac_width-1 downto 0);
newray : std_logic;

end record;

component tritest is
port
(

clk : in std_logic;
d : in tritest_in_t;
q : out tritest_out_t

);
end component;

end package;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;
use work.intrt_p.all;
use work.tritest_chirkov_p.all;
use work.minifloat_p.all;

entity tritest is
port
(

132

clk : in std_logic;
d : in tritest_in_t;
q : out tritest_out_t

);
end entity;

architecture rtl of tritest is
-- need 7 regs:
type reg0_t is record -- sub
ab_x, ab_y, ab_z, ac_x, ac_y, ac_z, bc_x, bc_y, bc_z,
aO_x, aO_y, aO_z, bO_x, bO_y, bO_z, cO_x, cO_y, cO_z

: std_logic_vector(aabb_width downto 0);
omega_x : std_logic_vector(frac_width-1 downto 0);
omega_y : std_logic_vector(frac_width-1 downto 0);
omega_z : std_logic_vector(frac_width-1 downto 0);
far_x : std_logic_vector(aabb_width-1 downto 0);
far_y : std_logic_vector(aabb_width-1 downto 0);
far_z : std_logic_vector(aabb_width-1 downto 0);
en : std_logic;
trinum : std_logic_vector(15 downto 0);
newray : std_logic;

end record;

type reg1_t is record -- 2x mul
lu_x_0, lu_x_1, lu_y_0, lu_y_1, lu_z_0, lu_z_1,
lv_x_0, lv_x_1, lv_y_0, lv_y_1, lv_z_0, lv_z_1,
lw_x_0, lw_x_1, lw_y_0, lw_y_1, lw_z_0, lw_z_1

: std_logic_vector(2*aabb_width+1 downto 0);
omega_x : std_logic_vector(frac_width-1 downto 0);
omega_y : std_logic_vector(frac_width-1 downto 0);
omega_z : std_logic_vector(frac_width-1 downto 0);
far_x : std_logic_vector(aabb_width-1 downto 0);
far_y : std_logic_vector(aabb_width-1 downto 0);
far_z : std_logic_vector(aabb_width-1 downto 0);
en : std_logic;
trinum : std_logic_vector(15 downto 0);
newray : std_logic;

end record;

type reg2_t is record -- 2x shift
omega_x : std_logic_vector(frac_width-1 downto 0);
omega_y : std_logic_vector(frac_width-1 downto 0);
omega_z : std_logic_vector(frac_width-1 downto 0);
far_x : std_logic_vector(aabb_width-1 downto 0);
far_y : std_logic_vector(aabb_width-1 downto 0);
far_z : std_logic_vector(aabb_width-1 downto 0);
en : std_logic;
trinum : std_logic_vector(15 downto 0);
newray : std_logic;

end record;

type reg3_t is record -- 2x mul
u_0, u_1, u_2, v_0, v_1, v_2, w_0, w_1, w_2

: std_logic_vector(2*frac_width-1 downto 0);
far_x : std_logic_vector(aabb_width-1 downto 0);
far_y : std_logic_vector(aabb_width-1 downto 0);
far_z : std_logic_vector(aabb_width-1 downto 0);
en : std_logic;
trinum : std_logic_vector(15 downto 0);
newray : std_logic;

end record;

type reg4_t is record -- add
u, v, w : std_logic_vector(2*frac_width-1 downto 0);
far_x : std_logic_vector(aabb_width-1 downto 0);
far_y : std_logic_vector(aabb_width-1 downto 0);
far_z : std_logic_vector(aabb_width-1 downto 0);
en : std_logic;
trinum : std_logic_vector(15 downto 0);
newray : std_logic;

end record;

type reg_t is record
r0 : reg0_t;
r1 : reg1_t;
r2 : reg1_t;
r3 : reg2_t;
-- r4 : reg2_t;
r5 : reg3_t;
r6 : reg3_t;
r7 : reg4_t;

end record;

-- this line needs more manual ’0’s to compile.
signal r, rin : reg_t := (others=>’0’);

signal lu_x, lu_y, lu_z, lv_x, lv_y, lv_z, lw_x, lw_y,
lw_z : std_logic_vector(2*aabb_width+1 downto 0);

signal u_x, u_y, u_z, v_x, v_y, v_z, w_x, w_y, w_z
: std_logic_vector(frac_width-1 downto 0);

signal shift_u, shift_v, shift_w
: std_logic_vector(2 downto 0);

begin

mf0 : minifloat3 generic map(2*aabb_width+2, 3)
port map(clk, lu_x, lu_y, lu_z, shift_u, u_x, u_y, u_z);

mf1 : minifloat3 generic map(2*aabb_width+2, 3)
port map(clk, lv_x, lv_y, lv_z, shift_v, v_x, v_y, v_z);

mf2 : minifloat3 generic map(2*aabb_width+2, 3)
port map(clk, lw_x, lw_y, lw_z, shift_w, w_x, w_y, w_z);

process(r, d, u_x, u_y, u_z, v_x, v_y, v_z, w_x, w_y, w_z,
shift_u, shift_v, shift_w)

variable v : reg_t;
begin

v := r;

--
-- reg0: sub, far, copy omega
--

-- sub
v.r0.ab_x := (’0’&d.tri.bx) - (’0’&d.tri.ax);
v.r0.ab_y := (’0’&d.tri.by) - (’0’&d.tri.ay);
v.r0.ab_z := (’0’&d.tri.bz) - (’0’&d.tri.az);
v.r0.ac_x := (’0’&d.tri.cx) - (’0’&d.tri.ax);
v.r0.ac_y := (’0’&d.tri.cy) - (’0’&d.tri.ay);
v.r0.ac_z := (’0’&d.tri.cz) - (’0’&d.tri.az);
v.r0.bc_x := (’0’&d.tri.cx) - (’0’&d.tri.bx);
v.r0.bc_y := (’0’&d.tri.cy) - (’0’&d.tri.by);
v.r0.bc_z := (’0’&d.tri.cz) - (’0’&d.tri.bz);
v.r0.aO_x := (’0’&d.ray.O_x) - (’0’&d.tri.ax);
v.r0.aO_y := (’0’&d.ray.O_y) - (’0’&d.tri.ay);
v.r0.aO_z := (’0’&d.ray.O_z) - (’0’&d.tri.az);
v.r0.bO_x := (’0’&d.ray.O_x) - (’0’&d.tri.bx);
v.r0.bO_y := (’0’&d.ray.O_y) - (’0’&d.tri.by);
v.r0.bO_z := (’0’&d.ray.O_z) - (’0’&d.tri.bz);
v.r0.cO_x := (’0’&d.ray.O_x) - (’0’&d.tri.cx);
v.r0.cO_y := (’0’&d.ray.O_y) - (’0’&d.tri.cy);
v.r0.cO_z := (’0’&d.ray.O_z) - (’0’&d.tri.cz);
-- copy omega
v.r0.omega_x := d.ray.omega_x;
v.r0.omega_y := d.ray.omega_y;
v.r0.omega_z := d.ray.omega_z;
v.r0.en := d.en;
v.r0.trinum := d.trinum;
v.r0.newray := d.newray;
-- find far values
if d.tri.ax > d.tri.bx then

if d.tri.ax > d.tri.cx then
v.r0.far_x := d.tri.ax;

else
v.r0.far_x := d.tri.cx;

end if;
else

if d.tri.bx > d.tri.cx then
v.r0.far_x := d.tri.bx;

else
v.r0.far_x := d.tri.cx;

end if;
end if;
if d.tri.ay > d.tri.by then

if d.tri.ay > d.tri.cy then
v.r0.far_y := d.tri.ay;

else
v.r0.far_y := d.tri.cy;

end if;
else

if d.tri.by > d.tri.cy then
v.r0.far_y := d.tri.by;

else
v.r0.far_y := d.tri.cy;

end if;
end if;
if d.tri.az > d.tri.bz then

133

if d.tri.az > d.tri.cz then
v.r0.far_z := d.tri.az;

else
v.r0.far_z := d.tri.cz;

end if;
else

if d.tri.bz > d.tri.cz then
v.r0.far_z := d.tri.bz;

else
v.r0.far_z := d.tri.cz;

end if;
end if;

--
-- reg1: pipelined mul stage1, copy far, copy omega
--

v.r1.lu_x_0 := r.r0.ab_y * r.r0.aO_z;
v.r1.lu_x_1 := r.r0.ab_z * r.r0.aO_y;
v.r1.lu_y_0 := r.r0.ab_z * r.r0.aO_x;
v.r1.lu_y_1 := r.r0.ab_x * r.r0.aO_z;
v.r1.lu_z_0 := r.r0.ab_x * r.r0.aO_y;
v.r1.lu_z_1 := r.r0.ab_y * r.r0.aO_x;

v.r1.lv_x_0 := r.r0.bc_y * r.r0.bO_z;
v.r1.lv_x_1 := r.r0.bc_z * r.r0.bO_y;
v.r1.lv_y_0 := r.r0.bc_z * r.r0.bO_x;
v.r1.lv_y_1 := r.r0.bc_x * r.r0.bO_z;
v.r1.lv_z_0 := r.r0.bc_x * r.r0.bO_y;
v.r1.lv_z_1 := r.r0.bc_y * r.r0.bO_x;

v.r1.lw_x_0 := r.r0.cO_y * r.r0.ac_z;
v.r1.lw_x_1 := r.r0.cO_z * r.r0.ac_y;
v.r1.lw_y_0 := r.r0.cO_z * r.r0.ac_x;
v.r1.lw_y_1 := r.r0.cO_x * r.r0.ac_z;
v.r1.lw_z_0 := r.r0.cO_x * r.r0.ac_y;
v.r1.lw_z_1 := r.r0.cO_y * r.r0.ac_x;

-- copy omega
v.r1.omega_x := r.r0.omega_x;
v.r1.omega_y := r.r0.omega_y;
v.r1.omega_z := r.r0.omega_z;
-- pass on max for early out in nbvh
v.r1.far_x := r.r0.far_x;
v.r1.far_y := r.r0.far_y;
v.r1.far_z := r.r0.far_z;
v.r1.en := r.r0.en;
v.r1.trinum := r.r0.trinum;
v.r1.newray := r.r0.newray;

--
-- reg2: pipelined mul stage2, copy far, copy omega
--

v.r2.lu_x_0 := r.r1.lu_x_0;
v.r2.lu_x_1 := r.r1.lu_x_1;
v.r2.lu_y_0 := r.r1.lu_y_0;
v.r2.lu_y_1 := r.r1.lu_y_1;
v.r2.lu_z_0 := r.r1.lu_z_0;
v.r2.lu_z_1 := r.r1.lu_z_1;

v.r2.lv_x_0 := r.r1.lv_x_0;
v.r2.lv_x_1 := r.r1.lv_x_1;
v.r2.lv_y_0 := r.r1.lv_y_0;
v.r2.lv_y_1 := r.r1.lv_y_1;
v.r2.lv_z_0 := r.r1.lv_z_0;
v.r2.lv_z_1 := r.r1.lv_z_1;

v.r2.lw_x_0 := r.r1.lw_x_0;
v.r2.lw_x_1 := r.r1.lw_x_1;
v.r2.lw_y_0 := r.r1.lw_y_0;
v.r2.lw_y_1 := r.r1.lw_y_1;
v.r2.lw_z_0 := r.r1.lw_z_0;
v.r2.lw_z_1 := r.r1.lw_z_1;

-- copy omega
v.r2.omega_x := r.r1.omega_x;
v.r2.omega_y := r.r1.omega_y;
v.r2.omega_z := r.r1.omega_z;
-- pass on max for early out in nbvh
v.r2.far_x := r.r1.far_x;
v.r2.far_y := r.r1.far_y;
v.r2.far_z := r.r1.far_z;

v.r2.en := r.r1.en;
v.r2.trinum := r.r1.trinum;
v.r2.newray := r.r1.newray;

-- 1x reg parallel to r2 are in minifloat
lu_x <= r.r1.lu_x_0 - r.r1.lu_x_1;
lu_y <= r.r1.lu_y_0 - r.r1.lu_y_1;
lu_z <= r.r1.lu_z_0 - r.r1.lu_z_1;
lv_x <= r.r1.lv_x_0 - r.r1.lv_x_1;
lv_y <= r.r1.lv_y_0 - r.r1.lv_y_1;
lv_z <= r.r1.lv_z_0 - r.r1.lv_z_1;
lw_x <= r.r1.lw_x_0 - r.r1.lw_x_1;
lw_y <= r.r1.lw_y_0 - r.r1.lw_y_1;
lw_z <= r.r1.lw_z_0 - r.r1.lw_z_1;

--
-- reg3: shift mul result (done in mf0-2), copy far, omega
--
-- v.r3.omega_x := r.r2.omega_x;
-- v.r3.omega_y := r.r2.omega_y;
-- v.r3.omega_z := r.r2.omega_z;
-- v.r3.far_x := r.r2.far_x;
-- v.r3.far_y := r.r2.far_y;
-- v.r3.far_z := r.r2.far_z;
-- v.r3.en := r.r2.en;
-- v.r3.trinum := r.r2.trinum;

--
-- reg4: shift mul result (done in mf0-2), copy far, omega
--
-- v.r4.omega_x := r.r3.omega_x;
-- v.r4.omega_y := r.r3.omega_y;
-- v.r4.omega_z := r.r3.omega_z;
-- v.r4.far_x := r.r3.far_x;
-- v.r4.far_y := r.r3.far_y;
-- v.r4.far_z := r.r3.far_z;
-- v.r4.en := r.r3.en;
-- v.r4.trinum := r.r3.trinum;

--
-- reg5: eval dot products, copy far
--
v.r5.far_x := r.r2.far_x;
v.r5.far_y := r.r2.far_y;
v.r5.far_z := r.r2.far_z;
v.r5.u_0 := u_x * r.r2.omega_x;
v.r5.u_1 := u_y * r.r2.omega_y;
v.r5.u_2 := u_z * r.r2.omega_z;
v.r5.v_0 := v_x * r.r2.omega_x;
v.r5.v_1 := v_y * r.r2.omega_y;
v.r5.v_2 := v_z * r.r2.omega_z;
v.r5.w_0 := w_x * r.r2.omega_x;
v.r5.w_1 := w_y * r.r2.omega_y;
v.r5.w_2 := w_z * r.r2.omega_z;
v.r5.en := r.r2.en;
v.r5.trinum := r.r2.trinum;
v.r5.newray := r.r2.newray;

--
-- reg6: pipelined dot products, copy far
--
v.r6.far_x := r.r5.far_x;
v.r6.far_y := r.r5.far_y;
v.r6.far_z := r.r5.far_z;
v.r6.u_0 := r.r5.u_0;
v.r6.u_1 := r.r5.u_1;
v.r6.u_2 := r.r5.u_2;
v.r6.v_0 := r.r5.v_0;
v.r6.v_1 := r.r5.v_1;
v.r6.v_2 := r.r5.v_2;
v.r6.w_0 := r.r5.w_0;
v.r6.w_1 := r.r5.w_1;
v.r6.w_2 := r.r5.w_2;
v.r6.en := r.r5.en;
v.r6.trinum := r.r5.trinum;
v.r6.newray := r.r5.newray;

--
-- reg7: pipelined dot products, copy far
--
v.r7.far_x := r.r6.far_x;
v.r7.far_y := r.r6.far_y;

134

v.r7.far_z := r.r6.far_z;
v.r7.u := r.r6.u_0 + r.r6.u_1 + r.r6.u_2;
v.r7.v := r.r6.v_0 + r.r6.v_1 + r.r6.v_2;
v.r7.w := r.r6.w_0 + r.r6.w_1 + r.r6.w_2;
v.r7.en := r.r6.en;
v.r7.trinum := r.r6.trinum;
v.r7.newray := r.r6.newray;

--
-- output
--

q.far_x <= r.r7.far_x;
q.far_y <= r.r7.far_y;
q.far_z <= r.r7.far_z;

q.rdy <= r.r7.en;

q.trinum <= r.r7.trinum;
q.newray <= r.r7.newray;

rin <= v;
end process;

process(clk)
begin

if rising_edge(clk) then
r <= rin;

end if;
end process;

end architecture rtl;

135

Bibliography

[AFO05] Okan Arikan, David Forsyth, and James O’Brien. Fast and detailed
approximate global illumination by irradiance decomposition. ACM
Transactions on Graphics (Proc. SIGGRAPH 2005), pages 1108–1114,
2005. 120

[AK10] Timo Aila and Tero Karras. Architecture considerations for tracing
incoherent rays. In Proc. High-Performance Graphics 2010, pages
113–122, 2010. 33

[AL09] Timo Aila and Samuli Laine. Understanding the efficiency of ray
traversal on GPUs. In Proc. High-Performance Graphics 2009, pages
145–149, 2009. 33

[AM01] Elli Angelopoulou and Rana Molana. Multispectral skin color modeling.
In IEEE Conference on Computer Vision and Pattern Recognition,
pages 635–642, 2001. 59

[Ame] American Society for Testing and Materials. Reference solar spectral
irradiance: Air mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/.
18, 49, 62

[AMH02] Tomas Akenine-Möller and Eric Haines. Real-Time Rendering, 2nd ed.
A.K. Peters Ltd., 2002. 92

[AS00] Michael Ashikhmin and Peter Shirley. An anisotropic Phong BRDF
model. Journal of Graphics Tools, 5(2):25–32, 2000. 36, 37, 39

[Bad90] Didier Badouel. An efficient ray-polygon intersection. In A. S. Glass-
ner, editor, Graphics Gems, pages 390–393. Academic Press Profes-
sional, 1990. 89, 91

137

[BBdF96] A. Baccini, Ph. Besse, and A. de Falguerolles. An L1-norm PCA and
a heuristic approach. In Ordinal and Symbolic Data Analysis, pages
359–368. Springer, 1996. 75

[BBLW07] Carsten Benthin, Solomon Boulos, Dylan Lacewell, and Ingo Wald.
Packet-based ray tracing of Catmull-Clark subdivision surfaces. Tech-
nical Report UUSCI-2007-011, SCI Institute, University of Utah, 2007.
108

[BBS+09] Brian Budge, Tony Bernardin, Jeff Stuart, Shubhabrata Sengupta,
Kenneth Joy, and John Owens. Out-of-core data management for path
tracing on hybrid resources. In Computer Graphics Forum (Proc. of
Eurographics 2009), pages 385–396, 2009. 107

[Ben04] Carsten Benthin. Realtime Ray Tracing on Current CPU Architectures.
PhD thesis, Saarland University, 2004. 33, 89

[BHD+08] Marion Bendig, Johannes Hanika, Holger Dammertz, Jan Christoph
Goldschmidt, Marius Peters, and Michael Weber. Simulation of fluores-
cent concentrators. In Proc. 2008 IEEE/EG Symposium on Interactive
Ray Tracing, pages 93–98, 2008. 14, 60

[Bie00] Ludwig Bieberbach. Conformal Mapping. AMS Chelsea Publishing,
2000. 40

[BMW+09] Jiri Bittner, Oliver Mattausch, Peter Wonka, Vlastimil Havran, and
Michael Wimmer. Adaptive global visibility sampling. ACM Transac-
tions on Graphics (Proc. SIGGRAPH 2009), pages 94:1–94:10, 2009.
84

[BSBvR06] Antonius Burgers, Lenneke Slooff, Andreas Buchtemann, and John van
Roosmalen. Performance of Single Layer Luminescent Concentrators
with Multiple Dyes. In Conference Record of the 2006 IEEE 4th World
Conference on Photovoltaic Energy Conversion, pages 198–201, 2006.
58

[BSKvR05] A.R. Burgers, L.H. Slooff, R. Kinderman, and J.A.M. van Roosmalen.
Modelling of Luminescent Concentrators by Ray-Tracing. In Proceed-
ings of the 20th European Photovoltaic Solar Energy Conference and
Exhibition, 2005. 58

[BWSF06] Carsten Benthin, Ingo Wald, Michael Scherbaum, and Heiko Friedrich.
Ray Tracing on the CELL Processor. In Proc. 2006 IEEE Symposium
on Interactive Ray Tracing, pages 25–23, 2006. 33

[CAU83] M. Carrascosa, F. Agullo-Lopez, and S. Unamuno. Monte Carlo sim-
ulation of the performance of PMMA luminescent solar collectors.
Applied Optics, 22:3236–3241, 1983. 58

138

[CC78] Edwin Catmull and Jim Clark. Recursively generated B-spline surfaces
on arbitrary topological meshes. Computer Aided Design, 10(6):350–
355, 1978. 85

[CCC87] Robert Cook, Loren Carpenter, and Edwin Catmull. The Reyes image
rendering architecture. Computer Graphics (Proc. SIGGRAPH ’87),
pages 95–102, 1987. 84, 105, 106

[CE05] David Cline and Parris Egbert. A practical introduction to Metropolis
light transport. Technical report, Brigham Young University, 2005. 29

[CFLB06] Per Christensen, Julian Fong, David Laur, and Dana Batali. Ray tracing
for the movie ’Cars’. In Proc. 2006 IEEE Symposium on Interactive
Ray Tracing, pages 73–78, 2006. 106, 112, 116

[CHCH06] Nathan Carr, Jared Hoberock, Keenan Crane, and John Hart. Fast GPU
ray tracing of dynamic meshes using geometry images. In GI ’06:
Proceedings of the 2006 conference on Graphics interface, pages
203–209, 2006. 108, 110

[Chi05] Nick Chirkov. Fast 3d line segment–triangle intersection test. journal
of graphics, gpu, and game tools, 10(3):13–18, 2005. 89, 91, 92

[CHPR07] Robert Cook, John Halstead, Maxwell Planck, and David Ryu. Stochas-
tic simplification of aggregate detail. ACM Transactions on Graphics,
26(3):79, 2007. 109

[CJAMJ05] Petrik Clarberg, Wojciech Jarosz, Tomas Akenine-Möller, and Hen-
rik Wann Jensen. Wavelet importance sampling: efficiently evaluat-
ing products of complex functions. ACM Transactions on Graphics,
24(3):1166–1175, 2005. 33

[CMP96] Wonjoon Cho, Takashi Maekawa, and Nicholas Patrikalakis. Topologi-
cally reliable approximation of composite Bézier curves. Computer
Aided Geometric Design, 13(6):497–520, 1996. 94

[CS08] John Carmack and Ryan Shrout. John Carmack on id Tech 6, Ray
Tracing, Consoles, Physics and more. PC Perspective interview March
12, 2008. 96

[CT81] Robert Cook and Kenneth Torrance. A reflectance model for computer
graphics. Computer Graphics (Proc. SIGGRAPH ’81), pages 307–316,
1981. 36, 58

[CUR96] CUReT. Columbia Utrecht Texture Database. Web-Page.
http://www1.cs.columbia.edu/CAVE/software/curet/index.php,
1996. 58

139

[DBB06] Philip Dutré, Kavita Bala, and Philippe Bekaert. Advanced Global
Illumination. AK Peters, Ltd., 2006. 26

[DCWP02] Kate Devlin, Alan Chalmers, Alexander Wilkie, and Werner Purgath-
ofer. Star: Tone reproduction and physically based spectral rendering.
In State of the Art Reports, Eurographics 2002, pages 101–123, 2002.
21

[DDK08] Sabrina Dammertz, Holger Dammertz, and Alexander Keller. Efficient
search for low-dimensional rank-1 lattices with applications in graph-
ics. In Proc. Monte Carlo and Quasi-Monte Carlo Methods 2006, pages
217–236. Springer, 2008. 33

[Deb98] Paul Debevec. Rendering synthetic objects into real scenes: bridging
traditional and image-based graphics with global illumination and
high dynamic range photography. Proc. of SIGGRAPH ’98, pages
189–198, 1998. 18

[dFS04] Luiz de Figueiredo and Jorge Stolfi. Affine arithmetic: Concepts and
applications. Numerical Algorithms, 37(1–4):147–158, 2004. 87

[DH09] Holger Dammertz and Johannes Hanika. Plane sampling for light
paths from the environment map. journal of graphics, gpu and game
tools, 14(2):25–31, 2009. 13, 33

[DHK08] Holger Dammertz, Johannes Hanika, and Alexander Keller. Shallow
bounding volume hierarchies for fast SIMD ray tracing of incoherent
rays. In Computer Graphics Forum (Proc. 19th Eurographics Sympo-
sium on Rendering), pages 1225–1234, 2008. 14, 27, 32, 104, 106,
113

[DHKL09] Holger Dammertz, Johannes Hanika, Alexander Keller, and Hendrik
Lensch. A hierarchical automatic stopping condition for Monte Carlo
global illumination. In Proc. of the WSCG 2009, pages 159–164, 2009.
13, 33

[DK06] Holger Dammertz and Alexander Keller. Improving ray tracing pre-
cision by world space intersection computation. In Proc. 2006 IEEE
Symposium on Interactive Ray Tracing, pages 25–32, 2006. 94, 111,
112

[DK08] Holger Dammertz and Alexander Keller. Edge volume heuristic -
robust triangle subdivision for improved BVH performance. In Proc.
2008 IEEE/EG Symposium on Interactive Ray Tracing, pages 155–158,
2008. 33

[Don54] R. Donaldson. Spectrophotometry of fluorescent pigments. British
Journal of Applied Physics, 5(6):210–214, 1954. 58, 66

140

[Dre07] Ulrich Drepper. What every programmer should know about memory.
LWN.net, 2007. 84

[DSHL10] Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik
Lensch. Edge-avoiding à-trous wavelet transform for fast global illu-
mination filtering. In Proc. High Performance Graphics 2010, pages
67–75, 2010. 13, 33

[Dut03] Philip Dutré. Global illumination compendium – the concise guide
to global illumination algorithms. http://people.cs.kuleuven.be/
~philip.dutre/GI/, 2003. 18, 19, 21

[DWT+10] Yue Dong, Jiaping Wang, Xin Tong, John Snyder, Yanxiang Lan, Moshe
Ben-Ezra, and Baining Guo. Manifold bootstrapping for SVBRDF cap-
ture. ACM Transactions on Graphics (Proc. SIGGRAPH 2010), pages
1–10, 2010. 37

[EBJ+06] Dave Edwards, Solomon Boulos, Jared Johnson, Peter Shirley, Michael
Ashikhmin, Michael Stark, and Chris Wyman. The halfway vector disk
for BRDF modeling. ACM Transactions on Graphics, 25(1):1–18, 2006.
36, 37, 40

[EG07] Manfred Ernst and Gunther Greiner. Early split clipping for bounding
volume hierarchies. In Proc. 2007 IEEE/EG Symposium on Interactive
Ray Tracing, pages 73–78, 2007. 33

[EG08] Manfred Ernst and Gunther Greiner. Multi bounding volume hierar-
chies. In Proc. 2008 IEEE/EG Symposium on Interactive Ray Tracing,
pages 35–40, 2008. 33, 104, 113

[Ein05] Albert Einstein. Über einen die Erzeugung und Verwandlung des
Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der
Physik, 17:132–148, 1905. 19

[EL10] Christian Eisenacher and Charles Loop. Data-parallel micropolygon
rasterization. In Eurographics 2010 short papers, pages 53–56, 2010.
108

[Eri05] Christer Ericson. Real-Time Collision Detection. Morgan Kaufmann,
2005. 99

[Eri07] Christer Ericson. Plücker coordinates considered harmful! Real-Time
Collision Detection blog, 2007. 89, 91

[Erm75] Sergej Mikhailovich Ermakow. Die Monte-Carlo-Methode und ver-
wandte Fragen. VEB Deutscher Verlag der Wissenschaften, 1975.
23

141

http://people.cs.kuleuven.be/~philip.dutre/GI/
http://people.cs.kuleuven.be/~philip.dutre/GI/

[FBH98] Hugh Fairman, Michael Brill, and Henry Hemmendinger. How the CIE
1931 color-matching functions were derived from wright-guild data.
Color Research and Application, 22(1):11–23, 1998. 20

[FFB+09] Matthew Fisher, Kayvon Fatahalian, Solomon Boulos, Kurt Akeley,
William Mark, and Pat Hanrahan. DiagSplit: Parallel, crack-free, adap-
tive tessellation for micropolygon rendering. SIGGRAPH Asia ’09:
ACM SIGGRAPH Asia 2009 papers, pages 1–10, 2009. 112

[GD03] Philippe Guigue and Olivier Devillers. Fast and robust triangle-triangle
overlap test using orientation predicates. journal of graphics, gpu,
and game tools, 8(1):25–42, 2003. 89, 91

[GGGW06] Jan Christoph Goldschmidt, Stefan Glunz, Andreas Gombert, and
Gerhard Willeke. Advanced fluorescent concentrators. In Proceedings
of the 21st European Photovoltaic Solar Energy Conference, 2006.
60

[GHSK08] Leonhard Grünschloß, Johannes Hanika, Ronnie Schwede, and Alexan-
der Keller. (t,m, s)-nets with maximized minimum distance. In Proc.
Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 397–412.
Springer, 2008. 14, 33

[GL10] Kirill Garanzha and Charles Loop. Fast ray sorting and breadth-first
packet traversal for GPU ray tracing. In Computer Graphics Forum
(Proc. of Eurographics 2010), pages 289–298, 2010. 119

[Gla89] Andrew Glassner. An Introduction to Ray Tracing. Academic Press,
1989. 27, 84

[Gla94] Andrew Glassner. A model for fluorescence and phosphorescence. In
Proceedings of the 5th Eurographics Workshop on Rendering, pages
57–68, 1994. 58, 66

[GMD10] David Geisler-Moroder and Arne Dür. A new Ward BRDF model with
bounded albedo. In Proceedings of the Eurographics Symposium on
Rendering, pages 1391–1398, 2010. 36

[Gol91] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surv., 23(1):5–48, 1991. 86

[Gri09] Larry Gritz. Production perspectives on high performance graphics.
Keynote Talk at the High Performance Graphics conference, 2009.
105

[Grü08] Leonhard Grünschloß. Motion blur. Master’s thesis, Ulm University,
2008. 116

142

[GS87] Jeffrey Goldsmith and John Salmon. Automatic creation of object
hierarchies for ray tracing. IEEE Computer Graphics & Applications,
7(5):14–20, 1987. 111

[GT94] Dietrich Gundlach and Heinz Terstiege. Problems in measurement of
fluorescent materials. Color Research & Application, 19(6):427–436,
1994. 59

[Had00] Mirza Hadzic. Letters: Graphics algorithms. Dr. Dobb’s Journal, 25(11),
November 2000. 95

[Han03] Johannes Hanika. Real-Time Raytracing Voxel Engine, 2003.
http://rearview.sourceforge.net/. 96

[Han07] Johannes Hanika. Fixed point hardware ray tracing. Master’s thesis,
Ulm University, 2007. 88, 131

[Han09] Johannes Hanika. Digital Photography Workflow Software, 2009.
http://darktable.sourceforge.net/. 21

[Has70] W. Keith Hastings. Monte Carlo sampling methods using Markov
chains and their applications. Biometrika, 57(1):97–109, 1970. 28,
46

[Hav01] Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD thesis,
Czech Technical University, 2001. 84

[HDC07] Roger Hersch, Philipp Donzé, and Sylvain Chosson. Color images
visible under UV light. ACM Transactions on Graphics (Proc.
SIGGRAPH 2007), page 75, 2007. 59

[Hec90] Paul Heckbert. Adaptive radiosity textures for bidirectional ray
tracing. Computer Graphics (Proc. SIGGRAPH ’90), pages 145–154,
1990. 27, 28

[Hei82] K. Heidler. Wirkungsgraduntersuchung zur Solarenergiekonversion
mit Fluoreszenzkollektoren. PhD thesis, Albert-Ludwigs-Universität
Freiburg, 1982. 58

[HHA+10] Matthias Hullin, Johannes Hanika, Boris Ajdin, Jan Kautz, Hans-Peter
Seidel, and Hendrik Lensch. Acquisition and analysis of bispectral
bidirectional reflectance and reradiation distribution functions. ACM
Transactions on Graphics (Proc. SIGGRAPH 2010), pages 1–7, 2010.
13, 19, 65

[HJ09] Toshiya Hachisuka and Henrik Wann Jensen. Stochastic progressive
photon mapping. ACM Transactions on Graphics, 28(5):1–8, 2009. 26

143

http://rearview.sourceforge.net/
http://darktable.sourceforge.net/

[HK07] Johannes Hanika and Alexander Keller. Towards hardware ray tracing
using fixed point arithmetic. In Proc. 2007 IEEE/EG Symposium on
Interactive Ray Tracing, pages 119–128, 2007. 14, 86, 91

[HKL09] Johannes Hanika, Alexander Keller, and Hendrik Lensch. Two-level
ray tracing with reordering for highly complex scenes. Technical
Report 2009–11, Ulm University, 2009. 105

[HKL10] Johannes Hanika, Alexander Keller, and Hendrik Lensch. Two-level
ray tracing with reordering for highly complex scenes. In Proc. of
Graphics Interface 2010, pages 145–152, 2010. 13, 105

[HL90] Pat Hanrahan and Jim Lawson. A language for shading and lighting
calculations. Computer Graphics (Proc. SIGGRAPH ’90), pages
289–298, 1990. 106

[HM00] Eric Haines and Tomas Möller. Triangle intersection tests. Dr. Dobb’s
Journal, August 2000. 89, 92

[HMF07] Warren Hunt, William Mark, and Don Fussell. Fast and lazy build of
acceleration structures from scene hierarchies. In Proc. 2007
IEEE/EG Symposium on Interactive Ray Tracing, pages 47–54, 2007.
108, 111

[HMI08] Silja Holopainen, Farshid Manoocheri, and Erkii Ikonen.
Goniofluorometer for characterization of fluorescent materials.
Applied Optics, 47(6):835–842, 2008. 59

[HOJ08] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen.
Progressive photon mapping. SIGGRAPH Asia ’08: ACM SIGGRAPH
Asia 2008 papers, pages 1–8, 2008. 26

[HQL+10] Qiming Hou, Hao Qin, Wenyao Li, Baining Guo, and Kun Zhou.
Micropolygon ray tracing with defocus and motion blur. ACM
Transactions on Graphics (Proc. SIGGRAPH 2010), pages 1–10, 2010.
108

[HRB+09] Jared Heinly, Shawn Recker, Kevin Bensema, Jesse Porch, and
Christiaan Gribble. Integer ray tracing. journal of graphics, gpu, and
game tools, 14(4):31–56, 2009. 86

[HSRG07] Charles Han, Bo Sun, Ravi Ramamoorthi, and Eitan Grinspun.
Frequency domain normal map filtering. ACM Transactions on
Graphics (Proc. SIGGRAPH 2007), page 28, 2007. 112

[Ige99] Homan Igehy. Tracing ray differentials. Proc. of SIGGRAPH ’99,
pages 179–186, 1999. 109, 112

144

[Inc04] Adobe Systems Inc. Digital negative specification.
http://www.adobe.com/products/dng/pdfs/dng_spec.pdf,
accessed 27/08/2010, 2004. 21

[IWRP06] Thiago Ize, Ingo Wald, Chelsea Robertson, and Steven Parker. An
Evaluation of Parallel Grid Construction for Ray Tracing Dynamic
Scenes. In Proc. 2006 IEEE Symposium on Interactive Ray Tracing,
pages 27–55, 2006. 33

[Jak10] Wenzel Jakob. Mitsuba renderer.
http://www.mitsuba-renderer.org/, 2010. 26

[Jef05] Alan Jeffrey. Complex Analysis and Applications. Chapman and
Hall/CRC; 2nd edition, 2005. 40

[Jen95] Henrik Wann Jensen. Importance driven path tracing using the
photon map. In Rendering Techniques ’95 (Proc. of the Sixth
Eurographics Workshop on Rendering), pages 326–335, 1995. 28

[Jen96] Henrik Wann Jensen. Global illumination using photon maps. In
Rendering Techniques ’96 (Proc. of the Seventh Eurographics
Workshop on Rendering), pages 21–30, 1996. 26

[JMLH01] Henrik Wann Jensen, Stephen Marschner, Marc Levoy, and Pat
Hanrahan. A practical model for subsurface light transport. Proc. of
ACM SIGGRAPH 2001, pages 511–518, 2001. 37

[Jon00] Ray Jones. Intersecting a ray and a triangle with Plücker coordinates.
Ray Tracing News, 13(1), 2000. 89, 91

[Kaj86] Jim Kajiya. The Rendering Equation. Computer Graphics (Proc.
SIGGRAPH ’86), pages 143–150, 1986. 22, 26

[Kea96] Baker Kearfott. Interval computations: Introduction, uses, and
resources. Euromath Bulletin, 2(1):95–112, 1996. 87

[Kel97] Alexander Keller. Instant radiosity. Proc. of SIGGRAPH ’97, pages
49–56, 1997. 26

[Kel98] Alexander Keller. Quasi-Monte Carlo Methods for Photorealistic
Image Synthesis. PhD thesis, University of Kaiserslautern, 1998. 24

[Kem09] Christian Kempter. Estimating brdfs from height fields and scanning
electron microscope photographs. Master’s thesis, Ulm University,
2009. 36

[KGV83] Scott Kirkpatrick, Daniel Gelatt, and Mario Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983. 46

145

http://www.adobe.com/products/dng/pdfs/dng_spec.pdf
http://www.mitsuba-renderer.org/

[KK03] Qifa Ke and Takeo Kanade. Robust subspace computation using L1
norm. Technical Report CMU-CS-03-172, Carnegie Mellon, 2003. 75

[KK04] Thomas Kollig and Alexander Keller. Illumination in the presence of
weak singularities. In Proc. Monte Carlo and Quasi-Monte Carlo
Methods 2002, pages 245–257. Springer, 2004. 120

[Knu81] Donald Knuth. The Art of Computer Programming, Volume II:
Seminumerical Algorithms, 2nd Edition. Addison-Wesley, 1981. 86,
88

[KS02] Toshi Kato and Jun Saito. Kilauea parallel global illumination renderer.
In Fourth Eurographics Workshop on Parallel Graphics and
Visualization, pages 7–13, 2002. 108

[KS06] Andrew Kensler and Peter Shirley. Optimizing ray-triangle
intersection via automated search. In Proc. 2006 IEEE Symposium
on Interactive Ray Tracing, pages 33–38, 2006. 89

[KSKAC02] Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc
Csonka. A simple and robust mutation strategy for the Metropolis
light transport algorithm. In Computer Graphics Forum (Proc.
Eurographics 2002), pages 531–540, 2002. 29, 30

[KSKK10] Murat Kurt, László Szirmay-Kalos, and Jaroslav Křivánek. An
anisotropic BRDF model for fitting and Monte Carlo rendering. ACM
Transactions on Graphics (Proc. SIGGRAPH 2010), pages 1–15, 2010.
36

[KSL05] Jan Kautz, Peter-Pike Sloan, and Jaakko Lehtinen. Precomputed
radiance transfer: Theory and practice. SIGGRAPH 2005 Courses,
2005. 84

[Lai10] Samuli Laine. Restart trail for stackless BVH traversal. In Proc.
High-Performance Graphics 2010, pages 107–111, 2010. 33

[LBBS08] Dylan Lacewell, Brent Burley, Solomon Boulos, and Peter Shirley.
Raytracing prefiltered occlusion for aggregate geometry. In IEEE
Symposium on Interactive Raytracing 2008, pages 19–26, 2008. 112

[LJA97] James Leland, Norbert Johnson, and Angelo Arecchi. Principles of
bispectral fluorescence colorimetry. Photometric Engineering of
Sources and Systems, 3140(1):76–87, 1997. 58

[LMW90] Bernd Lamparter, Heinrich Müller, and Jörg Winckler. The
ray-z-buffer—an approach for ray tracing arbitrarily large scenes.
Technical report, Albert-Ludwigs University at Freiburg, 1990. 107

146

[LS08] Charles Loop and Scott Schaefer. Approximating Catmull-Clark
subdivision surfaces with bicubic patches. ACM Transactions on
Graphics, 27(1):1–11, 2008. 85

[LV00] Tom Lokovic and Eric Veach. Deep shadow maps. Proc. of ACM
SIGGRAPH 2000, pages 385–392, 2000. 106

[LW93] Eric Lafortune and Yves Willems. Bi-directional path tracing. In
proceedings of third international conference on computational
graphics and visualization techniques (compugraphics âĂŹ93),
pages 145–153, 1993. 27

[LW95] Eric Lafortune and Yves Willems. A 5d tree to reduce the variance of
Monte Carlo ray tracing. In Rendering Techniques 1995 (Proc. of the
Sixth Eurographics Workshop on Rendering), pages 11–20, 1995. 26,
28

[LYM07] Christian Lauterbach, Sung-Eui Yoon, and Dinesh Manocha.
Ray-strips: A compact mesh representation for interactive ray
tracing. In Proc. 2007 IEEE/EG Symposium on Interactive Ray
Tracing, pages 19–26, 2007. 106

[LYTM08] Christian Lauterbach, Sung-Eui Yoon, Ming Tang, and Dinesh
Manocha. ReduceM: Interactive and memory efficient ray tracing of
large models. Computer Graphics Forum, 27(4):1313–1321, 2008.
106

[Mar98] Marti Maria. Little color management system. www.littlecms.com,
1998. 21

[MDH+10] Stefan Menz, Holger Dammertz, Johannes Hanika, Hendrik Lensch,
and Michael Weber. Graphical interface models for procedural mesh
growing. In Proc. Vison, Modeling and Visualization, pages 17–24,
2010. 13

[Moo66] Ramon Moore. Interval Analysis. Prentice-Hall, 1966. 87

[Mor66] G.M. Morton. A computer oriented geodetic data base and a new
technique in file sequencing. Technical report, IBM Ltd., 1966. 98

[MPBM03a] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard
McMillan. A data-driven reflectance model. ACM Transactions on
Graphics (Proc. SIGGRAPH 2003), 22(3):759–769, 2003. 37, 47, 58,
67, 69

[MPBM03b] Wojciech Matusik, Hanspeter Pfister, Matthew Brand, and Leonard
McMillan. Efficient isotropic BRDF measurement. In Proceedings of

147

www.littlecms.com

the Eurographics Symposium on Rendering, pages 241–248, 2003.
71

[MRR+53] Nicolas Metropolis, Arianna Rosenbluth, Marshall Rosenbluth,
Augusta Teller, and Edward Teller. Equations of state calculations by
fast computing machines. Journal of Chemical Physics,
21(6):1087–1092, 1953. 23, 28, 46

[MT97] Tomas Möller and Ben Trumbore. Fast, minimum storage ray/triangle
intersection. Journal of Graphics Tools, 2(1):21–28, 1997. 89, 91

[MWLT00] Stephen Marschner, Stephen Westin, Eric Lafortune, and Kenneth
Torrance. Image-based bidirectional reflectance distribution function
measurement. Applied Optics, 39(16):2592–2600, 2000. 58

[Nas83] Kurt Nassau. The Physics and Chemistry of Color: The Fifteen Causes
of Color. John Wiley and Sons, 1983. 18

[NDM05] Addy Ngan, Frédo Durand, and Wojciech Matusik. Experimental
analysis of BRDF models. In Rendering Techniques 2005 (Proc. 16th
Eurographics Symposium on Rendering), pages 117–226, 2005. 51,
58

[NFL07] Paul Navrátil, Donald Fussell, and Calvin Lin. Dynamic ray scheduling
to improve ray coherence and bandwidth utilization. In Proc. 2007
IEEE/EG Symposium on Interactive Ray Tracing, pages 95–104, 2007.
107, 113

[NNSK99] László Neumann, Attila Neumann, and László Szirmay-Kalos.
Compact metallic reflectance models. In Computer Graphics Forum
(Proc. of Eurographics 1999), pages 161–172, 1999. 37

[NRH+77] F. Nicodemus, J. Richmond, J. Hsia, I. Ginsberg, and T. Limperis.
Geometrical considerations and nomenclature for reflectance. Final
Report, National Bureau of Standards, Washington, DC. Inst. for
Basic Standards, 1977. 22, 66, 106

[NVI09] NVIDIA. CUDA best practices guide 2.3, 2009. 85, 87

[Pat93] Nicholas Patrikalakis. Surface-to-surface intersections. IEEE
Computer Graphics and Applications, 13(1):89–95, 1993. 94

[PB96] James Proctor and Yvonne Barnes. NIST high accuracy reference
reflectometer-spectrophotometer. Journal of Research of the Nat.
Institute of Standards and Technology, 101(5):619–626, 1996. 59

148

[PFA+10] Jacopo Pantaleoni, Luca Fascione, Timo Aila, Martin Hill, Sebastian
Sylwan, and David Luebke. PantaRay: Directional occlusion for fast
cinematic lighting of massive scenes. SIGGRAPH 2010 talks, 2010.
84

[PFHA10] Jacopo Pantaleoni, Luca Fascione, Martin Hall, and Timo Aila.
PantaRay: Fast ray-traced occlusion caching of massive scenes. ACM
Transactions on Graphics (Proc. SIGGRAPH 2010), pages 1–10, 2010.
108

[PGL+07] Marius Peters, Jan Christoph Goldschmidt, Philipp Loeper, Andreas
Gombert, and Gerhard Willeke. Application of photonic structures on
fluorescent concentrators. In Proceedings of the 22nd European
Photovoltaic Solar Energy Conference, 2007. 60

[PH96] Matt Pharr and Pat Hanrahan. Geometry caching for ray-tracing
displacement maps. In Eurographics Rendering Workshop 1996,
pages 31–40, 1996. 108, 118

[PH04] Matt Pharr and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. Morgan Kaufmann Publishers Inc., 2004.
26

[Pha05] Matt Pharr. Extended photon map implementation for PBRT.
www.pbrt.org/plugins/exphotonmap.pdf, 2005. 28, 42

[PKGH97] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. Rendering
complex scenes with memory-coherent ray tracing. Proc. of
SIGGRAPH ’97, pages 101–108, 1997. 107, 108, 118

[PL10] Jacopo Pantaleoni and David Luebke. HLBVH: Hierarchical LBVH
construction for real-time ray tracing of dynamic geometry. In Proc.
High-Performance Graphics 2010, pages 87–95, 2010. 33

[PO08] Anjul Patney and John Owens. Real-time Reyes-style adaptive
surface subdivision. SIGGRAPH Asia ’08: ACM SIGGRAPH Asia 2008
papers, pages 143:1–143:8, 2008. 108

[PT95] Les Piegl and Wayne Tiller. The NURBS Book. Springer, 1995. 85

[Qui03] Michael Quinn. Parallel Programming in C with MPI and OpenMP.
McGraw-Hill Education Group, 2003. 33

[Ren50] William Rense. Polarization studies of light diffusely reflected from
ground and etched glass surfaces. Journal of the optical society of
America, 40(1):55–59, 1950. 39

149

www.pbrt.org/plugins/exphotonmap.pdf

[Res07] Alexander Reshetov. Faster ray packets – triangle intersection
through vertex culling. In Proc. 2007 IEEE/EG Symposium on
Interactive Ray Tracing, pages 105–112, 2007. 33, 119

[RHF+07] Matthias Raab, Johannes Hanika, Manuel Finkch, Leonhard
Grünschloß and Alexander Keller. Benchmarking ray tracing for
realistic light transport algorithms, 2007.
http://bwfirt.sourceforge.net/. 14, 33

[RL00] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolution
point rendering system for large meshes. Proc. of ACM SIGGRAPH
2000, pages 343–352, 2000. 98

[RUL00] J. Revelles, Carlos Ureña, and Miguel Lastra. An efficient parametric
algorithm for octree traversal. In Proc. of the WSCG 2000, pages
212–219, 2000. 98

[SB55] W. Stiles and J. Burch. Interim report to the commission
internationale de l’Éclairage, Zürich, 1955, on the national physical
laboratory’s investigation of colour-matching. Optica Acta,
2:168–181, 1955. 20

[SB59] W. Stiles and J. Burch. N.P.L. colour-matching investigation: final
report. Optica Acta, 6:1–26, 1959. 21

[SB87] John Snyder and Alan Barr. Ray tracing complex models containing
surface tessellations. Computer Graphics (Proc. SIGGRAPH ’87),
pages 119–128, 1987. 108

[SBB+06] Abraham Stephens, Solomon Boulos, James Bigler, Ingo Wald, and
Steven Parker. An application of scalable massive model interaction
using shared memory systems. In Proceedings of the 2006
Eurographics Symposium on Parallel Graphics and Visualization,
pages 19–26, 2006. 106

[Sch94] Christophe Schlick. An inexpensive BRDF model for physically-based
rendering. Computer Graphics Forum, 13(3):233–246, 1994. 37

[SFD09] Martin Stich, Heiko Friedrich, and Andreas Dietrich. Spatial splits in
bounding volume hierarchies. In Proc. High Performance Graphics
2009, pages 7–13, 2009. 33

[SHDL10] Christoph Schied, Johannes Hanika, Holger Dammertz, and Hendrik
Lensch. High performance iterated function systems. In GPU
Computing Gems, page to appear. Morgan Kaufmann, 2010. 13

[Shi00] Peter Shirley. Realistic Ray Tracing. AK Peters, Ltd., 2000. 27, 84

150

http://bwfirt.sourceforge.net/

[Shi02] Peter Shirley. Fundamentals of Computer Graphics. A.K. Peters Ltd.,
2002. 17, 18, 21

[SKG+07] A. Schüler, A. Kostro, C. Galande, M. Valle del Olmo, E. de Chambrier,
and B.Huriet. Principles of Monte-Carlo Ray-Tracing Simulations of
Quantum Dot Solar Concentrators. In Proceedings of the ISES solar
world congress 2007, 2007. 58

[SM08] Mutsuo Saito and Makoto Matsumoto. SIMD-oriented fast Mersenne
twister: A 128-bit pseudorandom number generator. In Proc. Monte
Carlo and Quasi-Monte Carlo Methods 2006, pages 607–622.
Springer, 2008. 26

[SMD+06] Gordon Stoll, William Mark, Peter Djeu, Rui Wang, and Ikrima
Elhassan. Razor: An architecture for dynamic multiresolution ray
tracing. Technical report 06-21, Department of Computer Science,
University of Texas at Austin, 2006. 108, 109, 119

[Smi99] Brian Smits. An RGB-to-spectrum conversion for reflectances.
Journal of Graphics Tools, 4(4):11–22, 1999. 19

[SN07] P. Susila and J. Naus. A Monte Carlo study of the chlorophyll
fluorescence emission and its effects on the leaf spectral reflectance
and transmittance under various conditions. Photochemical &
Photobiological Sciences, 6:894–902, 2007. 58

[Sob94] Ilya Sobol’. A Primer for the Monte Carlo Method. CRC Press, 1994.
23, 65

[SSHL97] Peter Shirley, Brian Smits, Helen Hu, and Eric Lafortune. A
practitioners’ assessment of light reflection models. In Proceedings
of the 5th Pacific Conference on Computer Graphics and
Applications, pages 40–49, 1997. 37

[SSS00] Brian Smits, Peter Shirley, and Michael Stark. Direct ray tracing of
displacement mapped triangles. In Proc. Eurographics Workshop on
Rendering Techniques 2000, pages 307–318, 2000. 108

[Tat05] Natalya Tatarchuk. Practical dynamic parallax occlusion mapping.
ACM SIGGRAPH 2005 Sketches, page 106, 2005. 85, 108

[TWW88] Joseph Traub, Grzegorz Wasilkowski, and Henryk Woźniakowski.
Information Based Complexity. Academic Press, 1988. 24

[Vea97] Eric Veach. Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford University, 1997. 26, 96

151

[VG94] Eric Veach and Leonidas Guibas. Bidirectional estimators for light
transport. In Rendering Techniques ’94 (Proc. of the Fifth
Eurographics Workshop on Rendering), pages 147 – 161, 1994. 27

[VG95] Eric Veach and Leonidas Guibas. Optimally combining sampling
techniques for Monte Carlo rendering. Proc. of SIGGRAPH ’95, pages
419–428, 1995. 27, 115

[VG97] Eric Veach and Leonidas Guibas. Metropolis light transport. Proc. of
SIGGRAPH ’97, pages 65–76, 1997. 28

[VGmm98] Terrence Vergauwen, Jean-Philippe Grimaldi, and many more.
LuxRender: GPL physically based renderer.
http://www.luxrender.net/, 1998. 26

[Wäc08] Carsten Wächter. Quasi-Monte Carlo Light Transport Simulation by
Efficient Ray Tracing. PhD thesis, Universität Ulm, 2008. 83, 86, 111

[Wal04] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University, 2004. 33, 91, 92

[Wal07] Ingo Wald. On fast construction of SAH based bounding volume
hierarchies. In Proc. 2007 IEEE/EG Symposium on Interactive Ray
Tracing, pages 33–40, 2007. 33, 111

[War92] Gregory Ward. Measuring and modeling anisotropic reflection.
Computer Graphics (Proc. SIGGRAPH ’92), 26(2):265–272, 1992. 58

[War02] Henry Warren. Hacker’s Delight. Addison-Wesley Longman
Publishing Co., Inc., 2002. 88

[WBB08] Ingo Wald, Carsten Benthin, and Solomon Boulos. Getting rid of
packets - efficient SIMD single-ray traversal using multi-branching
BVHs. In Proc. 2008 IEEE/EG Symposium on Interactive Ray Tracing,
pages 49–57, 2008. 33

[WBWS01] Ingo Wald, Carsten Benthin, M. Wagner, and Philipp Slusallek.
Interactive rendering with coherent ray tracing. In Computer
Graphics Forum (Proc. Eurographics 2001), pages 153–164, 2001.
106

[WGRK+97] A.J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell,
J. Pfefer, and S. Warren. Propagation of fluorescent light. Lasers in
Surgery and Medicine, 21:166–178, 1997. 58

[WH06] Ingo Wald and Vlastimil Havran. On building fast kd-trees for ray
tracing, and on doing that in O(n log n). In Proc. 2006 IEEE
Symposium on Interactive Ray Tracing, pages 18–20, 2006. 33, 111

152

http://www.luxrender.net/

[Whi80] Turner Whitted. An improved illumination model for shaded display.
Communications of the ACM, 23(6):343–349, 1980. 27, 84

[WMG+07] Ingo Wald, William Mark, Johannes Günther, Solomon Boulos, Thiago
Ize, Warren Hunt, Steven Parker, and Peter Shirley. State of the art in
ray tracing animated scenes. In State of the Art Reports,
Eurographics 2007, pages 1691–1722, 2007. 84

[Woo06] Sven Woop. DRPU: A Programmable Hardware Architecture for
Real-time Ray Tracing of Coherent Dynamic Scenes. PhD thesis,
Saarland University, 2006. 89, 92

[WPO96] Andrew Woo, Andrew Pearce, and Marc Ouellette. It’s really not a
rendering bug, you see... IEEE Computer Graphics & Applications,
16(5):21–25, 1996. 83, 96

[WRC88] Greg Ward, Francis Rubinstein, and Robert Clear. A ray tracing
solution for diffuse interreflection. Computer Graphics (Proc.
SIGGRAPH ’88), pages 85 – 90, 1988. 26

[WTP01] Alexander Wilkie, R.F. Tobler, and W. Purgathofer. Combined
rendering of polarization and fluorescence effects. In Proceedings of
the 12th Eurographics Workshop on Rendering, 2001. 58

[WWLP06] Alexander Wilkie, Andrea Weidlich, C. Larboulette, and
W. Purgathofer. A reflectance model for diffuse fluorescent surfaces.
In Proceedings of the 4th International Conference on Computer
Graphics and Interactive Techniques in Australasia and the
Southeast Asia, 2006. 58

[XR10] X-Rite. Ma98 specifications: Portable multi-angle spectrophotometer.
http://www.xrite.com/documents/literature/en/L10-372_

MA98_en.pdf, 2010. 44

[YM06] Sung-Eui Yoon and Dinesh Manocha. R-LODs: fast LOD-based ray
tracing of massive models. SIGGRAPH ’06: ACM SIGGRAPH 2006
Sketches, page 67, 2006. 109

[Zas81] Armin Zastrow. Physikalische Analyse der
Energieverlustmechanismen im Fluoreszenzkollektor. PhD thesis,
Albert-Ludwigs-Universität Freiburg, 1981. 60

153

http://www.xrite.com/documents/literature/en/L10-372_MA98_en.pdf
http://www.xrite.com/documents/literature/en/L10-372_MA98_en.pdf

	Introduction
	Summary of Contributions
	Structure of this Thesis

	Spectral Light Transport Simulation
	Colorimetry
	The Spectral Global Illumination Problem
	The Monte Carlo Method
	Path Tracing
	Implementation of a Spectral Rendering System
	Conclusion

	Reflectance Models
	Multi-Layer Material Models
	A Multi-Layer Material for Car Paints
	Simulating Scattering
	Probability Density Transformation

	BRDF Lobes as Automorphisms on the Unit Disk
	Photon Map Importance Sampling

	BRDF Parameters from Sparse Data
	Sparse Data Acquisition
	Metropolis Fitting

	Results
	Conclusion

	Simulating Fluorescence
	Direct Simulation
	Model
	Verification by Experiments
	Rendering

	Fluorescent Surface Radiance Transfer
	Bispectral Rendering Equation
	Measurement Setup
	PCA-based Acquisition
	Rendering

	Results
	Conclusion

	Ray Tracing Precision
	Arithmetic
	Approximate Computation
	Division

	Analysis of Ray/Triangle Intersection Tests
	Barycentric Coordinates-based Tests
	Badouel's Test
	Plücker Coordinates-based Test
	SSE-based Tests
	Transformation-based Test
	Chirkov-Style Test
	Subdivision-based Test
	Look-up table-based Test
	Improving Shading Normals

	Finite Precision Geometry
	Results
	Conclusion

	The Rayes Architecture
	Efficient Ray Tracing of Arrays of Micropolygons
	Implicit Acceleration Hierarchy in Linear Time
	Crack-Free Level of Detail Geometry Approximation

	Reordering Rays
	Top-Level Hierarchy
	Tracing Rays in Groups and by Generation

	Accelerating Motion Blur by Hierarchies Sharing Topology
	Results
	Conclusion

	Summary
	Future Work

	Source Code
	Chirkov-Style Integer Ray/Triangle Intersection Test
	Chirkov-Style Fixed Point Ray/Triangle Intersection Test

