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Figure 1: The forest with 100 trees has been modeled using displaced patches with motion blur and without instancing. At a resolution of
1920× 768 with 32 samples per pixel, the left image has been rendered in 5:04 minutes on a 2.83 GHz quad core Q9550, where global
illumination from the sun and sky was evaluated using path tracing. Fully tessellated, the model would consist of over 108 ·109 triangles. Due to
on demand level of detail and ray sorting, only around 170 million triangles actually need to be created, without the need of caching.

ABSTRACT

We introduce a ray tracing scheme, which is able to handle highly
complex geometry modeled by the classic approach of surface
patches tessellated to micro-polygons, where the number of micro-
polygons can exceed the available memory. Two techniques allow
us to carry out global illumination computations in such scenes and
to trace the resulting incoherent sets of rays efficiently. For one,
we rely on a bottom-up technique for building the bounding vol-
ume hierarchy (BVH) over tessellated patches in time linear in the
number of micro-polygons. Second, we present a highly parallel
two-stage ray tracing algorithm, which minimizes the number of
tessellation steps by reordering rays. The technique can acceler-
ate rendering scenes that would result in billions of micro-polygons
and efficiently handles complex shading operations.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing; I.3.3 [Computer Graphics]:
Picture/Image Generation—Display algorithms.

1 INTRODUCTION

In movie production, extreme geometric detail, complex shaders,
and motion blur are needed to obtain visually compelling images.
The Reyes architecture [CCC87] successfully deals with these chal-
lenges using a rasterization approach. The use of physically-based
ray tracing is getting more and more common in the movie produc-
tion, partly because the artists’ experiences from real-world light-
ing design can be easily carried over. For this benefit, even the
long render times are accepted [Gri09]. To retain the strengths of
the Reyes architecture in a general ray tracing setting, we propose
a two-level hierarchy approach, using reordering of computations
instead of caching. After traversing a top-level hierarchy, rays are
sorted to bundle those, which intersect the same bounding volume.
Any necessary operation to be carried out in this volume, e.g. tes-
sellation or loading a complex shader or bidirectional reflectance
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distribution function (BRDF) [NRH∗77], is thus performed a min-
imum number of times. This results in significantly improved data
locality, which allows us to fully ray trace computationally complex
(procedural) displacements efficiently, i.e. corresponding to billions
of micro-polygons without instancing (see Figure 1). Existing pro-
duction pipelines can easily be extended to use our method, since
the algorithm works on the same two-level data, such as displaced
subdivision surfaces and sub-pixel-sized micro-polygons.

Rendering such scenes requires one to tessellate the free form
patches or procedural displacements, which can be quite expensive
with regard to computation and memory consumption. We acceler-
ate ray tracing and global illumination by exploiting the two-level
hierarchy of such scenes: The top-level hierarchy (Section 3.1) or-
ganizes the list of surface patches. After traversing the top-level,
all rays are sorted according to patches they possibly intersect, in-
creasing locality and minimizing the number of tessellation steps.
The bottom-level consists of the micro-polygons which are tessel-
lated on-the-fly on-demand. The micro-polygons of one patch are
diced into a micro-polygon buffer, and a high-quality bounding vol-
ume hierarchy (BVH) is constructed in linear time in the number of
micro-polygons (Section 3.2), exploiting the regular topology of a
diced patch. Furthermore, the number of tessellation steps during
rendering is reduced by adapting the level of detail (Section 3.3).

Altogether, the architecture collapses the inherent recursive nature
of ray tracing to allow for better vectorization and combines the
strengths of tracing ray packets [WBWS01], fast incoherent mono-
ray traversal [DHK08], and rasterization: Our technique inherently
handles displacements and procedural geometry, supports simple
shader authoring and large depth complexity. It optimizes the uti-
lization of memory bandwidth and coherence and furthermore is
highly parallel.

2 PREVIOUS WORK

A lot of work has been done to render complex geometry [SBB∗06,
LYM07, LYTM08] not specialized for the Reyes architecture. The
fundamental assumptions and design principles of the Reyes im-
age rendering architecture have allowed to model and render di-
verse and complex content, as postulated in the original publica-
tion [CCC87]. The concepts were so fundamental, that the many
extensions (e.g. [HL90, LV00]) seamlessly complemented the basic
architecture. As one of the design principles was to keep expensive



ray tracing to a minimum, it is not surprising that the addition of
minimal ray tracing turned out to be restrictive. The most recent
ray tracing extension was profoundly described in [CFLB06]. With
our technique we demonstrate how a ray tracing system can deal
with the same complexity in geometry modeling and shading while
adding the benefit of simple Monte Carlo-based global illumination
computation using path tracing.

Key to our system is the reordering of rays to increase locality
for ray tracing massive data which, in rather general settings, has
been investigated before [LMW90, PKGH97, NFL07, BBS∗09].
Our approach, however, directly benefits from the intrinsic data lo-
cality of the common two-level modeling approach: large surface
patches in the top-level, and displacements or procedural details
and complex shading at the bottom-level. This approach is par-
ticularly common in games, for example using parallax occlusion
mapping [Tat05]. Ray tracing displaced primitives using tessella-
tions [SB87], caches [PH96] or direct grid-like traversal [SSS00]
has been investigated in depth, also on the GPU for geometry im-
ages [CHCH06]. The GPU can also be used to dice/tessellate
Reyes patches [PO08]. In [BBLW07], an on-demand, recursive
BVH traversal scheme for subdivision surfaces without displace-
ments was introduced which is optimized for ray packets. Acceler-
ation structures for ray tracing have been build in complexity below
O(N logN) before [HMF07]. In Section 3.2 we describe a sim-
ple method to explicitly construct a hardware-friendly acceleration
structure in linear time.

In our two-level approach rays are reordered, grouping active rays
which potentially intersect the same patch. Similar to the approach
taken in the Kilauea render system [KS02] the resulting (ray, patch)
lists can then be processed in parallel without caching strategies.

The Razor architecture [SMD∗06] was designed to alleviate similar
problems of ray tracing, to obtain better data access and compu-
tation patters. It uses current results of that time to accelerate ray
tracing for the processors available by then. Today, cache lines (and
fetches) get larger and data parallelism is getting wider, GPUs be-
ing the extreme example. Thus, linear memory access has become
more important, and simple streaming of large blocks is often more
efficient than highly recursive tree traversals and on-demand builds
with a lot of branches. The Razor system does neither use dis-
placements or pluggable artist-driven geometry shaders, so it is not
optimized to avoid these computations, nor does it perform well for
the excessive level of detail needed for production. To implement
level of detail, the authors use a set of pairs of kd-trees for every
two adjacent levels of detail, which are merged together in one ac-
celeration structure. Additionally, at the lowest level, the vertices
are stored in a 5x5 grid, which is created on-demand and traversed
as in [SSS00]. Our method on the other hand comes along with two
levels of hierarchy, has implicit levels of detail (in the upper lev-
els of the bottom-level BVH), and can be diced, displaced and built
with improved memory access and data parallelism.

An impressive, cache-based system was introduced by Pharr et al.
[PH96, PKGH97]. It relies on a set of different caches for the rays,
geometry and textures. Our ray reordering technique is simpler and
transparently increases locality for rays, textures, BRDF data and
geometry at the same time. Additionally, as soon as the required
cache sizes get too large, caching did not perform well in our ex-
periments.

Level of detail (LOD) has been added to both Reyes [CHPR07]
and ray tracing architectures, e.g. using multi-resolution
meshes [SMD∗06] or simplification [YM06]. For ray tracing, the
choice of LOD is commonly based on ray differentials [Ige99]. We
show that in the case of our architecture, simpler mechanisms may
be used.
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Figure 2: The buffers used to sort the rays. Top: main buffer holding
the actual ray structs, containing information such as hit distance,
normal, ray origin, reciprocal direction. This buffer is not sorted and
can be used to derive pixel indices. After one iteration of QBVH
intersection, the second buffer is filled in parallel with entry points
and all inactive rays are removed. Finally, all patches with a possible
intersection on the way are stored in the third buffer. In this example,
if another ray terminates, enough memory will become available for
each of the three remaining rays to store one more intersection in
order to tackle a larger depth complexity, four in this case.

3 A TWO-LEVEL RAY TRACING HIERARCHY

Our rendering system follows the two-level modeling approach
commonly applied by artists who create coarse geometry using free
form surfaces and then refine it by adding geometric detail and com-
plex shaders.

In order to minimize the number of dicing operations we introduce
an active ray buffer. Directly after traversing the top-level hierarchy,
all potential intersections (maximum N per ray per iteration) are
sorted by patch ID. Then the geometry and the shaders of each patch
are prepared only once for this iteration. Lastly, all rays associated
with the patch are now processed in one block of computation. As
new rays might be generated due to recursive ray tracing the loop of
top-level traversal, sorting, tessellation and bottom-level processing
is iterated as needed. Finally, the result of the first hit point is added
to the accumulation buffer.

Partitioning the computation this way greatly facilitates paralleliza-
tion in each of the four processing steps. Even for global illumina-
tion computations where rays are typically incoherent after the first
bounce, the explicit sorting step maximizes coherence for further
processing.

3.1 Top-Level Hierarchy

The top-level hierarchy is represented by a Quad-BVH (QBVH or
mBVH) [DHK08, EG08], whose leaves are the conservative bound-
ing boxes of single patches. Ray tracing starts by generating rays
and storing them in an active ray buffer. The traversal of the top-
level hierarchy can then be executed in parallel by partitioning the
ray buffer.

Rather than computing the first intersection directly, we gather N
intersection candidates per ray. Each potential intersection with
a leaf bounding box is recorded in pairs of the form (rayid,
leafid). In an optimal case all possible intersections would fit
into this buffer. Given a number R of rays and a memory size M, N
is proportional to M/R. The intersection candidates are then sorted
by leafid in order to group all rays intersecting the same leaf,
thereby reducing multiple accesses to the same leaf node. This ap-
proach may resemble [NFL07], however, specific details are not
disclosed in their work and only simulated memory traffic statistics
are provided.



Figure 3: The top row shows a surface patch and the teapot with-
out (left) and with displacement mapping (right). In the bottom row
the bounding volume hierarchies implied by the micro-polygon array
topology are visualized by rendering them transparently and darken-
ing their contours. Differences between the hierarchies are difficult
to spot, which indicates that reasonable displacement does not much
affect the efficiency of the implied acceleration data structure.

For each leafid in the array, the leaf object is tessellated and
the rays corresponding to the leafid are traced through the leaf
object (see Section 3.2). In a parallel implementation each thread
picks the next leafid as a task. Writing back intersection results
to rays is either serialized by implementing a few locks for larger
blocks of rays or, more efficiently, by writing the ray intersections
to small buffers for each thread, which are synchronized at the end.

We conservatively determine for which rays the closest intersection
has already been found by comparison against the following patch
bounding box. These rays are terminated.

Once all rays are intersected, the top-level traversal is continued for
all non-terminated rays using the last leafid along the ray direc-
tion as an entry point. These entry points have been stored explicitly
per ray in an additional buffer (see Figure 2) because the original
order of the (rayid, leafid) array is destroyed during reorder-
ing. Since traversal is ordered by ray direction, it is always clear
which children to process next after the entry point, when stepping
up in the hierarchy.

As the resulting number R′ of non-terminated rays is typically sig-
nificantly smaller than R, the next iteration can handle more po-
tential intersections N′ ∼M/R′, fully reusing the allocated buffers.
This way, the process does not have to be repeated often, as the
depth complexity of most scenes (the forest scene in Figure 1 has
an overdraw of about 200) is reached quickly.

This scheme enables two more optimizations. First, in the presence
of shaders, which require to access large memory blocks (such as
measured BRDF data), many rays intersecting the respective sur-
face will have an early out event at the same time and thus the
memory does not have to be accessed several times. Second, to fur-
ther reduce the need for repeated dicing over generations of rays,
the early termination event can be used to shade a terminated block
of rays, and spawn new ray directions, which can directly be in-
tersected with the already diced originating patch and then be re-
injected into the top-level traversal.

3.2 Bottom-Level Hierarchy

After the patches which might intersect a set of rays have been
found by the top-level hierarchy, they have to be diced and dis-
placed, evaluating geometry shaders. The resulting micro-polygons
are stored in the micro-polygon buffer, which represents 2m× 2m

micro-polygons as a two-dimensional array of (2m + 1)× (2m +
1) vertices, where each four adjacent vertices define one micro-
polygon.
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Figure 4: Timings comparing bottom-level construction strategies.
On the left, a full SAH build of the micropolygon BVH is done, in the
middle, a spatial median was used as split plane candidate, on the
right is implicit construction. The one-patch scene and the teapot is
as is Figure 3 (displaced version). These timings have been taken
for primary rays only.

Surface patches must implement a tessellation method, that com-
putes the micro-polygon vertices by either sampling or subdividing
a surface patch, applies trimming and displacement, and stores in-
terpolated (s, t) texture coordinates. Vertices are displaced along
interpolated per-vertex displacement normals. To avoid holes be-
tween adjacent patches with different level of detail, conservative
bounding boxes are needed for coarser tessellations, i.e. coarse dis-
placements have to span all the possible range of the finer ones.
This is done by min-max MIP maps on textures and interval arith-
metic on procedural noise and patch geometry. Afterwards a loop
over all micro-polygons evaluates whether or not the micro-polygon
is clipped or trimmed. Unless the micro-polygon is discarded, its
bounding box, color from texture, and normal by vertex differences
are computed and stored.

Such a tessellation method must be aware of the resolution of the
micro-polygon buffer. In case of insufficient resolution, surface
patches must be split and the parts have to be processed separately.

3.2.1 Construction in Linear Time

The number of 4m = 2m× 2m micro-polygons and their topology
suggest using a complete quad-tree of axis-aligned bounding boxes
as acceleration hierarchy for ray tracing.

Constructing the bottom-level hierarchy starts by determining the
conservative bounding boxes for each of the 4m micro-polygons by
calling the tessellation method. The bounding volumes of the inner
nodes of the hierarchy are updated in a bottom-up manner using
min-max MIP maps (similar to [CHCH06]). Trimming is imple-
mented by marking bounding boxes as empty. They do not need to
update their parent boxes and can also be handled transparently dur-
ing ray traversal. Since the memory for the micro-polygon buffer
data structure is allocated once for the whole rendering process, we
always store the complete tree and do not compress empty bound-
ing boxes.

Although, in general, complete trees for ray tracing cannot be rec-
ommended [Wäc08, Sec. 2.4.1], this concept is very appropriate
for tessellated surface patches: Unless the patch is overly curved or
extremely displaced, the array topology very well represents spatial
proximity as illustrated in Figure 3 and results in fast ray tracing
(see Figure 4).

While the construction time for a spatial acceleration structure typ-
ically is O(n logn) in the number of triangles [WH06, Wal07], our
bottom-up construction of the complete quad-tree is linear in the



number of nodes ∑
m
i=0 4i ∈ O(4m) and thus linear in the number

of micro-polygons of one surface patch. In contrast to [HMF07],
this can be done without an explicit input hierarchy and in a non-
recursive manner, thus featuring a better memory access pattern.

Rays are then intersected with the acceleration structure using sin-
gle ray traversal. Improved memory access by tracing ray packets
did not pay off at this stage, as even these pre-sorted rays for one
patch are very incoherent with regard to traversing the bottom-level
hierarchy in the case of path tracing. We tessellate down to sub-
pixel size and use the boxes of the leaf nodes directly as geometry,
as this accuracy is sufficient [DK06].

In order to assess the quality of the implicit BVH construction for
patches, we tested two very simple scenes, to avoid the effect of a
complicated top-level hierarchy in the timing figures. In Figure 4,
timings are plotted for a scene containing only one patch, and the
displaced teapot scene (see Figure 3). The bottom-level ray tracing
time can be slightly improved when using a general surface area
heuristic (SAH) [GS87] when constructing the acceleration struc-
ture for the teapot (0.119 seconds SAH vs. 0.121 seconds implicit).
For the simple one-patch scene, our implicit tree can even be ray
traced faster (0.041 seconds SAH vs. 0.028 seconds implicit). This
might also be due to the fact that our bottom-level QBVH traversal
implementation exploits the special memory layout of the implicit
BVH, using skip lists. It also explains the difference to the ray trac-
ing time of the midsplit tree (0.048 seconds), which results in quite
similar topology.

3.3 Level of Detail

While it is common understanding that the availability of different
levels of detail can vastly enhance rendering efficiency, care needs
to be taken in order to avoid rendering artifacts due to the approxi-
mative nature of simplifications.

The level of detail is selected by choosing the resolution parame-
ter m (see Figure 5) from Section 3.2 as the smallest m such that
4m ≥ R/spp, where R is the number of rays that intersect the axis-
aligned bounding box of the patch under consideration and spp is
the number of samples per pixel. In order to ameliorate the self-
intersection problem, secondary rays are offset by ε = l/2m along
normal direction, where l is the length of the longest side of the
bounding box of the actually intersected patch.

The intuition behind the selection heuristic is simple: Regions with
high ray density (for example regions traversed by a bundle of spec-
ularly reflected rays) require a finer level of detail as compared to
regions with less rays (as for example after diffuse reflection).

The selection heuristic does not guarantee that a ray intersects ad-
jacent patches at the same level of detail. We therefore require all
bounding boxes to be conservative. In our case this is guaranteed
by the min-max MIP maps from Section 3.2.1, the use of interval
arithmetic on the noise function, and the convex hull property of
the control polygon of the Bézier patches. If now adjacent patches
share an identical boundary, bounding boxes of adjacent patches at
different levels of detail are guaranteed to touch at least and overlap
most of the time. As a consequence, using intersections with the
bounding boxes of the bottom level hierarchy instead of intersec-
tions with micropolygons guarantees hole free rendering.

While this method is simpler than other state of the art techniques
like for example stitching together adjacent geometry [CFLB06,
Sec. 6.6], it requires to select a sufficiently fine level of detail such
that the resulting hole free approximation of the surfaces by boxes
remains invisible [DK06].

motion blur no motion blur
dice [s] 211.06 104.10
bottom-level [s] 86.90 56.50
top-level [s] 27.70 24.76
shade [s] 25.20 25.36
sort [s] 34.84 28.82
#diced patches 1497633 1313136
total time [s] 179.0 133.0

Table 1: Timings for the forest scene with exaggerated motion blur on
a Core 2 Quad. Motion blur results in a slowdown of a factor of two for
the dicing stage, and micro-polygon intersection is slightly slower. As
more patches have to be diced in the presence of motion blur, also
the sorting time is increased. All times are total times, except dice
and bottom-level times, which are accumulated over all four cores.

For directly visible geometry the selection heuristic results in
marginally smaller than pixel-sized boxes, which reliably avoids
level of detail popping artifacts during animation. However, if for
example a patch only partially overlaps the viewport, then the vis-
ible part of the patch will have a much higher ray density as com-
pared to what is determined by the selection heuristic. In a similar
way, shading differences due to changing level of detail may be-
come visible for secondary effects as for example self-shadowing.

While the selection heuristic rarely does not determine a sufficiently
fine level of detail, ray differentials [Ige99] provide a widely used
alternative and are easy to approximate in our system as all rays
of a generation are traced at once (see Section 3.5). This allows
for selecting the level of detail depending on the smallest distance
between individual rays and complementing the coarse levels with
directional opacity information as in [LBBS08], or using frequency
domain filtering [HSRG07].

Because the bottom-level acceleration structure is a complete quad-
tree, the upper levels always represent the coarser levels of detail.
Shading information such as color from texture, uv coordinates, and
normals from vertex differences can be filtered on demand and rays
can be terminated at individual levels of detail. Note that this will
result in a slightly more complicated memory access pattern.

3.4 Motion Blur

Motion approximated by linear splines is standard in production
(see e.g. [CFLB06, Sec.6.3]). Given the instants t0 < t1 < · · · < tn
defining the time intervals [ti, ti+1), tracing a ray at time t ∈ [ti, ti+1)
is accomplished by instancing two micro-polygon buffers, one at
time ti and one at time ti+1. The actual bounding boxes and micro-
polygons used during ray traversal then are determined by linear
interpolation. We use this method for the bottom-level hierarchy.

Concerning the top-level hierarchy, the same principles can be ap-
plied. However, due to the cost to construct the hierarchy, we chose
to use only one hierarchy based on bounding boxes conservatively
covering the whole time interval [t0, tn). See Table 1 for a compari-
son of render times with and without motion blur.



Figure 5: Illustration of the surface approximation by selecting the level of detail m = 1,2, . . . ,8 (from left to right).

dicing 1000 trees 100 trees
cache 10 1,897,385 1,161,468
cache 100 943,669 772,491
cache 1000 825,808 606,371
reordering 482,405 354,534

Table 2: This table shows how often patches have to be diced using
a cache with 10, 100 and 1000 patches and our reordering method.
Numbers are acquired using top-level traversal (i.e. independent of
LOD) for the two forest scenes with motion blur at 1920× 768× 64
rays. The reordering method only requires to store one diced patch
per thread.

3.5 Tracing Rays in Groups and by Generation

Physically-based rendering requires a lot of rays to be traced. This
number is typically too large to fit the required ray buffer into main
memory. Also, at the beginning, not all rays are known. Some
effects (such as soft shadows, ambient occlusion, reflections and so
on) require several passes to be rendered, i.e. another generation, or
wave, of rays to be shot.

There are several choices, which balance depth complexity, re-
dicing, and memory requirements:

• Re-inject rays as needed after an early termination event. This
is done by replacing the terminated ray by a newly spawned
one, instead of removing it from the buffer. This will always
utilize the ray buffer well and use the (rayid, leafid)
buffer for new rays rather than to tackle depth complexity (see
Section 3.1)

• Group rays by generation. This fixes the memory require-
ments for this wave of rays, but suffers from re-dicing for each
pass.

• Tile the screen. This can exploit some locality for first gener-
ation lens connection rays, but as rays quickly become diver-
gent, re-dicing is as bad as in the previous variant.

Our current implementation uses the second approach. In general it
is most efficient to trace as many rays as possible (i.e. fit into main
memory) at a time.

For a simple path tracer, it is sufficient to update a single (spectral
or RGB) path contribution value in the ray at each bounce. In the
presence of complex reflection shaders with splitting into S sub-
paths, each new ray needs to be assigned the correct weight 1/S,
but great care has to be taken not to exceed the buffer limits. A
similar approach could be taken to implement ambient occlusion.

Bidirectional path tracing can be done by first tracing a wave of S
paths from the sensor and T paths from the lights at the same time
(resulting in S+T rays at a time). After that, S ·T connection rays
have to be spawned with the respective weights, for example cal-
culated using multiple importance sampling [VG95]. To bring the
number of connection rays down to S+T as well, Russian roulette
based on these weights can be used.

Figure 6: A tree rendered using our architecture. If it was dumped to
a triangle mesh, it would consist of around 8.4 billion triangles (micro-
polygons from 12k displaced Bézier patches). Due to the on-demand
procedural geometry generation and the level of detail system, our
system does not even create all these, and is able to render this
scene with global illumination in a few minutes.

4 RESULTS

We implemented a Monte Carlo global illumination renderer on top
of our ray tracing architecture. We chose a simple path tracer with
next event estimation, i.e. paths are traced from the eye and with a
depth of three, additionally sampling the direct light contribution at
each interaction point. Russian roulette is used to decide whether to
sample the hemisphere or the light sources. This way, a maximum
number of width × height × samples per pixel × 4 rays is traced
per frame. While uncommon in movie production, this is a good
demonstration of the generality of our method.

To achieve equivalent detail in a regular mesh-based renderer, the
micro-polygons would have to be dumped to a triangle soup which
would exceed the capacities of these rendering systems. We there-
fore do not show comparisons with these. We tested the system
on a variety of scenes ranging from trivial (Figure 3 left, equiva-
lent to 260k triangles) over simple (Figure 3 right, equivalent to 16
million triangles), moderately complex (Figures 1,6 and 8) to mas-
sive scenes with detail equivalent to a mesh with over 1050 billion
triangles (Figure 7), and scenes using reflection shaders accessing
very large measured BRDF data sets (Figure 11). The trees are pro-
cedurally generated using L-systems with procedural displacement
textures for the patches. The rest of the scenes is modeled in Bézier
patches.



Figure 8: A dinosaur (taken out of the natural history museum from the lighting challenge site and converted to Bézier patches using vertex
normals), with 56k patches. On the left, around 11 million micro-polygons out of 59 billion potential have been created and rendered using path
tracing in 18 seconds on a Core 2 Quad. On the right, a noisy displacement has been applied, resulting in about 34 million created micro-polygons
and an increased render time of 37 seconds. Both images are rendered at 960×640×16 samples. Some of the time is spent in the (intentionally)
expensive procedural displacement texture.

Figure 7: Stress test: this forest consists of two million patches, which
would need a triangle mesh equivalent of more than 1050 billion trian-
gles if fully tessellated. Fully path traced with motion blur, the image
renders at 1920× 768× 16 samples in 2:24 minutes on a four core
machine.

As all available rays are intersected with the scene at once before
shading is started, complex reflection shaders benefit from this de-
ferred shading architecture. If a second sorting step is inserted after
all ray intersections have been found, even one single data load op-
eration per bounce can be guaranteed. This is necessary, if not all
used BRDF data sets fit into main memory at the time. In the case
of our test scene (Figure 11), this was not necessary, but the time
spent to sort the ray buffer can almost be neglected compared to
the time spent in shading (less than 10 seconds compared to 263
seconds for shading 960×640×64 rays).

We compare our ray reordering to a caching based system, similar
to [PH96]. Our results in Table 2 indicate that for highly complex
scenes caches need to be very large to be efficient. With our re-
ordering method, they are not necessary, and the implementation
becomes thus simpler than [PKGH97].

The table indicates that significantly more than 1000 cache lines,
each representing one tessellated patch, are necessary in order to re-
duce the number of dicing steps to those achieved with our reorder-
ing. Besides the top-level hierarchy, our scheme requires a fixed
memory footprint independent of geometry complexity. For path
tracing at 1920x768x64 rays, our implementation needs 6120 MB
for representing the ray buffers (68 bytes per ray: 3× float position,
3× float direction, 3× float normal, 1× float hit distance, 3× float
color, 3× float path tracing weight RGB, 1× int16 shader index and
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Figure 9: Statistics for the video where Figure 1 are still frames from.
These numbers have been generated on a Core 2 Quad, using 32
samples per pixel in 1920× 768 resolution, path traced up to path
depth of three (plus evaluation of direct light at each bounce). Again
all times are total times, except dice and bottom-level times, which
are accumulated over all four cores. Near the end, the camera closes
up to a branch, so one patch has to be tessellated very finely (the
maximum m = 10 is reached).

1× int16 additional flags to mark e.g. shadow rays). To represent
the full tree of a single diced patch at LOD m = 10 (1024× 1024
micro-quads with bounding boxes, color, texture coordinates and
normals at two time instances and every level of detail), 120 MB
are required. Our approach requires a single buffer (corresponding
to a single cache line), while the cache will grow linearly with the
number of cache lines.

For an example how depth complexity is handled by the limited
(rayid, leafid) buffer (see Section 3.1), see Table 3. It can
be seen that even for scenes with very large overdraw, only few
iterations are required. As some rays terminate, the buffer is quickly
available for the remaining rays to store many more intersection
candidates in the next iteration.

To get an impression of the impact of LOD, see Figure 10. The
rendering times are dominated by dicing, so the graph shows only
timings for top- and bottom-level traversal and shading. As ex-
pected, dicing and bottom-level tree construction seems to be linear
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Figure 10: Rendering time is determined by the programmable parts
of the system, i.e. shading and surface patch tessellation (tessellation
time is linear and takes over 100 seconds for 4 · 106 micro-polygons
and is therefore omitted in the plot). Timings are obtained for the
displaced teapot example (Figure 3).

eye bounce 1 bounce 2 bounce 3
R N R N R N R N

23592960 8 21589447 8 15585868 12 10052438 18
19009592 9 16419230 11 10886646 17 6707465 28
5840016 32 4549352 41 1529033 100 298166 100
1115814 100 406945 100 14093 100 82 100

1062 100 17 100 - - - -

23592960 8 20674988 9 11985885 15 7311443 25
11479199 16 11145131 16 4617303 40 1775062 100
2110951 89 1241408 100 59364 100 204 100

7509 100 333 100 - - - -

Table 3: Tackling depth complexity: when rays are terminated early
due to sorted BVH traversal, the memory can be used to store more
patch intersections N for the remaining rays R. This is an example for
the forest in Figure 7 (top table) and Figure 1 (bottom table) for the
four waves of path tracing with next event estimation. N is clipped to
100 to avoid excessive fragmentation of memory for simple cases.

and tracing bottom-level rays is about logarithmic. Top-level traver-
sal does not change in this graph, as the top-level hierarchy is not
affected by the LOD changes. Obviously a lot of time can be saved
by reducing the number of micro-polygons per patch.

As illustrated in Table 4, our system is very efficient due to choosing
the appropriate LOD and avoiding dicing for occluded patches alto-
gether. The comparison here is carried out between actually created
micro-polygons and the number of polygons in a triangle mesh with
equivalent detail (maximum LOD m = 10). Note that this number
is not overly large, this LOD is also chosen for some patches by the
algorithm and becomes especially necessary for heavily displaced
patches. The figures show that our system can robustly handle a
vast amount of geometry, which surpasses the complexity demon-
strated by the Razor system [SMD∗06]. Also, we do not need to
keep any diced micro-polygons which avoids the problem of flush-
ing on-demand geometry.

5 CONCLUSION

We presented a ray tracing method, which is able to efficiently han-
dle large amounts of data resulting from free form surface patches,
details added by micro-polygon tessellation, and data intensive
shaders. Expensive geometry and shaders (in terms of computation
or memory access) are handled well due to reordering of computa-
tions which results in great data locality. Parallelization is simple as

scene maximum accessed
100 trees (Figure 1) 108 ·109 170 ·106

1000 trees (Figure 7) 1,058 ·109 317 ·106

dinosaur (Figure 8, left) 59 ·109 11 ·106

displaced dinosaur (Figure 8, right) 59 ·109 34 ·106

Table 4: Impact of LOD and early ray termination due to occlusion:
ratio of micro-polygons actually created to a constant LOD of m = 10
while path tracing.

Figure 11: Four teapots rendered with measured BRDF data. One
BRDF data set alone is over 300 MB large, and each teapot consists
of over 16 million triangles. Thanks to reordering of shading compu-
tations, it can be guaranteed that each BRDF data set is loaded only
once per bounce.

all rays traverse one phase before the next one is started. We intro-
duced only one additional sorting step on the ray buffer, which has
negligible impact on rendering time. The core of our contribution is
the two-level ray tracing system with reordering, which can be eas-
ily augmented by other advanced rendering techniques, as we have
demonstrated for simple LOD selection and path tracing. The same
two-level approach with reordering can be combined with general
global illumination algorithms or even accelerate out-of-core ren-
dering.

There are no restrictions imposed on ray tracing. However, there
are some limitations when using the method in a rendering system.
First, the shading language needs a mechanism to dispatch a ray
and correctly account for its contribution by the time it finishes (see
Section 3.5). If rendering is based on BRDFs, this is straightfor-
ward.

Second, the presented LOD assumes good importance sampling.
That is, it assumes that if rays are diverging, the contributing radi-
ance is low frequency. It will thus result in blocky shadows if sam-
pling a small direct light source over the hemisphere instead of the
geometry. If this is recognized by the rendering algorithm, it can be
used as a feature to speed up low-frequency indirect illumination.

In future work, the method can be complemented by specialized
rendering algorithms which better exploit its strengths by reflecting
the two-level nature, such as local high-frequency ambient occlu-
sion inside a diced patch together with a far-field approximation for
global illumination, similar to [KK04, AFO05].
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