
Vision, Modeling, and Visualization (2010), pp. 1–8

Graphical Interface Models for Procedural Mesh Growing

Stefan Menz, Holger Dammertz, Johannes Hanika, Michael Weber and Hendrik P. A. Lensch

Ulm University, Department of Media Informatics, Germany

Figure 1: A basic input model is intuitively transformed into different complex models. The left group of operations depicts the construction
plan for a modern building and the right group represents a visual rule to generate a Menger sponge of arbitrary recursion depth.

Abstract
Procedural modeling allows to create highly complex 3D scenes from a small set of construction rules, which
has several advantages over storing the full data of an object. The most important ones are a very small memory
footprint and the ability to generate infinite variations of one prototype object by using the same set of rules.
However, the problem that procedural modeling imposes on the user is to define a reasonable set of rules to gen-
erate a specific object. To simplify this task, we present new interaction metaphors for a graphical user interface
and a minimal set of geometric operations that allow the user to efficiently create such rules and the respective
models. These metaphors are then implemented in a prototype system and are evaluated by user tests with regard
to usability and user performance. The results show that the system enables even inexperienced users to create
complex 3D objects via procedural modeling using the presented approach.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [User Interfaces]: Graphical User Interface
(GUI), Interaction Styles, Evaluation I.6.3-5 [Simulation and Modeling]: Applications; Model Validation and
Analysis; Model Development J.5 [Arts and Humanities]: Architecture

1. Introduction

The growing demand of highly detailed geometric models
for feature films and computer games make a purely man-
ual creation no longer feasible. A powerful yet simple tech-
nique to create complex models with a very low memory
footprint and without the need for offline storage is procedu-
ral modeling. A procedural representation usually consists
of a grammar (i. e. a set of rules) that describes how an ob-
ject is constructed in general and parameters, which specify
the properties of a certain instance. Therefore, even a sim-
ple grammar, that consists of a basic set of rules, can yield
highly complex models by means of recursive expansion.
This property is also known as “data amplification” [Smi84].

As powerful as procedural modeling might be, it remains a
demanding and unintuitive task to create the rules. To sup-
port the user in this process, we propose a novel graphical
user interface approach for procedural modeling of geome-
try. Its main concepts are continuous visual feedback about
all user interactions and a very general modeling technique
that allows for the creation of a wide variety of models.

2. Related Work

L-Systems were introduced by Aristid Lindenmayer to serve
as a formal description for cellular interactions in multicel-
lular organisms [Lin68], but quickly evolved to an efficient
formalism for the definition of botanic structures, i. e. plants

submitted to Vision, Modeling, and Visualization (2010)



2 S. Menz, H. Dammertz, J. Hanika & M. Weber / Graphical Interface Models for Procedural Mesh Growing

and trees. L-Systems represent a class of parallel string
rewriting systems and are defined by a formal grammar that
defines a set of replacement rules. The evaluation of a L-
system starts with the axiom, i. e. the base rule, and in each
expansion step the current string is parsed linearly and each
encountered symbol is expanded according to its respective
rule. Further extensions of L-Systems employed more pow-
erful context-sensitive, parametric grammars [PL90], which
allow to create complex branching structures and also ac-
count for several external influences (gravity, photo-tropism,
wind, topiary, etc.) [Han92, PJM94, PK96, DHL∗98].
Even though L-systems provide an elegant concept to repre-
sent plausible and quite realistic plant models, their textual
representation is not very intuitive. Thus a deep understand-
ing of the underlying concepts and processes is required to
create rules to generate a desired result.

Besides their successful application for plant models, L-
Systems have also been used for the modeling of cities, es-
pecially for the underlying street network [PM01]. How-
ever, they are not well suited for the generation of com-
plex buildings featuring highly detailed facades, since the
main concept behind L-Systems is the simulation of growth
in open space [WWSR03]. For this purpose an integrated
modeling approach utilizing a split grammar was pre-
sented [LWW08, MWH∗06]. This grammar class represents
a derivation of the more general shape grammars introduced
in [Sti75, Sti80].

Another approach that focuses on architecture, but is also
well suited for other model classes is the Generative Model-
ing Language (GML) [Hav05], a stack-based postfix script-
ing language similar to PostScript.

The modeling methods reviewed so far all employed a kind
of formal, textual grammar, however this is not the only way
to obtain good results. For example, an integrated system for
plant modeling is Xfrog [LD98], that produces quite realistic
plants by employing a procedural approach similar to scene
graphs [Str93]. These directed graphs are called structure
graphs (also prototype graphs (p-graph)) and represent the
overall structure and the relation of different plant compo-
nents. In a first step the generic rules described in the p-graph
are translated into an instance tree (i-tree), which represents
all instanced components. Then the i-tree is used to generate
the final model. The nodes are used to visualize applied op-
erations with icons; different edge types differentiate normal
parent-child relations from recursive ones.
This visualization of components and their according rules,
provides a more natural and intuitive interface for the user
than the editing of a textual grammar.

Even though the approaches presented so far produce quite
convincing results, they also have certain drawbacks. All of
them are more or less specialized for a certain class of ob-
jects (e. g. buildings, plants, etc.). Additionally, the systems
based on textual grammars consequently suffer from their
inherent abstract representation and are thus unintuitive for

unfamiliar users. Before the user is able to use the system he
or she must learn the modeling language and develop a men-
tal model of how the operations work and their influence
on subsequent operations. Once the required experience is
attained the editing process is still not straightforward, be-
cause the user does not receive progressive feedback about
his actions. The usual work-flow in this scenario is divided
into three steps. First the user makes changes to the build
rules, then the rules need to be reevaluated and finally the
user must inspect the result for its correctness. If the result is
not as anticipated the user needs to make further changes to
the rules until the desired result is obtained.

To overcome these limitations, a new system is presented
that allows for the modeling of more general objects, while
still providing the full potential of procedural grammars.
Nevertheless, the system offers a highly intuitive interaction
even for inexperienced users. For this purpose, the proposed
system is based on the following two approaches.

While split grammars are specialized for architecture, L-
Systems can be used more versatile. However, L-Systems
usually are evaluated in a two step process. First, the gram-
mar is expanded to a high-level description of a skeleton and
in a second step the actual geometry is generated by inter-
preting this skeleton string. The second step is quite prob-
lematic, because the choice of a good skinning heuristic is
dependent on the object class and also the handling of fea-
tures like holes requires additional data structures.
In order to avoid these problems and realize a more gen-
eral modeling approach our system uses mesh-based para-
metric L-Systems [TMW02, Mai02]. In contrast to classical
L-systems, this method uses a growth metaphor to modify a
mesh directly by attaching growth rules to individual faces
of the model. This natural concept for procedural modeling
also integrates more complex features like holes seamlessly,
since holes can be interpreted as a growth into the model
itself. This approach easily allows for the visualization of
intermediate results of particular parts of the model. For the
sake of simplicity, only a minimal set of operations is im-
plemented that offer the same complexity as traditional box
modeling techniques do.

Model Graphs, an integrated framework for procedural mod-
eling was introduced in [GK07]. Similar to Xfrog, this
approach is based the visual data flow pipeline (VDFP)
paradigm [Ack82, Mor94, JHM04]. VDFPs visualize the
structural dependencies and states of operations and there-
fore provide an intuitive and a more memorable inter-
face compared to textual programming languages. Since the
VDFP paradigm has already been successfully used in the
creation of materials [Coo84], it is a reasonable conclusion
to employ the same metaphor for the modeling of geometry.

A model graph is represented by an directed acyclic graph
(DAG) that forms a network of operations. The operations
are visualized as nodes, which store variables and functions
for its respective operation. The possibility to input complex

submitted to Vision, Modeling, and Visualization (2010)



S. Menz, H. Dammertz, J. Hanika & M. Weber / Graphical Interface Models for Procedural Mesh Growing 3

formulas offers a balanced mix of visual and textual pro-
gramming, instead of a more intuitive purely visual pipeline.
An interesting feature that allows to define iterated rules that
operate locally on the model and not globally like L-systems
do is provided by the for- and while-operators.

The combination of both systems provides a reasonably gen-
eral modeling technique as well as a guideline for the devel-
opment of the interface concepts.

3. Interface Design Principles

The main goal of this work is to offer the user an efficient
way to navigate the design space, i. e. the space that spans all
currently reachable model variations defined by the current
graph and the parameters of all operations.

The Model Graphs system provides a reasonable approach,
but it has two vital shortcomings that hinder the interac-
tive visual editing of procedural models. First, it requires
a large amount of textual editing for the node parameters,
which is reasonable for expert users, but hinders the ex-
ploratory learning experience of novel users. In particular,
this makes it very difficult to understand graphs build by
other users. Second, nodes only visualize the type of oper-
ation by icons and therefore lack essential feedback about
parameter changes and the resulting influences on other con-
nected nodes. To fix these problematic issues, the presented
system avoids textual editing and focuses completely on the
constant visual feedback on all user actions. The provided
visual cues guide the user interactively and enable him/her
to make informed decisions to achieve the desired result.
The presented system does not aim to generate perfect re-
sults that can be used as they are. Instead it tries to create
plausible proxy-objects, that can be used as templates and
be modified as necessary.

Since this work represents a proof-of-concept study it is es-
sential to ensure an efficient and flawless user interaction
with the system. Otherwise it could not reliably be deter-
mined if the proposed modeling concept is flawed or if poor
performance results are purely related to a lack of usability.

To ensure unbiased performance results it is necessary to
employ usability engineering techniques. For our system we
used a heuristic evaluation approach [Nie94,NM90] realized
by paper prototyping [Nie90, Sny03].

A set of possible interaction scenarios were developed in
an iterated design process by presenting paper prototypes
(screenshots, mockups) to three subject matter experts and
incorporating the resulting feedback to refine the interface
design and interaction concepts.

4. Proposed Modeling Approach

Based on the model graphs concept, we propose a graph ori-
ented modeling approach for the creation of procedural ge-
ometry. For the representation of the geometry graph, further

called a GeoGraph, a directed acyclic graph is used. This is
chosen, because it is problematic to define how cycles for
recursion should be handled. However, the iterated applica-
tion of operations is an important feature and requires a spe-
cial handling to integrate in this restrictive graph layout. In
general, a GeoGraph is a network graph that supplies a base
mesh in a global source node and all operations that alter the
input model contribute to a global sink node that collects all
components of the output model.

4.1. Graph Structure

Each geometry graph or GeoGraph is realized as a network
graph with exactly one global source and one global sink,
represented by specialized input and output nodes. The input
node always propagates a loaded base mesh and the output
node merges all arriving geometry input into the final model.
Therefore, the described network is a data-flow graph that
transports faces along the edges with an overall flow direc-
tion from the root (i. e. the input node) to the leaves, which
are all connected to the output node.

Each node performs some basic operations on its received
faces, i. e. faces are either created (duplicated, new faces),
deleted (terminated) or modified (transformed). The respec-
tive operations are only applied if they were selected for pro-
cessing in the previous node supplying them. Selections are
mutual exclusive sets of all previously selected or newly cre-
ated faces. Therefore any node can maximally have n out-
ward connections, where n is equal to the number of previ-
ously selected faces and newly created faces.

4.2. Operators

Extrude The extrude operator implements a simple extru-
sion of a given face of the model into the third dimension.
This represents the growing metaphor of the mesh growing
approach. Besides its height h, this operator also features a
scaling of the extruded face (xin,yin) and allows for the con-
struction of tapered structures (see Figure 2, left). In contrast
to other approaches this natural growing metaphor allows to
easily define holes in a model, simply by performing a grow-
ing step into the model.

Subdivide To complete the growing metaphor also a re-
finement operator is needed, to allow for the placement of
structures and details on different scales. Therefore a simple
subdivision operator is provided that refines a face by a de-
fined number along the x- and y-axis (sx,sy) (see Figure 2,
middle).

Pyramid As a growth terminator a pyramid operator was
implemented that marks a face terminated by generating a
pyramid on the face. In fact, this is not a new standalone
operator, but merely a specialized version of the extrude op-
erator, where the extruded face is collapsed to a single point
(see Figure 2, right).

submitted to Vision, Modeling, and Visualization (2010)



4 S. Menz, H. Dammertz, J. Hanika & M. Weber / Graphical Interface Models for Procedural Mesh Growing

x

y

z

h

yin xin

x

y

z

sy
sx

x

y

z
h

Figure 2: The three supported operations extrude, subdivide and pyramid (left to right) with their respective parameters.

Grouping and Iteration Even though a GeoGraph has
been defined as an acyclic graph it is essential to support
recursive operations so that complex features can be gener-
ated on different scales. For this purpose a specialized group
node is introduced which can encapsulate a set of connected
nodes and allows for the iterated evaluation of this subgraph.

Foremost the group node is designed to define more complex
compound rules consisting of a subgraph of multiple basic
operators (see Figure 3). The contained nodes can be viewed
and edited as in their normal state, but the group node also
allows to collapse the subgraph to a single node that repre-
sents the overall operation of the rule in a preview image.
This not only leads to a more simplified representation, but
also gives a better overview of the overall graph structure
since the user can eliminate unnecessary clutter and regains
more real estate for display of other parts of the graph.

Figure 3: A build rule for a simple branching structure as it
is used in the coral test scenario. This rule can be recursively
applied to the selected branch tips by simply increasing the
iteration count (bottom right).

Since each group node acts as a decoupling mechanism be-
tween the overall graph and the encapsulated subgraph, this
interface property can be used to define different action for
the internal and external side. For instance, a group can han-
dle recursive operations on the internal side while respecting
the global acyclic constraint. This way a rule can be recur-
sively applied to the selected faces, which are directly fed
back to the entry point of the group node. Furthermore the
recursion of a node only is stored with exactly one integer in
the model file, because all necessary construction informa-
tion is encoded in the graph connectivity.

0 4

3

1 2

0 431 2

Figure 4: Evaluation order of a topologically sorted graph
and its more intuitive inlined representation.

To avoid multiple evaluation of nodes or an complex sched-
ule strategy the GeoGraph sorted topologically to obtain the
sequential evaluation order of all nodes; since the graph is
acyclic it is guaranteed that a topological sort is possible. So
each node is processed exactly once, whereas group nodes
may iterate multiple times before they provide input for their
respective child nodes.

4.3. Parameter Randomization

Up until now each evaluation of a GeoGraph always pro-
duced the exact same result. In general, the natural look
of an object is determined by a slight variation of features
on different scales, especially for organic structures this
is essential. To generate such variations an imperfect fac-
tory metaphor is implemented by a parameter randomization
mechanism. With this functionality the user is able to gener-
ate a set of similar yet distinct objects (e. g. trees composing
a forest) by randomizing parameters of selected model rules
within definable bounds. However, the evaluation of ran-
domized models remains deterministic to avoid completely
random results and a new model instance is only generated
if it is explicitly requested.

5. Interaction Metaphors

5.1. Assembly Line Processing

Since procedural formalisms represent objects as construc-
tion plans instead of the geometric data representing a cer-
tain model, it is a very natural way to view the modeling pro-
cess as a visualization of an assembly line with distributed
workstations that construct the different components that
make up the final object. Each operator node resembles an
independent workstation that performs a specialized, basic

submitted to Vision, Modeling, and Visualization (2010)



S. Menz, H. Dammertz, J. Hanika & M. Weber / Graphical Interface Models for Procedural Mesh Growing 5

Figure 5: On the left the variation view is shown. Its previews to the left always display the result of a decreased parameter and
their respective counterpart to the right visualizes the result of an increased one. The selection editor on the right consists of
individually visualized previews of all selectable faces, the four selection presets and the combined visualization of the current
selection (left to right in the right dialog).

operation on the currently available and for processing se-
lected resources. A set of nodes that is grouped together
forms a macroscopic workstation that is able to perform a
more sophisticated and complex operation on its input. To
complete this view, the edges are the respective construction
orders of an operation that regulate which components are
processed in other workstations.

5.2. Variation View

For a complex task as modeling it is essential to provide the
user with immediate feedback about his actions, so that he
can develop an understanding of the parameters and their
influence on the model.

In design galleries [MAB∗97] a concept for setting multi-
dimensional parameters was presented. This approach
formed the basis of the development of the variation view,
a preview based property editor for the setting of node pa-
rameters that actively supports the user in the exploration of
the design space of the current model (see Figure 5, left).
Each one-dimensional parameter (e. g. height, subdivision
step, etc.) is represented as a single parameter axis. All pa-
rameter axes of a node taken together span the local design
space of the node. A parameter axis is visualized by two
opposing buttons, which preview the respective results a de-
crease or increase of the selected parameter would generate.
According to layout conventions in western countries, neg-
ative parameter changes are placed on the left and positive
ones on the right side. While the node always visualizes the
final result of its operation, it is possible to toggle the com-
plexity of the parameter previews between a full evaluation
of all input faces and only of a single input face. The number
of representable parameters is limited by the resulting size of
the preview for each parameter. But since each basic opera-
tor currently features only a limited set of parameters, this is
in general not an issue.

The variation view aims to provide an exploratory learning
approach that supports the user to develop a deeper under-
standing of the different operator settings. However, the vari-
ation view is not intended to completely replace a traditional
property editor, but rather to augment it with a visual al-
ternative for novice users. Once a user has gained enough
experience and is able to make informed decisions without
the need to rely on the variation approach he or she can set
parameters more efficiently and more precisely with a tradi-
tional property editor.

5.3. Selection Editor

In a conventional 3D-picking approach, the user would nav-
igate around the object and directly select faces of a mesh.
However, implementing the selection editor this way would
disturb the overall feel of the user interface, since the pre-
views in the nodes are only static images. To ensure a con-
sistent user interface the selection dialog is also image-based
and allows for the interactive selection of faces. This im-
plicitly gave us the opportunity to investigate this novel ap-
proach, especially regarding its usability as an alternative se-
lection approach for geometry (see Figure 5, left).
The dialog displays all selectable faces on the left, each
thumbnail visualizing the selection of a single face. On the
right the combined preview of all currently selected faces is
shown. Also a set of reasonable quick selectors is provided
to allow for easy selection of none, all and the complement
of the current selection. Furthermore, a more specialized se-
lector is implemented, which selects all remaining faces, i.e.
all faces that are not yet selected by other outgoing edges.

Currently, the selection process operates on prototype in-
dices only, i. e. all top faces generated in an extrude opera-
tion have the same prototype index and can only be selected
in total. Therefore, it is not possible to create sub-selections
of individual faces right now.

submitted to Vision, Modeling, and Visualization (2010)



6 S. Menz, H. Dammertz, J. Hanika & M. Weber / Graphical Interface Models for Procedural Mesh Growing

0 2 4 6 8 10 12 14 16 18 20 22

Sk
ys

cr
ap

er
M

en
ge

r
C

or
al

14:08

14:30

12:33

8:59

8:10

4:22

14:29

9:09

16:44

10:26

3:46

3:40

14:18

11:49

14:38

9:39

5:58

4:01

Time in minutes

Te
st

Sc
en

ar
io

Group1

Group2

Total

Figure 6: Average time taken to complete the different test
cases for group 1 (old group node, blue) and group 2 (new
group node + additional tutorial, red). The gray bars rep-
resent the time averaged over both groups. The inner bars
represent the average time required to complete the sub-task
of creating the basic model build rule. The error bars repre-
sent the variances of the respective measured times.

6. User Tests

The study was conducted with a total of 18 test subjects,
which were all students of computer science to ensure a
common knowledge of computer interaction. Since it was
anticipated, that the concept of the repeatable group node
might be confusing the test was performed with two test
groups with 9 users each. The first group worked with the
original version and the second group was provided with a
slightly redesigned group node and received an additional
tutorial regarding its iteration functionality.

Each test participant had to complete an introduction and
two out of three test scenarios, which were assigned in ran-
dom order. The test cases were chosen carefully to form
a representative set of commonly used models and to ver-
ify the proposed general modeling approach. The test cases
provide a model from the fields of architecture (skyscraper),
fractals (Menger sponge) and organic structures (coral).

The user test was concluded by answering a short usability
questionnaire. The statements used in this usability question-
naire represents a revised and shortened combination of the
IsoMetricsS [WHG97] and the Computer System Usability
Questionnaire (CSUQ) [Lew95]. The questionnaire as well
as the other materials were supplied in German to avoid pos-
sible misunderstandings and to reduce the cognitive impact
on the users.

Performance Even though this test does not represent a
comparative study, the assignments were timed to perform a
qualitative estimate of anticipated modeling times. To dis-
tinguish between the performance for pure modeling and

for the iterated application of rules two independent times
were measured. The first time was taken when the user com-
pleted the basic build rule and the second time was taken
when the whole model was finished. In Figure 6 the average
times are plotted for each test scenario separated into group
1 that tested the reference system and group 2, which tested
the improved version. Also the average times for the whole
population are listed.

For the skyscraper test case the total completion time is con-
sistent. The rule completion time varies slightly between the
two groups. The higher average time to complete the build-
ing rule with respect to the other two cases is explainable by
higher complexity of the model.
In the coral scenario both times are considerably lower for
the second group. A possible explanation for this might be
the fact that the second group gained additional modeling
experience by completing the tutorial regarding the usage of
the group node.
A strange result could be observed for the Menger case.
While the time for the build rule was relatively consistent,
the overall completion time increased notably for the second
group. This surprising result implies that the additional tuto-
rial regarding the group node worsened the actual usage of
the group node instead of improving it. However, since also
the first test group spent about 2/3 of the total time to com-
plete the modeling of the recursion, it can be assumed that
this specific test case is subject dependent and related to a
lack of spatial sense (recursion passthrough trick).

Interview Feedback In addition to the questionnaire, the
users also provides verbal feedback in the course of the test
procedure, which revealed a list of minor and more severe
usability problems.

It was pointed out that it would be more beneficial if the cur-
rently selected node would be previewed in the 3D viewport
instead of always displaying the final model. A possible so-
lution for this problem is to simply provide two separate 3D-
previews, one for the final model and one for the currently
selected node.

A related observation was that some users tried to navigate in
the static preview of the selection editor, since the automatic
camera positioning algorithm sometimes picks disadvanta-
geous settings. For the required selection tasks this approach
works reasonably well, however for larger amounts of se-
lectable faces this approach is likely to be confusing and thus
inefficient.

As already stated, the Menger test case turned out to be the
most problematic scenario. Since this was already noted in
an early stage of the test, the affected users were additionally
interviewed about their problems with this task. While most
users knew where the required faces where produced, they
did not know how to correctly select them for further pro-
cessing. Therefore, some users tried to model the recursion
explicitly instead of connecting the first node directly to the

submitted to Vision, Modeling, and Visualization (2010)



S. Menz, H. Dammertz, J. Hanika & M. Weber / Graphical Interface Models for Procedural Mesh Growing 7

group node (see Figure 1). Such an edge seemed to take a
shortcut in bypassing the extrude operator of the build rule
and in turn violated the mental model about operation order.

A severe usability problem was the full evaluation of the
nodes in a group, which complicated the selection process.
Many users were forced to disable the iteration, change their
selection and then reactivate the iteration. This work flow is
obviously cumbersome, but can be easily improved by leav-
ing the capsuled nodes in their basic state and provide exter-
nal previews about the evolution of different iteration steps.

Interestingly, some users developed an inverse mental model
of the GeoGraph, where the nodes were considered as state
snapshots of the model and the edges as the corresponding
transitions between these states.

Questionnaire Evaluation Despite some outliers, the eval-
uation of the questionnaire yielded overall very positive re-
sults. In Figure 7 the results of the evaluation are visualized
as the mean with a confidence interval of 95%. Almost all
of the positive statements are consistently oriented around
6 (agree) and similarly all negatively phrased statements lie
around 2 (disagree).

The high variance of the variable no severe errors (Q17) can
be explained by the prototype status of the system, causing
a small amount of system crashes. If a severe error occurred
the user test was temporarily halted until the old system state
was restored from the most recent backup of the GeoGraph.

The variance in variables like available functionality (Q06),
long learn process (Q21) and easy to learn (Q23) can be ex-
plained by too vaguely phrased statements, which were in-
terpreted differently. However, the most essential usability
measures like inconsistent design (Q15), simple error recov-
ery (Q18) and easy undo-able actions (Q20) exhibit almost
no variance. These results prove that the system was well de-
signed with respect to usability and that the measured user
performance directly correlates with the proposed modeling
approach for the editing of procedural geometry. Further-
more, the overall satisfaction with the system (Q01) yielded
a good result around 5.5, but since this is purely subjective
measure it must be handled with care.

7. Conclusion and Future Work

We presented an approach for the intuitive and efficient gen-
eration of procedural models and the user tests yielded very
good results and an overall positive feedback. With our sys-
tem, previously untrained users were able to create complex
models from scratch in a short amount of time. In contrast,
explicit modeling techniques with modeling software as well
as the creation of textual rules is cumbersome and requires a
lot of effort and experience.

Two important research topics need further investigation.
The first is the design of an optimal set of geometric oper-
ators, which are easy to understand and provide a complete

procedural expressiveness in an intuitive way. The other is
how to incorporate a level of detail (LOD) concept in the ex-
isting group node to allow for dynamic content refinement
and the application of features on different scales.

References

[Ack82] ACKERMAN W. B.: Data flow languages. IEEE Com-
puter 15, 2 (1982), 15–25. 2

[Coo84] COOK R. L.: Shade trees. SIGGRAPH Comput. Graph.
18, 3 (1984), 223–231. 2

[DHL∗98] DEUSSEN O., HANRAHAN P., LINTERMANN B.,
MĚCH R., PHARR M., PRUSINKIEWICZ P.: Realistic modeling
and rendering of plant ecosystems. In SIGGRAPH ’98: Proceed-
ings of the 25th annual conference on Computer graphics and
interactive techniques (1998), pp. 275–286. 2

[GK07] GANSTER B., KLEIN R.: An integrated framework for
procedural modeling. In Spring Conference on Computer Graph-
ics 2007 (SCCG 2007) (2007), pp. 150–157. 2

[Han92] HANAN J. S.: Parametric l-systems and their applica-
tion to the modelling and visualization of plants. PhD thesis,
University of Regina, Canada, 1992. 2

[Hav05] HAVEMANN S.: Generative Mesh Modeling. PhD thesis,
Technische Universität Braunschweig, Germany, 2005. 2

[JHM04] JOHNSTON W. M., HANNA J. R. P., MILLAR R. J.:
Advances in dataflow programming languages. ACM Comput.
Surv. 36, 1 (2004), 1–34. 2

[LD98] LINTERMANN B., DEUSSEN O.: A Modelling Method
and User Interface for Creating Plants. Computer Graphics Fo-
rum 17, 1 (1998), 73–82. 2

[Lew95] LEWIS J. R.: IBM Computer Usability Satisfaction
Questionnaires: Psychometric Evaluation and Instructions for
Use. International Journal of Human-Computer Interaction 7,
1 (1995), 57–78. 6

[Lin68] LINDENMAYER A.: Mathematical models for cellular in-
teraction in development: parts I and II. Journal of Theoretical
Biology 18 (1968), 280–315. 1

[LWW08] LIPP M., WONKA P., WIMMER M.: Interactive visual
editing of grammars for procedural architecture. ACM Transac-
tions on Graphics 27, 3 (2008), 102:1–10. Article No. 102. 2

[MAB∗97] MARKS J., ANDALMAN B., BEARDSLEY P. A.,
FREEMAN W., GIBSON S., HODGINS J., KANG T., MIRTICH

B., PFISTER H., RUML W., RYALL K., SEIMS J., SHIEBER

S.: Design galleries: a general approach to setting parameters
for computer graphics and animation. In SIGGRAPH ’97: Pro-
ceedings of the 24th annual conference on Computer graphics
and interactive techniques (1997), pp. 389–400. 5

[Mai02] MAIERHOFER S.: Rule-Based Mesh Growing and Gen-
eralized Subdivision Meshes. PhD thesis, Vienna University of
Technology, Austria, 2002. 2

[Mor94] MORRISON J. P.: Flow-Based Programming: A New
Approach to Application Development. van Nostrand Reinhold,
1994. 2

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
GOOL L. V.: Procedural modeling of buildings. ACM Transac-
tions on Graphics 25, 3 (2006), 614–623. 2

submitted to Vision, Modeling, and Visualization (2010)



8 S. Menz, H. Dammertz, J. Hanika & M. Weber / Graphical Interface Models for Procedural Mesh Growing

1 2 3 4 5 6 7

Q01 . Overall Satisfaction

Q02 . Confidence In Usage

Q03 . Ease Of Use

Q04 . Comfortable Use

Q05 . Appealing Interface

Q06 . Available Functionality

Q07 . Unnecessary Steps

Q08 . Context Information

Q09 . Efficient Input Methods

Q10 . Accessible Functions

Q11 . Task Oriented Functions

Q12 . Supporting Information

Q13 . Unoptimized Work Flow

Q14 . Supporting Design

Q15 . Inconsistent Design

Q16 . Consistent Operations

Q17 . No Severe Errors

Q18 . Simple Error Recovery

Q19 . Small Correction Effort

Q20 . Easy To Undo Actions

Q21 . Long Learn Process

Q22 . Exploratory Learning

Q23 . Easy To Learn

Q24 . Complex Interactions

Level of Agreement

M
ea

su
re

d
St

at
em

en
ts

Figure 7: On the left side, the questionnaire results are plotted as the mean with a confidence interval of 95%. The scale ranges
from 1 (strongly disagree) to 7 (strongly agree). Also, the original statements from the questionnaire are abbreviated. On the
right you can see two views of a more complex model of a city, which was created by an expert user in approximately 30 minutes.

[Nie90] NIELSEN J.: Paper versus computer implementations as
mockup scenarios for heuristic evaluation. In INTERACT ’90:
Proceedings of the IFIP TC13 Third Interational Conference on
Human-Computer Interaction (1990), pp. 315–320. 3

[Nie94] NIELSEN J.: Heuristic evaluation. John Wiley & Sons,
Inc., New York, NY, USA, 1994, pp. 25–62. 3

[NM90] NIELSEN J., MOLICH R.: Heuristic evaluation of user
interfaces. In CHI ’90: Proceedings of the SIGCHI conference
on Human factors in computing systems (1990), pp. 249–256. 3

[PJM94] PRUSINKIEWICZ P., JAMES M., MĚCH R.: Synthetic
topiary. In SIGGRAPH ’94: Proceedings of the 21st annual con-
ference on Computer graphics and interactive techniques (1994),
pp. 351–358. 2

[PK96] PRUSINKIEWICZ P., KARI L.: Subapical bracketed l-
systems. In Selected papers from the 5th International Workshop
on Graph Gramars and Their Application to Computer Science
(London, UK, 1996), pp. 550–564. 2

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The Algorith-
mic Beauty of Plants. Springer-Verlag, New York, 1990. 2

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of
cities. In SIGGRAPH ’01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques (2001),
pp. 301–308. 2

[Smi84] SMITH A. R.: Plants, fractals, and formal languages.
SIGGRAPH Comput. Graph. 18, 3 (1984), 1–10. 1

[Sny03] SNYDER C.: Paper Prototyping: the fast and easy way
to design and refine user interfaces. Morgan Kaufmann, 2003. 3

[Sti75] STINY G. N.: Pictorial and formal aspects of shape and
shape grammars and aesthetic systems. University of California,
Los Angeles, 1975. 2

[Sti80] STINY G. N.: Introduction to shape and shape grammars.
Environment and Planning B 7, 3 (1980), 343–351. 2

[Str93] STRAUSS P. S.: IRIS Inventor, a 3D graphics toolkit. SIG-
PLAN Notices 28, 10 (1993), 192–200. 2

[TMW02] TOBLER R. F., MAIERHOFER S., WILKIE A.: Mesh-
based parametrized l-systems and generalized subdivision for
generating complex geometry. International Journal of Shape
Modeling 8, 2 (2002), 173–191. 2

[WHG97] WILLUMEIT H., HAMBORG K. C., GEDIGA G.:
IsoMetricss: Questionnaire for the evaluation of graphical user
interfaces based on ISO 9241/10 (short version), 1997. 6

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY

W.: Instant architecture. ACM Transaction on Graphics 22, 3
(July 2003), 669–677. Proceedings ACM SIGGRAPH 2003. 2

submitted to Vision, Modeling, and Visualization (2010)


