
preprint (HPG 2010)

Edge-Avoiding À-Trous Wavelet Transform for fast Global
Illumination Filtering

Holger Dammertz, Daniel Sewtz, Johannes Hanika, Hendrik P.A. Lensch

Ulm University, Germany

Figure 1: Using our edge-avoiding À-Trous wavelet transform we filter highly noisy path traced images at interactive rates resulting
in smooth indirect illumination while retaining important detail like sharp shadows and hard edges. The images show the (noisy) input
into our algorithm and next to them the output we compute.

Abstract
We present a fast and simple filtering method designed for ray traced Monte Carlo global illumination images
which achieves real-time rates. Even on modern hardware only few samples can be traced for interactive appli-
cations, resulting in very noisy outputs. Taking advantage of the fact that Monte Carlo computes hemispherical
integrals that may be very similar for neighboring pixels we derive a fast edge-avoiding filtering method in screen
space using the À-Trous wavelet transform that operates on the full noisy image and produces a result that is close
to a solution with many more samples per pixel.

1. Introduction

Monte Carlo-based global illumination ray tracing is one
of the most flexible and robust light transport simulation al-
gorithms. Although there exist many different approaches,
they all use random path sampling to solve the integral in
the rendering equation. Usually hundreds of paths per pixel
are necessary to achieve a smooth image. But even modern
computers and algorithms can only provide a few paths per
pixel in the time-frame needed for interactive applications
or a fast preview. Limiting the number of randomly sampled
paths results in an image that still contains highly visible
noise.

Even in conceptually simple illumination situations like a
diffuse uni-colored wall, the noise is visible. But in this case
the correct solution varies smoothly from pixel to pixel and
the result can be improved by combining several neighbor-
ing samples into one integral estimate.

Edge-avoiding wavelets provide an efficient approach for
filtering such samples, provided that a good edge-stopping
functions is available. But, as we show in Section 3.3, the

standard decimated wavelet bases are poorly suited for the
Monte Carlo noise and show visible artifacts. On the other
hand the bilateral filter avoids these artifacts but can be quite
slow for large filter sizes.

Therefore we extend the fast undecimated À-Trous
wavelet transform to incorporate multiple edge-stopping
functions and show that it can robustly filter highly noisy
Monte Carlo global illumination images and produce visu-
ally pleasing results at interactive rates. We use a hybrid
technique that supplements the output of a CPU based ray
tracer with information from additionaly rasterized images.
Our GPU shader applies the Edge-Avoiding À-Trous filter
combining the different buffers to produce the output image.

Our main contributions in this paper are:

• the interactive edge-avoiding À-Trous filter
• an edge-stopping function (depending on edges in geo-

metry and illumination) for noisy path traced images
• comparison to other (edge and non edge-avoiding)

wavelet bases for reconstruction of Monte Carlo images.

This results in the ability to produce path traced global illu-

H. Dammertz & D. Sewtz & J. Hanika & H. Lensch / Real Time EAW

mination images of visually smooth appearence at interac-
tive rates that retain high detail (like e.g sharp shadows).

1.1. Related Work

Edge-Avoiding Wavelets and the Bilateral Filter Naive
computation of the discrete wavelet-transform requires con-
volutions with increasing filter sizes per level. The Mal-
lat algorithm [Mal89] alleviates this problem by introduc-
ing decimation (i.e. downsampling) and illustrates the rela-
tionship to multiresolution analysis. Efficient computation
of the undecimated transform has been proposed by [HK-
MMT89, Mal98] adapting Fast Filter Transforms [Bur81]
for the use with wavelets. These filters contain a constant
number of coefficients on each level of the analysis, by
spreading the initial filter by a factor of 2level and filling
in zeroes. In the wavelet context this is known as the al-
gorithme À-Trous ("with holes"). [HKMMT89] provides a
formal analysis of the relationship between the Mallat algo-
rithm and the À-Trous algorithm.

The bilateral filter is a non-linear filter, proposed by
[TM98] (among others), to smooth images. Since it is com-
putationally expensive, methods for its acceleration have
been developed (e.g. [DD02, PD09]). [FAR07] uses the À-
Trous algorithm to compute a fast multiscale bilateral de-
composition. Edge-avoiding wavelets [Fat09] adopt this for
the decimated case by extending second-generation wavelets
[Swe97] and introducing an edge-crossing function. Edge-
avoiding wavelets (computed via the Mallat-algorithm) are
the decimated counterpart of the fast bilateral decomposi-
tion (computed via the À-Trous algorithm). In contrast to
the many specialized and selective wavelet bases, the shape
of each edge-avoiding wavelet itself changes data depen-
dently similar to a data dependent windowing in the short
time fourier-transform.

The bilateral filter has been extended for different applica-
tions to use more information in the edge-stopping function.
The trilateral filter [CT05] uses an adaptive neighborhood
function and the image gradient. The joint and cross bilat-
eral filter [PSA∗04, ED04] use the color information from
multiple images taken under different lighting conditions to
combine their freguency components. [SGNS07] uses bilat-
eral upsampling from a low resolution low frequency light
buffer for real-time soft global illumination. But a low reso-
lution buffer lacks the positional precision necessary to de-
cide on which side of an edge a sample lies thus remov-
ing the possibility of retaining high resolution details like
sharp shadows. For this reason our edge-avoiding À-Trous
filter operates on a full resolution buffer. It combines edge-
stopping functions from multiple input images (noisy ray
tracing image, normal buffer, position buffer) and is effi-
ciently computed on the GPU.

Fast Ray Tracing The starting point of our algorithm is
a ray tracer that we use for the light transport simulation.

In recent years several approaches for fast ray tracing have
been developed. The fastest class of algorithms exploits co-
herence for tracing primary and shadow rays [Wal04]. They
are however limited to very basic light transport simulation.
For full global illumination light transport simulation as de-
scribed in the next paragraph, no such coherence exists. Two
recent approaches to accelerate this kind of computation are
to reintroduce coherence by reordering [SBB08] or to ignore
coherence and build faster data-structures [DHK08, EG08].
[Tsa09] combines both approaches.

Global Illumination Real time display of smooth global il-
lumination solutions can be achieved using precomputation.
The most prominent algorithms are Precomputed Radiance
Transfer [SKS02] and Meshless Radiosity [LZT∗08]. Based
on interactive ray tracing on distributed systems and inter-
leaved sampling in [WKB∗02] an approach for interactive
global illumination was presented that uses the discontinuity
buffer [Kel98] to avoid filtering across edges.

Another approach builds on the Instant Radiosity [Kel97]
algorithm that approximates the global illumination with
many point lights [DS06, LSK∗07, NW09]. [RGK∗08] also
approximate the visibility of the point light sources. These
methods, like most GPU methods, have restrictions like the
shape of the light sources and lack the generality of a full ray
tracing solution.

Finally the advancement in GPU computing power allows
to implement previous offline algorithms like photon map-
ping [Jen96] or final gathering in realtime [FD09, ML09,
REG∗09, WWZ∗09].

There exist a vast mount of general (offline) techniques
for Monte Carlo global illumination. Recently the use of
wavelets in the context of adaptive sampling has proven to
be useful [ODR09]. We discuss more of the related Monte
Carlo work in Section 2.1.

1.2. Overview

Our method takes a noisy Monte Carlo path traced full res-
olution image and produces a smooth output image by tak-
ing into account the input image itself as well as a normal
and a position buffer. Using the ray traced image as input
allows to retain high frequency detail like sharp shadows
that are not available in the other buffers. The resulting im-
age shows sharp edges around geometry borders and suc-
cessfully smoothes the illumination where needed. Using a
general path tracing algorithm allows for various different
light transport effects like glossy materials and different light
source types and shapes (e.g. simple point lights, arbitrary
(deformed) area lights, image based lighting), without spe-
cial handling.

Section 2 describes stages of our algorithm and gives the
necessary theoretical background. Section 3 discusses our
implementation with optimizations and presents the perfor-
mance and results.

H. Dammertz & D. Sewtz & J. Hanika & H. Lensch / Real Time EAW

Figure 2: rt), n) and x) are the input buffers (Ray Tracing,
Normal, World Space Position). 1), 2) show 2 levels of our
edge-avoiding À-Trous filter. f) is the final output image after
tone mapping. d) shows the optional diffuse buffer

2. Edge-Avoiding À-Trous Filtered Path Tracing

Figure 2 illustrates the basic steps of our algorithm. The in-
put is the path-traced (noisy) image (rt buffer), containing in
the simplest case both direct and indirect illumination. Ad-
ditionally, the edge-stopping function of the À-Trous filter
takes into account the normal and the position buffer. The
number of applications of the À-Trous filter is determined
by the total desired filter size (in our case 5 iterations i.e.
80×80).

In the absence of edges (e.g. all buffers uni-colored) it ap-
plies an even smoothing with increasing filter size per iter-
ation. In the presence of edges the influence of neighboring
samples is diminshed by the edge-stopping function. This is
closely related to the bilateral filter and was used with the
À-Trous algorithm in [FAR07] and with decimated wavelet
bases in [Fat09].

In the following sections we will lay out the theory of the
individual parts of the algorithm and in Section 3 we will de-
scribe the implementation specific details and compare vari-
ous options for performance improvement.

2.1. Monte Carlo Light Transport

The Monte Carlo Method for light transport solves the inte-
gral of the rendering equation [Kaj86] by constructing ran-
dom paths that connect the camera with the light sources
in the scene. This is the most general known solution for
the full rendering equation and is well studied in litera-
ture [Vea97, PH04]. One problem with Monte Carlo image
synthesis is the high variance that is visible even in simple
scenes. To reduce this variance quadratically more samples
are needed for a linear improvement.

i=0

i=1

i=2

Figure 3: Three levels of the À-Trous wavelet transform.
Arrows indicate pixels that correspond to non-zero entries
in the filter hi and are used to compute the center pixel at
the next level. Gray dots are positions that the full undec-
imated wavelet transform would take into account but that
are skipped by the À-Trous algorithm.

In our system we use a path tracer (PT) with next event
estimation as our basic image formation algorithm. This path
tracer starts by tracing rays from the camera into the scene
as a random walk. At each interaction point a connection to
a randomly chosen position on a light source is made. If it
is not occluded the contribution of this path is added to the
image accumulation buffer.

In the next section we will describe a smoothing process
to reduce the variance of the final ray traced image. This
is motivated by the following observation: The incident ir-
radiance at a single point on a surface is described by the
integral over the hemisphere. Under interactive or real-time
constraints a path tracer can only trace a single path per pixel
thus estimating the integral with a single sample only. But if
neighboring hemispheres are similar one would expect sim-
ilar integrals. Therefore the smoothing tries to average sam-
ples with a similar hemisphere.

2.2. Edge-Avoiding À-Trous Filter

In this section we will first describe the (unweighted) À-
Trous wavelet transform and then extend it to incorporate
our edge-stopping function. Each iteration of the À-Trous
algorithm (with increasing step width) corresponds to com-
puting one more level of the wavelet analysis which also cor-
responds to doubling the filter size.

[Bur81] shows that wide gaussian filters can be well ap-
proximated by repeated convolution with generating ker-
nels. [HKMMT89] uses this construction to compute the dis-
crete wavelet transform, known as the algorithme À-Trous :

1. At level i = 0 we start with the input signal c0(p)
2. ci+1(p) = ci(p)∗hi, where ∗ is the discrete convolution.

The distance between the entries in the filter hi is 2i.
3. di(p) = ci+1(p)− ci(p),

where di are the detail or wavelet coefficients of level i.
4. if i < N (number of levels to compute):

increment i, go to step 2
5. {d0,d1, ...,dN−1,cN} is the wavelet transform of c.

The reconstruction is given by

c = cN +
0

∑
i=N−1

di (1)

H. Dammertz & D. Sewtz & J. Hanika & H. Lensch / Real Time EAW

Filter h is based on a B3 spline interpolation
(1

16 , 1
4 , 3

8 , 1
4 , 1

16) [Mur97]. At each level i > 0 the filter
doubles its extent by filling in 2i−1 zeros between the
initial entries. Thus the number of non-zero entries remains
constant. (see Figure 3)

Edge-avoiding filtering is achieved by introducing a data-
dependent weighting function. We extend the intensity-
based edge-stopping function of the bilateral filter to com-
bine multiple edge-stopping functions. The discrete convo-
lution in step 2 becomes

ci+1(p) =
1
k ∑

q∈Ω

hi(q) ·w(p,q) · ci(p) (2)

with weight function w, pixel positions p and q and Ω the
positions of non-zero coefficients in hi.
k is the normalization factor

k = ∑
q∈Ω

hi(q) ·w(p,q) (3)

and w are the combined edge-stopping functions from the
raytraced input image (rt), normal buffer (n) and position
buffer (x)

w(p,q) = wrt ·wn ·wx (4)

wrt(p,q) = e

(
− ||Ip−Iq||

σ2
rt

)
(5)

where Ip and Iq are the color values of the rt buffer at posi-
tions p and q. wn and wx are computed in the same way with
their own σn and σx respectively.

We implement this filter in GLSL (see the end of the pa-
per for source code) passing the stepwidth (i.e. number of
zeroes between filter entries), filter h, parameters σrt , σn, σx
as uniforms and images rt, n, x as textures.

Since it is hard to make assumptions about the noise con-
tained in the raytraced image, we choose our inital σrt to
include variations of the scale of the maximum intensity of
the raytraced image. Note that the intensities can be bigger
than 1 in our full-hdr environment. Thus the edge-stopping
function depends at the first level on wn and wx only. At each
pass we set σ

i
rt to 2−i

σrt thus allowing for smaller illumina-
tion variations to be smoothed.

Edges that are preserved by our edge-stopping function
are still present at coarser levels of the transformation.
Therefore we discard the finer levels of the wavelet trans-
form, rendering step 3 of the À-Trous algorithm unneces-
sary, and directly use level N as output image.

3. Implementation Details and Results

We implemented the edge-avoiding À-Trous filter in GLSL.
After computing the input buffers (rt, normal, position) the
filter is applied multiple times to the rt buffer. Each pass uses

the previously smoothed result as input. All our buffer tex-
tures use a 16 bit floating point format.

The normal and position buffers are rasterized with
OpenGL using frame buffer objects and passed to the
smoothing shader via textures. Even though these buffers
could easily be computed using the ray tracer we conserve
bandwidth by computing them directly on the GPU. We
directly display the final smoothed rt output buffer, or in
the case of deferred shading, multiply the result with an
OpenGL generated diffuse color buffer.

As ray tracer we use a rather slow but very flexible CPU
implementation. As Table 1 shows this is the bottleneck of
our system and could be improved by using a more special-
ized ray tracer. Nevertheless we achieve interactive frame
rates with our system.

If not otherwise noted, performance measurements and
comparisons were computed on an Intel(R) Core(TM)2 Duo
CPU (E6850) @ 3.00GHz with an NVIDIA GeForce GT
9500 GPU.

Deferred Shading Deferred shading [Hag04] postpones the
illumination computation at each pixel until a final rendering
pass per light source. This pass takes a position, normal and
diffuse buffer as input. We can apply this to our approach by
using the ray tracer to compute the incident illumination at
each visible pixel without the final material evaluation. This
light buffer can then be smoothed using our À-Trous filter
and be applied by multiplying it with the diffuse buffer. This
allows to retain high detail in textures that would otherwise
be blurred but can only be applied to diffuse surfaces.

3.1. GPU Accelerated Implementation and Results

Table 1 shows the performance of each individual part of
our system for all scenes depicted in Figure 12. This mea-
surement was done at a resolution of 512×512 with a single
path per pixel and one indirect bounce. For each path, 4 rays
are traced (primary and secondary plus two shadow rays).
The measurements were averaged over 16 iterations for the
shown camera perspective. The À-Trous filter was applied
five times. As expected the À-Trous filter performance is in-
dependent of the input data and very fast.

The filter can be adapted to different kinds of applica-
tions by specifically extending it to evaluate more input
weight buffers. This is illustrated in Figure 4 for zero to three
weights. The impact on the performance is shown in Table 2.
This table also shows the performance of the À-Trous GPU
filter when changing the resolution. Figure 5 shows a sharp
shadow of a pole being preserved correctly while smoothing
the other parts.

The time spent on the OpenGL rendering varies exten-
sively with scene complexity and number of textures. De-
pending on application and input data it might be more ef-

H. Dammertz & D. Sewtz & J. Hanika & H. Lensch / Real Time EAW

Figure 4: À-Trous filter with increasing number of edge weights: unfiltered rt buffer (input), no additional weights: (“pure”
À-Trous), rt buffer only: σrt (bilateral approx.), two buffers: σrt ,σn and all three buffers: σrt ,σn,σx (our result)

Figure 5: From left to right: Close up of the rt-input of a
pole shadow in the sponza scene. Result with our presented
weighting approach. Result without rt buffer: the shadow is
blurred.

Scene RT (ms) GL (ms) Upload (ms) À-Trous (ms) FPS

Box 307.6 2.9 5.8 78.5 (5.6) 3.2
Sponza 835.2 35.5 4.4 78.6 (5.6) 1.13
Sibenik 510.2 8.5 5.2 78.6 (5.6) 1.9
Outdoor 316.4 2.6 6.3 78.6 (5.6) 3.0

Table 1: Individual timings for the test scenes shown in Fig-
ure 12 at a resolution of 512× 512. RT is the total time to
produce the input ray tracing buffer, GL the time to generate
the position, normal and diffuse buffer using OpenGL. Up-
load is the time it takes to copy the ray tracing buffer from
main memory to the GPU. À-Trous gives the time of five re-
peated applications of our filter on a GT 9500. The number
in brackets is the time on an NVIDIA GTX 285. FPS are the
final frames per second achieved by our testing system.

ficient to produce the required normal, position and diffuse
buffer with the ray tracer and upload them to the GPU.

Increasing Bounces and Samples per Pixel The number
of bounces can easily be increased. While slowing down the
ray-tracing it allows for a more correct global illumination
solution. The first three images in Figure 6 show results with
more bounces. To reduce the variance in the input buffer,
more than one path per pixel can be traced. This is illustrated
in the last two image columns in Figure 6 with 4 and 16 paths
per pixel.

Changing Scene Parameters Since we use a general ray
tracer it is easy to change for example the glossyness of ma-

Res. 512× 512 1024× 1024 1920× 1080
Iter 1 5 10 1 5 10 1 5 10

W
0 0.3 1.5 2.9 1.0 5.0 11.3 1.9 9.6 22.4
1 0.5 2.4 4.7 1.8 8.7 17.2 3.5 16.9 33.6
2 0.8 3.5 6.9 2.7 12.9 26.6 5.0 25.1 52.1
3 1.2 5.6 11.0 4.2 20.9 41.6 8.2 42.6 86.0

Table 2: Time in ms to compute the À-Trous filter on a
NVIDIA GTX 285 at different resolutions (Res.). 5 · 2#Iter

corresponds to the total filtersize and # W is the number of
weights. The original À-Trous algorithm uses 0 weights. Our
implementation uses 3 weights. See Figure 4 for results with
fewer weights.

Figure 6: The top row shows the input, the bottom row the
output. The first three columns show increasing number of
bounces from 0 (direct light) to 1 and 5. The last two columns
show the improvement when tracing more than one path per
pixel (4 and 16 paths).

terials or the size and shape of light sources. The effects of
this are illustrated in the Figures 7 and 8.

3.2. Optimizations

In this section we discuss some possibilities to speed up a
full rendering system that uses our filter by specializing the
rendering algorithm.

Sub-Sampling the image While it would be possible to use
a dense low resolution ray tracing buffer, one of the main ad-
vantages of our À-Trous filtering would be lost. Namely that
in the full resolution edge buffer each sample location knows

H. Dammertz & D. Sewtz & J. Hanika & H. Lensch / Real Time EAW

Figure 7: Varying the glossiness of the sphere and the size
of the light source.

Figure 8: Arbitrarily shaped light sources. The images show
the rt input buffer and the filtered output with two bounces.

on which side of the edge it lies. We can however reduce the
number of rays by sampling only every n−th pixel. Now the
first steps of the filtering are related to an in-painting prob-
lem. This of course increases the variance of the final image
even more and some features like hard shadows may be lost.
Since in our system the major bottleneck is the ray tracer
we get an almost linear speedup with the reduction of traced
rays. Figure 9 shows results for sub-sampling. Note that for
correct in-painting, the rt buffer should not be used as edge
weight for the first iterations but only when the image is fully
in-painted. For 2×2 sub-sampling this is after one iteration,
for 4×4 after two.

Figure 9: Sub-sampling the rt buffer. The top row shows the
input using one sample per pixel (1.1 fps), one sample every
2×2 pixels (3.8 fps) and one sample every 4×4 pixels (11.0
fps). The bottom row shows the result after filtering where
the loss of detail is clearly visible.

Avoiding Primary Rays Depending on bandwidth usage
one can avoid tracing primary rays by downloading the depth
or position buffer from the GPU. This might give a speedup
when the path depth is low and the bandwidth is not a prob-
lem. In our case the resulting render times were slower by
about 15%. This of course changes when a GPU ray tracer is
used. In that case all data would already by available on the
GPU.

Splitting Direct Illumination When the flexibility of ar-
bitrary formed light sources is not needed the direct light
computation can also be performed on the GPU using e.g.
shadow maps or shadow volumes. This optimization is re-
lated to the previous one but now the first shadow ray can
also be omitted. In our case the speed-up was almost a fac-
tor of 2 when using a single point light source in the sponza
scene with one indirect bounce.

3.3. Comparison to Other Wavelet Bases

As compared to standard denoising techniques our method
allows to discard the detail coefficients instead of shrinking
them. In a high variance ray traced image a single bright
pixel in a dark region may indicate a large smooth patch with
the same mean irradiance. Such a pixel would result in a
detail coefficient of very large magnitude which would not
be sufficiently smoothed by wavelet shrinkage.

Figure 10 shows the comparison of our edge-avoiding À-
Trous filter to other bases. As can be seen in the standard
decimated wavelet transform (using CDF(2,2) and RedBlack
wavelets [UB98]) filtering out detail coefficients of large
magnitude leads to visible artifacts resulting from the dec-
imation. The edge avoiding versions suffer from the same
artifacts. See for example the EAW CDF(2,2) image where
it fails to preserve the two edges between the light source
and the wall.

Adaptive wavelet rendering [ODR09] takes advantage of
the hierarchical nature of decimated wavelet bases. They
adaptively refine the wavelet representation and sample the
support of the wavelets. While it would be interesting to
carry over this approach to undecimated bases, this is not
straight forward because there is no implicit hierarchy any-
more.

It would also be interesting to apply our filtering
technique to other global illumination algorithms like
micro-rendering [REG∗09] or image space photon map-
ping [ML09].

3.4. Limitations

Highly complex scenes are problematic for our smoothing
algorithm since one sample per pixel (rt buffer as well as
position and normal buffer) no longer suffice to capture the
necessary information. This results in the loss of details and

H. Dammertz & D. Sewtz & J. Hanika & H. Lensch / Real Time EAW

PT Input À-Trous CDF(2,2) RedBlack Bilateral

PT Reference Ours EAW CDF(2,2) EAW RedBlack Multilateral

Figure 10: Comparison to other wavelet bases for filtering noisy Monte Carlo images. The first row shows the result of filtering
with the standard wavelet transform. The second row shows the edge avoiding versions (using our edge-stopping function). We
also include the results of the bilateral and multilateral filter, where the multilateral version is the extension of the standard
bilateral filter with our multiple edge-stopping function. Applying this filter through standard convolution however only allows
to use fixed σ.

Figure 11: Failure case for our algorithm: A nature scene
with 20 Million triangles. Due to many complex shadow
casting objects the illumination variance is very high and
a single sample per pixel is insufficient. Additionally there is
severe aliasing in the normal buffer.

smoothing for example over shadows or object boundaries.
Both problems are illustrated in Figure 11.

Another problem is that due to the edge-stopping function
the À-Trous wavelet transform is no longer energy conserv-
ing. While this is acceptable in some situations it has to be
considered for high quality offline rendering.

4. Conclusion and Future Work

In this paper we presented a novel filtering technique for
highly noisy Monte Carlo global illumination images that
can be used in interactive applications. By extending the
À-Trous wavelet transform to incorporate an edge stopping
function taking multiple buffers into account, we can suc-
cessfully eliminate the noise while preserving sharp details.

Since our approach is very general in future work we plan
to apply it to more advanced Monte Carlo global illumina-

tion algorithms like bi-directional path tracing and to investi-
gate how a more sophisticated edge-stopping function could
improve the results even further. Another interesting exten-
sion would be to incorporate adaptive sampling to avoid
sampling in areas where the À-Trous filtering already gives
a good result or to increase sampling in problematic regions
. A possibility to fix the energy conservation would be to
use an additional channel in the wavelet transform and post-
normalize [Fat09] the output buffer. Using a ray tracer that
operates fully on the GPU is likely to provide a significant
speedup for a rendering system using our filter.

5. Acknowledgments

This work has been partially funded by the DFG Emmy
Noether fellowship (Le 1341/1-1).

GLSL À-Trous fragment shader

uniform sampler2D colorMap, normalMap, posMap;

uniform float c_phi, n_phi, p_phi, stepwidth;

uniform float kernel[25];

uniform vec2 offset[25];

void main(void) {

vec4 sum = vec4(0.0);

vec2 step = vec2(1./512., 1./512.); // resolution

vec4 cval = texture2D(colorMap, gl_TexCoord[0].st);

vec4 nval = texture2D(normalMap, gl_TexCoord[0].st);

vec4 pval = texture2D(posMap, gl_TexCoord[0].st);

float cum_w = 0.0;

for(int i = 0; i < 25; i++) {

vec2 uv = gl_TexCoord[0].st + offset[i]*step*stepwidth;

vec4 ctmp = texture2D(colorMap, uv);

vec4 t = cval - ctmp;

H. Dammertz & D. Sewtz & J. Hanika & H. Lensch / Real Time EAW

PT Reference Input Output Indirect Only Direct Only

MSE 2726.9 MSE 52.9

MSE 3132.2 MSE 238.8

MSE 4174.9 MSE 1309.0

MSE 2787.9 MSE 20.9

Figure 12: Test scenes for our filtering algorithm. Each image was computed at a resolution of 512× 512 with one path per
pixel and one indirect bounce. The reference image was computed with 4096 paths per pixel. MSE shows the mean square error
to the reference solution. The last row shows an outdoor scene illuminated with a diffuse skylight.

float dist2 = dot(t,t);

float c_w = min(exp(-(dist2)/c_phi), 1.0);

vec4 ntmp = texture2D(normalMap, uv);

t = nval - ntmp;

dist2 = max(dot(t,t)/(stepwidth*stepwidth),0.0);

float n_w = min(exp(-(dist2)/n_phi), 1.0);

vec4 ptmp = texture2D(posMap, uv);

t = pval - ptmp;

dist2 = dot(t,t);

float p_w = min(exp(-(dist2)/p_phi),1.0);

float weight = c_w * n_w * p_w;

sum += ctmp * weight * kernel[i];

cum_w += weight*kernel[i];

}

gl_FragData[0] = sum/cum_w;

}

References

[Bur81] BURT P. J.: Fast filter transform for image processing.
Computer Graphics and Image Processing 16, 1 (1981), 20 – 51.

[CT05] CHOUDHURY P., TUMBLIN J.: The trilateral filter for
high contrast images and meshes. In SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Courses (2005), p. 5.

[DD02] DURAND F., DORSEY J.: Fast bilateral filtering for the
display of high-dynamic-range images. In SIGGRAPH (2002),
pp. 257–266.

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
bounding volume hierarchies for fast SIMD ray tracing of in-
coherent rays. In Computer Graphics Forum (Proc. 19th Euro-
graphics Symposium on Rendering) (2008), pp. 1225–1234.

[DS06] DACHSBACHER C., STAMMINGER M.: Splatting indirect
illumination. In I3D ’06: Proceedings of the 2006 symposium on
Interactive 3D graphics and games (2006), pp. 93–100.

H. Dammertz & D. Sewtz & J. Hanika & H. Lensch / Real Time EAW

[ED04] EISEMANN E., DURAND F.: Flash photography enhance-
ment via intrinsic relighting. In SIGGRAPH ’04: ACM SIG-
GRAPH 2004 Papers (2004), pp. 673–678.

[EG08] ERNST M., GREINER G.: Multi bounding volume hier-
archies. In Proc. 2008 IEEE/EG Symposium on Interactive Ray
Tracing (2008), pp. 35–40.

[FAR07] FATTAL R., AGRAWALA M., RUSINKIEWICZ S.: Mul-
tiscale shape and detail enhancement from multi-light image col-
lections. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers
(2007), p. 51.

[Fat09] FATTAL R.: Edge-avoiding wavelets and their applica-
tions. ACM Trans. Graph. 28, 3 (2009), 1–10.

[FD09] FABIANOWSKI B., DINGLIANA J.: Interactive global
photon mapping. Computer Graphics Forum 28, 4 (2009), 1151–
1159.

[Hag04] HAGREAVES S.: Deferred Shading, Game Developers
Conference, 2004.

[HKMMT89] HOLSCHNEIDER M., KRONLAND-MARTINET R.,
MORLET J., TCHAMITCHIAN P.: A real-time algorithm for sig-
nal analysis with the help of the wavelet transform. Springer-
Verlag, 1989.

[Jen96] JENSEN H. W.: Global illumination using photon maps.
In Rendering Techniques ’96 (Proc. of the Seventh Eurographics
Workshop on Rendering) (1996), pp. 21–30.

[Kaj86] KAJIYA J. T.: The rendering equation. SIGGRAPH Com-
put. Graph. 20, 4 (1986), 143–150.

[Kel97] KELLER A.: Instant radiosity. Proc. of SIGGRAPH ’97
(1997), 49–56.

[Kel98] KELLER A.: Quasi-Monte Carlo Methods for Photore-
alisitic Image Synthesis. PhD thesis, Universität Kaiserslautern,
1998.

[LSK∗07] LAINE S., SARANSAARI H., KONTKANEN J.,
LEHTINEN J., AILA T.: Incremental instant radiosity for real-
time indirect illumination. In Proceedings of Eurographics Sym-
posium on Rendering 2007 (2007), Eurographics Association,
pp. xx–yy.

[LZT∗08] LEHTINEN J., ZWICKER M., TURQUIN E., KONTKA-
NEN J., DURAND F., SILLION F. X., AILA T.: A meshless hi-
erarchical representation for light transport. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 papers (2008), pp. 1–9.

[Mal89] MALLAT S.: A theory for multiresolution signal decom-
position: The wavelet representation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 11 (1989), 674–693.

[Mal98] MALLAT S.: A Wavelet Tour of Signal Processing. Aca-
demic Press, 1998.

[ML09] MCGUIRE M., LUEBKE D.: Hardware-accelerated
global illumination by image space photon mapping. In HPG
’09: Proceedings of the Conference on High Performance Graph-
ics 2009 (2009), pp. 77–89.

[Mur97] MURTAGH F.: Multiscale transform methods in data
analysis.

[NW09] NICHOLS G., WYMAN C.: Multiresolution splatting for
indirect illumination. In I3D ’09: Proceedings of the 2009 sym-
posium on Interactive 3D graphics and games (2009), pp. 83–90.

[ODR09] OVERBECK R. S., DONNER C., RAMAMOORTHI R.:
Adaptive wavelet rendering. In SIGGRAPH Asia ’09: ACM SIG-
GRAPH Asia 2009 papers (2009), pp. 1–12.

[PD09] PARIS S., DURAND F.: A fast approximation of the bi-
lateral filter using a signal processing approach. International
Journal of Computer Vision 81, 1 (2009), 24–52.

[PH04] PHARR M., HUMPHREYS G.: Physically Based Render-
ing: From Theory to Implementation. Morgan Kaufmann Pub-
lishers Inc., 2004.

[PSA∗04] PETSCHNIGG G., SZELISKI R., AGRAWALA M., CO-
HEN M., HOPPE H., TOYAMA K.: Digital photography with
flash and no-flash image pairs. ACM Trans. Graph. 23, 3 (2004),
664–672.

[REG∗09] RITSCHEL T., ENGELHARDT T., GROSCH T., SEI-
DEL H.-P., KAUTZ J., DACHSBACHER C.: Micro-rendering for
scalable, parallel final gathering. In SIGGRAPH Asia ’09: ACM
SIGGRAPH Asia 2009 papers (2009), pp. 1–8.

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-
P., DACHSBACHER C., KAUTZ J.: Imperfect shadow maps for
efficient computation of indirect illumination. In SIGGRAPH
Asia ’08: ACM SIGGRAPH Asia 2008 papers (2008), pp. 1–8.

[SBB08] SOLOMON BOULOS I. W., BENTHIN C.: Adaptive
ray packet reordering. Symposium on Interactive Ray Tracing
0 (2008), 131–138.

[SGNS07] SLOAN P.-P., GOVINDARAJU N. K.,
NOWROUZEZAHRAI D., SNYDER J.: Image-based proxy
accumulation for real-time soft global illumination. In PG
’07: Proceedings of the 15th Pacific Conference on Computer
Graphics and Applications (2007).

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. In SIGGRAPH ’02: Proceed-
ings of the 29th annual conference on Computer graphics and
interactive techniques (2002), pp. 527–536.

[Swe97] SWELDENS W.: The lifting scheme: A construction of
second generation wavelets. SIAM J. Math. Anal. 29, 2 (1997),
511–546.

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray
and color images. In ICCV ’98: Proceedings of the Sixth Interna-
tional Conference on Computer Vision (Washington, DC, USA,
1998), IEEE Computer Society, p. 839.

[Tsa09] TSAKOK J. A.: Faster incoherent rays: Multi-bvh ray
stream tracing. In HPG ’09: Proceedings of the Conference on
High Performance Graphics 2009 (2009), pp. 151–158.

[UB98] UYTTERHOEVEN G., BULTHEEL A.: The Red-Black
wavelet transform. In Signal Processing Symposium (IEEE
Benelux) (1998), pp. 191–194.

[Vea97] VEACH E.: Robust Monte Carlo Methods for Light
Transport Simulation. PhD thesis, Stanford University, 1997.

[Wal04] WALD I.: Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Saarland University, 2004.

[WKB∗02] WALD I., KOLLIG T., BENTHIN C., KELLER A.,
SLUSALLEK P.: Interactive global illumination using fast ray
tracing. In EGRW ’02: Proceedings of the 13th Eurographics
workshop on Rendering (2002), pp. 15–24.

[WWZ∗09] WANG R., WANG R., ZHOU K., PAN M., BAO H.:
An efficient gpu-based approach for interactive global illumina-
tion. In SIGGRAPH ’09: ACM SIGGRAPH 2009 papers (2009),
pp. 1–8.

