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Abstract

For realistic image synthesis and many other simulation applications, ray tracing is the only
choice to achieve the desired realism and accuracy. To gain performance and to concentrate on
more abstract algorithms e.g. global illumination, it is desirable to encapsulate the ray tracing
core (i.e. the process of �nding the �rst intersection of a ray with the scene’s boundary) in
hardware. Current so�ware implementations of ray tracing cores rely heavily on �oating point
arithmetic, which requires a considerable amount of logic when implemented as specialized
hardware. We examine the use of �xed point arithmetic for the special case of a triangle based
ray tracing core and give example implementations in C99 and VHDL along with an analysis
of the resulting precision.
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1 Introduction

Figure 1.1: A car rendered using a ray tracing core completely based on �xed point arith-
metic realized in integer arithmetic. To simplify custom shader writing, the color
computations were performed using conventional �oating point arithmetic. �e
quality of the �xed point computations is indistinguishable from computations in
�oating point arithmetic. Due to the equidistant spacing of �xed point numbers,
the self-intersection problem can be tackled without a scene-dependent epsilon,
which makes computations in �xed point arithmetic preferable.

For a wide range of applications in scienti�c simulation and graphics, it is necessary to
determine the mutual visibility of two points or the longest free distance from one point along
some direction given a mathematical description of the scene’s boundary. �is problem can
be solved by casting a ray from the �rst point and determining the �rst intersection with
the boundary. As algorithms are well-understood and become simpler, the main challenge is
making them faster and more precise. We address these challenges by investigating di�erent
arithmetics with respect to their suitability for hardware implementations.

Integer and �oating point units are the two standard kinds of arithmetic available on main-
stream general purpose processors. Other kinds of arithmetics like for example �xed point or
logarithmic arithmetic, are less widely used. For an overview of these arithmetics, the not so
convenient residue number system and related algorithms see [Kor02].
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Figure 1.2: Frequency of the IEEE 754 �oating point numbers in [0, 1] on a logarithmic scale.

For hardware ray tracing these three kinds of arithmetic have been applied already: �e �rst
ray tracing hardware [Wri97] used logarithmic arithmetic. Another implementation [Fen02]
on a Field Programmable Gate Array (FPGA) is using a custom number format somewhat in
between �oat and �xed point, employing pseudo �oating point scaling factors. With the advent
of general purpose computing on graphics accelerator boards, �xed point arithmetic was
applied [CHH02, PBMH05], and with upcoming a�ordable recon�gurable hardware even
�oating point units were used [Pur04, SWW+04, WSS05, WMS06, Woo06, KNKL07].

�iswork is organized in four chapters.�e remainder of this chapterwill give a short summary
of available arithmetics and intersection tests. Chapter 2 and 3 are organized in a parallel way.
Chapter 2 is giving a numeric analysis and details about the reference implementation in
so�ware, using C99. Chapter 3 is then mapping these results to hardware, where Sections 2.2–
2.5 and Sections 3.2–3.5 correspond to each other. Chapter 4 is then giving a conclusion. �e
source code for the hardware part can be found in the Appendix.

1.1 Floating Point Arithmetic

Floating point numbers consist of a tuple (s,m, e), s ∈ {0, 1} being the sign, m ∈N the bits of
the mantissa and e ∈N the exponent [Kor02, Gol91]. �e value of the represented number is
then

f = (−1)s ⋅m ⋅be

for some basis b.

�e IEEE Standard for Binary Floating-Point Arithmetic for microprocessor systems (ANSI/IEEE
Std 754-1985) de�nes the single-precision normalized values
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1.1. Floating Point Arithmetic

f = (−1)s ⋅ 1.m22m21⋯m0 ⋅2e−127,

where the 32 bits are interpreted as se7e6⋯e0m22m21⋯m0, that is one sign bit, 8 bits exponent
biased by 127 and a 23 bit mantissa. �is means the most signi�ciant bit, being the signbit, is
stored to the le� [Kor02, Gol91]. So if a 32 bit unsigned integer is counted from zero up to
0x7F7FFFFF and reinterpreted as a single-precision �oating point value, all positive �oating
point values are enumerated in order (including denormalized values, where the semantics
of the mantissa bits change, indicated by a zero exponent). All larger values would indicate
negative values, in�nity or not a number (NaN). �e basic four operations can be performed
as follows:

Multiplication �e sign is xor-ed, the exponents are added and the mantissae multiplied.
To ensure the new mantissa can be expressed as 1.m22m21⋯m0, i.e. 1/b ≤ m < b, a
post-normalization stepmay be required [Kor02].

Division Much the same as multiplication, except the exponents are subtracted and the
mantissae divided.

Addition and subtraction �e exponents have to be equal before operating on the man-
tissae. So the mantissa of the smaller operand has to be adjusted. �is makes post-
normalization necessary which, in turn, might result in an exponent under�ow.

All these operations become more complex when taking all special cases as NaN, in�nity and
denormalized numbers into account. Furthermore, great care has to be taken when rounding
intermediary results to conform to the IEEE standard.

�e most recent approaches to ray tracing hardware [SWW+04, WSS05, WMS06, KNKL07]
used �oating point units realized on FPGAs. To �t the desired design on the board, the full
IEEE standard could not be implemented. So denormalized numbers have been omitted and
the bit width has been reduced to 24 [WSS05].While these approaches focused on the proof of
concept, they did not consider ray tracing problems that arise from the unequal distribution
of �oating point numbers along the real axis (see Figure 1.2).

In fact there are many well-known precision issues to address when using �oating point arith-
metic [Gol91]. In ray tracing the main problems are the self-intersection problem [WPO96]
and the quantization of numbers that are far from the origin. For an illustration of the latter,
refer to Figures 1.3–1.5, which show the bunnies in a city problem (similar to the teapot in a
stadium problem): Combining small and large scale data sets. �e red bunny is located at the
origin, while the green bunny is located close to the boundary of the city. Both bunnies are of
the same size. �e scene has intentionally been constructed to show the limitations of any
kind of arithmetic using only 32 bits, so there are intersection errors in all images. �e city
model is courtesy of Leonhard Grünschloß.
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Chapter 1. Introduction

Figure 1.3: Rendered using IEEE 754 single-precision �oating point arithmetic. While the red
bunny is perfectly accurate, the green bunny su�ers from numeric instabilities (see
the dark spots). �e scene bounding box was about [−105, 105]×[−3 ⋅ 104, 2 ⋅ 103]×
[−105, 105].
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1.1. Floating Point Arithmetic

Figure 1.4: Before rendering the scene has been scaled to �t inside [−1.0, 1.0]3, where the
�oating point resolution is particularly high. �e overall accuracy is reduced as
there is a very high di�erence in the frequency of the values near zero and near the
borders. As a consequence even the red bunny now su�ers from false intersections.
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Chapter 1. Introduction

Figure 1.5: Rendered using �xed point arithmetic realized in 32 bit integer arithmetic, where
the scene has been scaled to �t the bounding box to the available �xed point range.
Although the rendering is not accurate, it now is invariant under translation, i.e.
the same precision is reached over the whole range of representable numbers: Both
bunnies show a few spurious black spots.
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1.2. Logarithmic Arithmetic

1.2 Logarithmic Arithmetic

Instead of mantissa and exponent, logarithmic arithmetic only stores the sign and logarithm
of the absolute value of the number, i.e. a tuple (s, l) with s ∈ {0, 1} and l being a �xed-point
value. For the special case of basis 2, the represented number f is then

f = (−1)s ⋅2l .

While the spacing of the numbers remains similar to the �oating point representation [BB85],
the implementations ofmultiplication, division, square root and power become simpler [Kor02].
�e basic operations:

Multiplication and division can be reduced to addition/subtraction of the logarithm l .

Addition and subtraction are unfortunately very complicated. A complete look-up table
would need 22n ×n bits and is therefore not realistic. So approximations with smaller
look-up tables have to be used. �ere are several attempts to remove this disadvantage,
for example [MST98].

Another source of inaccuracies is converting from and to the logarithmic system.

Due to physical constraints at that time, the �rst ray tracing hardware was forced to use a
compact arithmetic. For this purpose logarithmic arithmetic (see e.g. [Wri97, Cols. 13 and 14])
proved to be e�cient in space and performance as it can be realized using almost exclusively
integer arithmetic units. �e challenges of a lack of a zero and the computation of Gauss’
logarithm for addition and subtraction were solved by careful algorithm design and a lookup
table. However, the main disadvantage of the non-equidistant spacing of the representable
numbers persists.

1.3 Fixed Point Arithmetic

�emain advantage of �xed point arithmetic over �oating point and logarithmic arithmetic
is the equidistant spacing of the numbers and the direct applicability of integer arithmetic:

Addition, subtraction, multiplication Can be performed easily even on the FPGA, as
dedicated units to perform integer operations are readily available. Our Virtex-5 FPGA
for example provides 64 versatile DSP48E slices.

Division Unfortunately, there is no such built-in functionality for division. �ere are several
di�erent approaches to divide two integers which can be optimized for the special
application. Our approach is discussed in Section 3.2.

Due to the lack of an exponent in the representation, the range is more limited and an
application of �xed point numbers requires a profound investigation of the ranges of all
computations in an application.
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Chapter 1. Introduction

In fact the �rst implementations of ray tracing on graphics hardware [CHH02, PBMH05]
were using 16-bit �xed point arithmetic and report rendering artifacts due to the limited
range.

We will analyze these issues and the required ranges and present a realization of ray tracing
in �xed point arithmetic that achieves the precision of a �oating point implementation. �e
hardware implementation is considerably more compact and simpler than a realization using
�oating point or logarithmic arithmetic.

1.4 Ray/Triangle Intersection Tests

Determining the intersection point of a ray with a triangle can be done in various ways. A
quick summary of the most popular tests follows.

Making use of the determinant of the matrix consisting of the edge vectors and the ray
direction, the classic ray/triangle intersection test is the one by Möller-Trumbore [MT97].
Naturally an advantage for animated scenes, no precalculations are needed here at all. Yet
e�ciency might be increased by storing the edges instead of the vertices.

Orientations of lines represented in Plücker coordinates [Jon00] are the base of another test,
which is best applied to large ray packets, amortizing the initial cost over many intersection
calculations [Ben06]. Using ray packets greatly improves the performance of primary rays
and a few special cases in shading. Restrictions like this should be avoided however, as we
want to focus on ray tracing for general applications.

Especially appealing for hardware applications, there are intersection tests coming by without
a division [SF01, Chi05]. Unfortunately at the cost of �nding only a boolean result: hit or no
hit. Generating secondary rays depends on the location of the hit point, so the division is only
postponed as it is needed for the task of �nding the closest intersection.

Lately, a robust �oating point intersection test [DK06] has been developed. Yet computing
the intersection point without a division, it is not easily mapped to hardware. �e algorithm
iteratively subdivides the triangles axis-aligned bounding box in four smaller ones by inserting
a new vertex for each edge of the triangle. �e ray is then tested against these bounding boxes
and the procedure repeats. �is avoids rays tunneling through triangles due to numeric
inaccuracies inherent to the other triangle tests. As the iterative nature of the algorithmmakes
pipelining hard and requires a stack, we only used it as a reference implemented in so�ware
rather than hardware.

Finally, there is the test of Badouel [Bad90], based on barycentric coordinates. It has been
implemented very e�ciently [Wal04, Ben06, KS06] by employing precomputations. We
selected this intersection test over the one by Möller-Trumbore, because our current focus is
not on dynamic scenes and the precomputation makes the actual intersection code very short.
�e precomputations could be performed in a parallel, pipelined way on the FPGA, when
streaming the triangle data as three vertices. As we are redundantly storing the triangles as

20



1.4. Ray/Triangle Intersection Tests

three vertices and not as vertex list plus three indices per face, there is no additional memory
required for the precomputed data. It just replaces the original vertex data. Storing faces as
three vertex indices is slightly less convenient for a hardware implementation because the
vertices have to be fetched from memory.

For dynamic scenes other triangle tests must be investigated, too. �is, however, is out of the
focus of this work.
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2 Software Ray Tracing in Fixed Point
Arithmetic

In this chapter, we analyse �xed point arithmetic applied to ray tracing in the context of a C99
so�ware implementation. Asmentioned, we select the test of Badouel [Bad90] out of themany
di�erent ways to intersect a ray and a triangle [Bad90, MT97, Jon00, SF01, Chi05, DK06].
We brie�y summarize the procedure: For each triangle with the vertices x0,x1,x2 ∈R3 we
compute the vector

n = (x1− x0)×(x2− x0)

in normal direction and store the smallest index r of its longest absolute component

nr = ∥n∥∞ =max{∣n0∣, ∣n1∣, ∣n2∣}

in two bits. Triangles with nr = 0 have no area and are omitted. Using the additional indices

p ∶= (r+ 1) mod 3 and q ∶= (r+2) mod 3

we further store the components

pp = x0,p , pq = x0,q ,

np =
np

nr
, nq =

nq
nr

,

d =
1
nr

⟨n,x0⟩ = x0,r +pp ⋅np+pq ⋅nq, and

eik =
1
nr

(xi ,k − x0,k), i ∈ {1, 2}, k ∈ {p,q}.

�e normalization by the maximum norm ∥n∥∞ simpli�es the scalar product, as the vector
component r is guaranteed to be equal to one.

In order to intersect a ray (O ,ω) with origin O and direction ω with a triangle according to
the accelerated test from [Wal04], the distance t along the ray from its origin to the plane of
the triangle is computed as

t =
d− 1

nr ⟨O ,n⟩
1
nr ⟨ω,n⟩

=
d−Or −Opnp−Oq nq

ωr +ωpnp+ωq nq
. (2.1)
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Figure 2.1: On a logarithmic scale: the relative frequency of the triangle edge components e1p,
e1q, e2p, e2q for various scenes a�er transforming the triangles to the integer
bounding box according to Section 2.1. Most of the values are smaller than 0.0001.
Note that the rightmost bin contains all remaining components greater than 0.0009.
For some scenes (sponza and xyzrgb_dragon) the distribution then resembles the
distribution of �oating point numbers (see Figure 1.2). However, this is not true in
general as can be seen from the remaining scenes.Moreover, it is amisinterpretation
to conclude that the edge information should be represented in �oating point or
logarithmic numbers, as this does not at all improve on the bigger quantization error
of bigger components. Using equidistantly spaced �xed point numbers reduces
these errors, however, at the cost of a reduced range.

�en the hit point of the ray and the plane projected along the component r is computed by

kp = Op+ t ⋅ωp−pp,
kq = Oq + t ⋅ωq −pq,
u = e1,p ⋅ kq −e1,q ⋅ kp ,
v = e2,q ⋅ kp−e2,p ⋅ kq . (2.2)

An intersection is reported if the barycentric coordinates u and v ful�ll u ≥ 0, v ≥ 0, and
u+v ≤ 1.

2.1 Quantization and Precision

2.1.1 Numeric Ranges

To store the accelerated representation of a triangle in �nite precision without losing vital
information, it is necessary to examine the ranges of the precomputed components.
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2.1. Quantization and Precision

As pp and pq are copies of the original data, both can be stored in the given precision. �e
components of the normal np,nq are normalized using the maximum norm and consequently
np,nq ∈ [−1, 1].

For the remaining components we have to consider that each �nite subset of the real numbers
has aminimum and amaximum. Hence, given a setV ∶= {vi = (vi ,0,vi ,1,vi ,2) ∶ 0 ≤ i <N} ⊂R3

of N triangle vertices, we can de�ne their axis-aligned bounding box components as

b j ∶=min{vi , j ∶ vi ∈V} and B j ∶=max{vi , j ∶ vi ∈V}.

For each triangle with vertices x0,x1,x2 ∈V and its normal n, employing the fact that for any
vector n ∈R3

∥
n

∥n∥∞
∥
2
≤

√
3,

we can bound the absolute value of the distance d by

∣d ∣ = ∣
1
nr

⟨n,x0⟩∣ ≤ max
0≤i<N

∣
1
nr

⟨n,vi⟩∣

≤ ∥
n
nr

∥
2
⋅ max
0≤i<N

∥vi∥2 ≤
√
3 max
0≤i<N

∣∣vi ∣∣2 ≤ 3 max
j∈{0,1,2}

(B j−b j).

In order to bound the edge components we need ε, which is the smallest, non-zero absolute
value of the numbers representable in the arithmetic. Since triangles where computing nr
yields zero are omitted because they are degenerate, we have

∣nr∣ = ∣(x1,p− x0,p)(x2,q − x0,q)−(x1,q − x0,q)(x2,p− x0,p)∣ ≥ ε > 0

and hence
∣eik ∣ = ∣

1
nr

(xi ,k − x0,k)∣ ≤
1
ε

max
j∈{0,1,2}

(B j−b j). (2.3)

Note that the bound using the longest side of the scene bounding box is very loose. Using the
longest side of all triangle bounding boxes o�en yields a much tighter bound, especially when
all triangles are about equally small.

2.1.2 Quantization

�e quantization now can be parameterized by two bit widths n and m:

Points: �e scene geometryV is moved to the positive octant and scaled such that b j = 0
for j ∈ {0, 1, 2} and max j∈{0,1,2}{B j} = 2n− 1. �e values pp and pq then are represented
using n bit unsigned integers resulting in ε = 1.

Distances: �e representation of the distance d needs n + 3 bits, because the distance is
signed (1 bit) and the maximum prolongation by a factor of 3 (see the above bound)
requires two further bits.
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Chapter 2. So�ware Ray Tracing in Fixed Point Arithmetic

Vectors: Components of normals (np and nq), ray directions, and triangle edges (e1p, e1q,
e2p, and e2q) are quantized using m bits signed �xed point numbers to represent the
range [−1, 1].

Note that rays starting outside the bounding box of the geometry, like e.g. primary rays, must
be clipped to the bounding box prior to quantization.

2.1.3 Clamping of Triangle Edge Components

In order to improve the bound on the edge data, we investigated their statistics. Figure 2.1
shows the relative frequency of the edge components e1p, e1q, e2p, and e2q for several
typical test scenes a�er the transformation explained in the previous section. �e distribution
suggests that the majority of the edge data is smaller than 0.001 and most of the time even
smaller than 0.0001.

Linearly mapping the edge data to the range of the �xed point arithmetic would result in
considerable quantization errors, as the maxima can be relatively large. Instead, we clamp the
values to the range (−2−E, 2−E) where E is called the edge shi�. �ey are then quantized in this
range using m bits �xed point. Choosing 2−E ≈ 0.001, i.e. E = 10, as indicated by the statistics,
is already su�cient to render the test scenes without artifacts.

If the modeler can guarantee to keep the bound ∣eik ∣ < 2−E, which is much more handy than
the bound in Equation 2.3 from the previous section, errors due to clamping are completely
avoided. Note that this can be di�cult to achieve for long triangles with small area: if the
triangle is simply subdivided into four smaller ones by inserting three new vertices in the
middle of the edges, the edge data would actually increase by a factor of two. �is is because
the edges are halved but the resulting area (and thus nr) is only one quarter of the original
value. Since the vertices are quantized, triangles are likely to be degenerate in addition.

2.1.4 Triangle Data Structure and Choice of Parameters

For the prototype implementation in C99 it was convenient to match the standard 32 bits
double word width. Because of the precision requirements of d, we then have n = 32 - 3 =
29 bits. All �xed point numbers use m = 32 bits signed integers. As mentioned before, the
edge shi� is E = 10. To simulate smaller bit widths, the least signi�ciant bits are simply set
to zero. Note that we did not choose to store fractional bits for d. �is does not introduce
any additional quantization error, as with careful rounding it is possible to reconstruct the
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2.1. Quantization and Precision

Figure 2.2: �e self-intersection problem for �xed point ray tracing.�e small arrow indicates
the errors which can occur on the integer grid. First, the distance t along the ray is
truncated, then the hit point is rounded to the grid. Consequently, for transmissive
rays to start on the right side of the surface, the hit point has to be moved by two
units.

original quantized triangle vertices using this precision. �e triangles are stored as:

typedef struct
{
int d; // regular signed int
unsigned r : 2;
unsigned pp : 29;
unsigned int pq; // unsigned 29 bits
int np, nq; // signed fixed point in [-1,1]
int e1q, e2q; // signed fixed point
int e1p, e2p; // in (-2^-E, 2^-E)

}
accels_t;

typedef union
{
float x[3][3]; // original float data
unsigned int xi[3][3]; // transformed vertices
accels_t a; // accelerated representation

}
triangle_t;
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Chapter 2. So�ware Ray Tracing in Fixed Point Arithmetic

2.1.5 Secondary Rays and the Self-Intersection Problem

A common issue with secondary rays is the so called self-intersection problem [WPO96]. It
refers to the fact that secondary rays sometimes end up hitting the same object they originate
from because of de�ciencies of the arithmetic. �e usual solution is to shi� the origin of the
secondary ray by adding a small fraction of the normal and/or the new ray direction. For
�oating point algorithms the most advanced approach to this problem is the robust triangle
test [DK06].

Since in �xed point arithmetic the geometry lies on an equidistant raster with known resolu-
tion, self-intersection can be approached in a simpler way: �e distance t measured along the
ray direction ω uses the same resolution as the vertex data (only a larger range is allowed)
and, therefore, can be only wrong by 1 unit of the integer grid (= 2−n times the largest side
of the bounding box in our implementation). �e computation of the hit point h = O+ t ⋅ω
uses one more fractional bit and is rounded to the integer grid, which can cause an additional
error of 0.5 in each component. Figure 2.2 shows this setting. �e worst case error along each
axis thus is 1+0.5 < 2 and consequently the ray origin just needs to be shi�ed by two units:

int dt = dotproduct(n, omega);
O[k] = h[k] + ((dt > 0) ^ (n[k] < 0) ? 2 : -2);

�e variable dt determines transmissive rays, where the point has to be shi�ed into the reverse
direction.

Note that in the presence of shading normals it still has to be detected whether the ray is
accidentally sampled under the surface due to the perturbed normal. �us, one has to decide
for either precision ray tracing or the use of shading normals.

2.2 Ray/Plane Intersection

First, the distance t has to be computed according to Equation 2.1, which involves a division.
In �nite arithmetic the mathematical equivalence

t = num
den

=
num ⋅2−T

den ⋅2−T
, where T ∈N0,

changes the result depending on the parameter T : �e numerator num and the denominator
den are shi�ed to the right, which causes the numbers to lose their T least signi�ciant bits,
resulting in a loss of precision. However, the bit width of the division is reduced, which allows
for a faster hardware implementation.�e impact of the parameter T is illustrated in Figure 2.8,
all other images have been rendered using T = 0.

For the basic case of axis-aligned planes, as used in the traversal of acceleration data structures,
We need to compute t = (P−Oi)/ωi , where the plane under consideration is {x ∈R3 ∶ xi = P}.
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For m ≤ 32, 64 bits (long long int) are su�cient for the temporary values in order to avoid
over�ows. �e distance t can then be calculated as follows:

const long long int mask = 0xFFFFFFFF80000000LL;
const int den = omega[i]>>T;
if(den == 0) return no_intersection;
int t = (((P - O[i])<<(m-1-T)) & mask)/den;

where omega[i] is an m-bit signed integer representing a �xed point value in [−1, 1]. Note
that t is stored as a 32-bit integer, because the same precision as used for d is su�cient here.
�e variable mask assures that the precision is really truncated as it would be in a hardware
implementation.

2.3 Ray/Triangle Intersection

�e ray/triangle plane intersection requires to project the ray direction onto the triangle
normal, as seen in Equation 2.1. To make the source listing more readable, O and omega are
assumed to be arrays of long long int:

long long int den = ((omega[r] +
(omega[p]*np >> (m-1)) +
(omega[q]*nq >> (m-1)))) >> T;

long long int mask = 0xFFFFFFFF80000000LL;
if(den == 0) return no intersection;
int t =
(((((d - O[r]) << (m-1)) -
O[p]*np - O[q]*nq) >> T) & mask)/den;

if((t <= hit->t) && (t > 0))
{
test barycentric coordinates

}

Whether or not the triangle is intersected by the ray is decided according to the set of Equations
2.2 using the distance t. Similar to the previous section, �xed point numbers in [−1, 1] are
multiplied by 2m−1, computations are done using integer arithmetic, and �nally the result is
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shi�ed back to the desired range. �e implementation is:

int kp = O[p] + ((t*omega[p]) >> (m-1)) - pp;
int kq = O[q] + ((t*omega[q]) >> (m-1)) - pq;
long long int u = (long long int)e1p*kq -
(long long int)e1q*kp;

long long int v = (long long int)e2q*kp -
(long long int)e2p*kq;

if(u < 0 || v < 0 ||
((u + v) >> E) > (1UL << (m-1)))
return no_intersection;

else report intersection

2.4 Acceleration

As we are heading for the simplest possible ray tracing hardware, numerically involved
triangle-plane intersections as required for building kd-trees should be avoided. Hence we
use a bounding interval hierarchy [WK06, WMS06] as acceleration data structure. For its
construction only divisions by 2 and comparisons are required, which are trivial to transfer to
integer arithmetic and both operations are unconditionally robust.

Compared to a kd-tree, the construction of a bounding interval hierarchy (BIH) is much
faster and simpler, while ray tracing speed is comparable as long as the overlap of the object
bounding boxes is small [WK06].

�e traversal of the data structure requires intersecting a ray with a pair of axis-aligned planes.
�is intersection can be computed as derived in Section 2.2, however at the cost of a division
which is relatively slow.

In order to accelerate the traversal, the reciprocal of the ray direction can be stored for ωi ≠ 0,
replacing the division by a multiplication.

∣ωi ∣ ∈ [2−m+1, 1)⇔ ∣ω−1
i ∣ ∈ (1, 2m−1] ,

thus omega_inv[i] = (1<<(m-1))/omega[i].

However, computing the distance to the clip planes in a di�erent way as the ray-triangle
intersection introduces inconsistencies, especially for axis-aligned triangles. In order to obtain
su�cient accuracy, ω−1

i has to be stored in m+C bits, requiring more bits for the multiplication
as well. �e additional bits also ameliorate the fact that due to its hyperbolic nature the range
of ω−1

i is not well represented by equidistant quantization.

In a so�ware implementation, one has to take care that there will be no over�ow, which in
turn a�ects precision. �e images in Figure 2.9 show the e�ect of the parameter C and the
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resulting quite visible inconsistencies for too small C. �e computations have been performed
using the following code fragment:

// precompute
const long long int nom = 1ULL << (m + C);
omega_inv[i] = nom/omega[i];

// plane test
int t = ((P - O[i]) >> C) * omega_inv[i];

2.5 Results

In Figure 2.7 the e�ect of varying the �xed point precision m is shown. Already a rather low
precision allows for correct renderings. In an actual hardware implementation m will certainly
be chosen in a safe way, i.e. even m > 32.

2.5.1 Constructing a Stress Test

Triangles with long edges and small area are numerically di�cult to intersect. �e worst-case
triangle would be ranging diagonally through the complete bounding box with the third
vertex exactly in the center of the bounding box. Since this triangle is degenerated, i.e. has zero
area and cannot be visible, we moved one integer vertex so that the area became non-zero. A
comparison to the �oating point setting was impossible, as the �oating point computation still
classi�ed this triangle as degenerate. �en the triangle was further extended until if formed a
thin line at an image resolution of 640×480 pixels. In fact the edge data for this triangle is in
(−0.0001,0.0001) and thus well represented in integer quantization. No di�erence between
the �oating point and �xed point computations could be spotted, the images are included in
Figure 2.6 for the sake of completeness.

2.5.2 Numerical Evidence

Due to clamping of the edge data (see Section 2.1.3) intersection errors may occur. �erefore,
we extracted the triangles with ∣eik ∣ > 2−E from the power plant scene. As a reference and for
comparison, the robust single-precision �oating point triangle test [DK06] has been used.

�is test revealed errors in both �oating point and �xed point arithmetic, however, the �xed
point version reported notably more intersections. A possible explanation for these false
positives is that clamping eik implicitly puts a lower bound to nr and thus to the triangle
area. �e visual results in Figure 2.3 are rather abstract and only included for the sake of
completeness.

31



Chapter 2. So�ware Ray Tracing in Fixed Point Arithmetic

Figure 2.3: Triangles with components e1p, e1q, e2p or e2q outside the representable �xed
point range (−2−E, 2−E) extracted from the power plant model. To leave the range,
a triangle needs to be very long and thin, and hence has almost zero area. Both
kinds of investigated arithmetics (�oating point in the middle and �xed point
arithmetic on the right) create intersection errors, the �xed point test even shows
false positives. �e triangles are so narrow that even the reference image (robust
�oating point intersection test [DK06] on the le�) shows mostly aliasing.

Additional tests were performed for the powerplant model, the Sponza atrium, a jackstraws
scene, the xyzrgb_dragon and random triangles.�e�oating point images have been generated
using the original data set, i.e. without scaling the vertices to the integer bounding box. O�en
no di�erences can be observed (as for the test scenes in Figure 2.4). Most of the di�erences in
Figure 2.5 originate from slightly di�erently quantized primary rays. Sometimes both versions
cast rays through triangles spuriously.

It can be seen that the intersections are reported correctly even for triangles not so well
behaved in terms of the ratio of edge length to triangle area. In the jackstraws scene one stick
contains 2048 very long and narrow triangles forming a cylinder. Also the capillary crane in
the power plant closeup does not cause errors.
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Figure 2.4: Some test cases where �xed point and �oating point arithmetic almost cannot be
distinguished. �ese master images were computed using a robust �oating point
arithmetic reference implementation [DK06].

Figure 2.5: Comparison of screenshots made using the robust �oating point arithmetic inter-
section [DK06] (le�), �oating point arithmetic (middle), and �xed point arithmetic
(right). �e red circles in the zoomed images mark the most apparent intersection
errors. Concerning precision, �oating point and �xed point arithmetic perform
equivalently.

Figure 2.6: A large and thin triangle near worst-case. �e theoretical worst case would not
have been visible. Robust test [DK06] (le�), �oating point (middle) and integer
arithmetic (right).
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m = 10 m = 12 m = 14

m = 16 m = 18 m = 20

m = 22 m = 24 m = 26

m = 28 m = 30 m = 32

Figure 2.7: �e Utah Teapot tesselated into 6320 triangles and rendered using di�erent bit
widths m for the �xed point numbers. �is a�ects the precision of the components
of the triangle edges, normals, and directions. A moderate precision already allows
for artifact free renderings.
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T = 0 T = 8

T = 16 T = 24

Figure 2.8: �e Utah Teapot at di�erent levels of precision for the division used in the distance
computation, needed while traversing the BIH and during ray triangle intersection.
�e T least signi�ciant bits of numerator and denominator (m = 32) are omitted
to reduce the number of clock cycles needed for the division. Only 32−T bits are
used for the calculations, so for T = 24 only a 16/8 bit division is performed instead
of 64/32 bits, resulting in unacceptable artifacts. For smaller values of T, the loss of
precision might be negligible and acceptable compared to the gain of clock cycles.
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C = 2 C = 4 C = 8

C = 12 C = 16 C = 20

C = 24 C = 28 C = 30

Figure 2.9: �e teapot with di�erent values of the precision parameter C. �is parameter de-
termines how many additional bits the precomputed inverse ray direction receives.
�is inverse value is used to avoid a division during BIH traversal. As it is not well
represented using equidistant �xed point values, an additional C fractional bits are
used. Artifacts for large C are due to a truncation needed to avoid over�ows in 64
bit integer arithmetic in so�ware and can be avoided in hardware by performing
computations using greater bit widths. Inconsistencies for axis-aligned triangles
become especially visible for C = 12.
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3 Mapping to Hardware

Figure 3.1: �e Xilinx Virtex-5 XC5VLX110T-1136.

Amongst the variety of hardware description languages including Verilog, Handel-C, SystemC
and JHDL, we decided to implement the algorithm in VHDL (Very High Speed Integrated
Circuit Hardware Description Language), since it is an established, mature and su�ciently
low-level programming language with lots of references and samples available. It is also
supported by the Xilinx toolchain. For quick simulation purposes GHDL1, a free compiler
built on top of GCC, and GTKWave2 have been used.

To help keeping the code complexity under control, a two-process design method [Gai]
has been used. It involves separating combinatorial and registered logic into two processes
and grouping input and output signals as well as the registers in record data types and the
components in packages.

Our hardware platform is a Xilinx Virtex-5 XC5VLX110T-1136 equipped with two gigabit
Ethernet controllers, a PCI-Express interface and a DDR2 memory controller (see Figure 3.1).

1http://ghdl.free.fr/
2http://home.nc.rr.com/gtkwave/
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3.1 Toplevel Design

ray
generator

triangle cache

BIH

triangle
intersection

BIH cache

DDR2
Memory

PCI-Express

Figure 3.2: Toplevel design of the hardware implementation. Dashed parts indicate unimple-
mented features.

To maintain full algorithmic freedom, our design is meant to be used as a pure ray tracing
co-processor.�at is, no shading is done on the FPGA and there is no display attached directly
to the board. �e memory bandwidth problems resulting from moving rays to the board and
receiving the intersection data can be tackled by the use of the two gigabit Ethernet interfaces
and the PCI-Express interface. As Intel recently opened up the front side bus (FSB) for FPGA
co-processors, this will probably not be an issue in the future. With regard to this prospect,
we did not spend much time on interface driver development but rather on the ray tracing
core itself.

�is is why in our example implementation the block-RAM representing caches for the BIH
and triangle data are implemented as ROM rather than feeding them with data obtained
from the DDR2 memory, and the rays are generated using a small on-board unit instead
of reading them from PCI-Express. Currently, the completely built BIH and the acceler-
ated representation of the triangles are hardcoded and moved to the ROM during FPGA
con�guration.

�e toplevel design can be seen in Figure 3.2.

3.2 Ray/Plane Intersection

As the division needed in ray/triangle intersection is the most computationally complex part
of tracing a ray, it should receive some extra attention. Recall that we need to calculate (see
Equation 2.1):

t =
d− 1

nr ⟨O ,n⟩
1
nr ⟨ω,n⟩

=
d−Or −Opnp−Oq nq

ωr +ωpnp+ωq nq
.
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3.2. Ray/Plane Intersection

Figure 3.3: Schematic layout of our divider. On the top is a rough sketch of what a complete
divider for a 2w/w-bit divison would look like. �e result has to be of width 2w
again, as b could be equal to one, so q = a. We also could not just cut o� the least
signi�ciant bits, as these are exactly the ones needed for the location inside the
bounding box.�e bottom image shows our implementation of a divider, requiring
a < b, so the w-th bit of q will be zero.
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�e numerator is quantized as a signed �xed point value in [−2n+2+ 1,+2n+2− 1] using n+3
bits, the denominator is in [−1, 1] using m bits. So for non-negative numbers a general division
n/d with n ∈ [0,2n+2 − 1] and d ∈ [2−m+1, 1] would result in a quotient q ∈ [0,2n+m+1 − 2m−1],
which requires an (n+m+ 1)-bit integer number.

For simplicity, we decided to implement a sequential, non-restoring divider [Kor02] and
additionally exploit the fact that for our application, the interesting values of the quotient t are
only inside the bounding box: t ∈ [1, 2n+1− 1]. All other values of t indicate that the triangle
has been missed, since all the triangles are contained in the bounding box. �is also assumes,
as noted in Section 2.1, that the ray origin is clipped to the bounding box before tracing. A
quantization error of 1 is acceptable when we want the considerations of Sections 2.1.5 to hold.
So it is su�cient to calculate n+ 1 bits and set an error bit if t < 1 or t > 2n+1. �e divider takes
a w-bit numerator a and a w-bit denominator b as inputs and returns a w-bit quotient q:

q = a ⋅2w

b
,

which already takes care of the ranges of the �xed point numbers we want to use as input. To
assure that there is no over�ow in the quotient, the unit asserts

q < 2w⇔ a ⋅2w

b
< 2w⇔ a < b.

See Figure 3.3 for a rough idea of the component. We thus only need n+ 1 steps for the
division as compared to n+m+ 1 steps necessary for the full division. �e complete delay of
the component t_div is n+3 clock cycles, to make the output registered and to take care of
the sign.

Note that we did not yet explore the full potential of fast dividers (e.g. by using a greater radix,
through multiplication or �nding the reciprocal using Newton-Raphson iteration [Kor02,
Chapter 8]). But as these methods require signi�cantly more complex units on the smallest
scale (multiplications instead of controlled add/subtract) and sometimes even an initial lookup
table implemented in ROM, it is not as clear as for �oating point arithmetic that these methods
would result in a performance gain.

�e full VHDL source code for this divider can be found in Appendix A.1.

3.3 Ray/Triangle Intersection

�e ray/triangle intersection test is straightforward to translate to VHDL a�er the division
has been taken care of. Our version does not involve a state machine and thus does not have
the possibility of an early out but is very suitable for pipelining instead. �e pipeline can be
seen in Figure 3.4, for n = 29 and m = 32 it has a delay of 41 clock cycles and is able to compute
one ray/triangle intersection per cycle.
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3.3. Ray/Triangle Intersection

Ox Oy Ozωx ωy ωz d p[2]n[2] e[4]r

dot

swap to r, p,q

dot
sub

numden

t_div

kp kq

uv

hit

hitt u v

reg0

reg1

reg3

reg4*

reg8

reg5

reg2

reg6

reg7

Figure 3.4: �e pipeline of the Ray/Triangle intersection unit. Each register re�ects one clock
cycle, except reg4*, which depends on the divider (n+2 registers in our implemen-
tation, the divider is fully pipelined).
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�e delay can be reduced by making the combinatorial logic deeper in between the registers,
but this will a�ect the maximum clock rate in turn.

Please refer to Appendix A.2 for the source code of this module.

3.4 Acceleration

clip0 clip1

Figure 3.5: One step during BIH traversal: decide which child node has to be traversed. �e
le� one is bounded to the right by the plane clip0, the right is bounded to the le�
by clip1.

As mentioned, we use a bounding interval hierarchy (BIH) [WK06] as an acceleration struc-
ture. �is is a data structure similar to kd-trees and the B-KD tree [WMS06]. While a kd-tree
is a space partitioning structure, the BIH and the B-KD tree partition the object list. �e scene
data is recursively divided in two sub-volumes, to form a tree. �e BIH is a special case of
a bounding volume hierarchy which uses only two split planes to partition the objects. On
one level of the tree, a split plane candidate is chosen according to some heuristic. �en the
objects are classi�ed to be completely to the le� or completely to the right of the split plane. It
is advantageous to treat the overlapping objects as one object and make one decision for the
whole block [WK07]. �e child node bounding boxes are then adjusted to contain all their
objects. �at is, the le� child is bounded to the right by clip0 and the right child to the le�
by clip1, as illustrated in Figure 3.5. �is is repeated until only fewer than a certain number
of primitives remain in a node. In this case a leaf node is formed.

Triangles which have to be tested for intersection with a given ray can now be found e�ciently
by traversing the BIH. �is is done by starting at the root node and iteratively deciding which
of the two child nodes have to be traversed, depending on which volume the ray overlaps. If
both nodes have to be examined, one is pushed onto a stack and the closer one is traversed
�rst. If both of the child nodes can be pruned or the traversal has arrived at a leaf, the stack is
popped.
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aabb node

push

leaf

inner

pop

Figure 3.6: �e �nite state machine of the bounding interval hierarchy.

Only the traversal part of the BIH has been implemented so far. �at is, the acceleration
structure is not built on the FPGAbut this can easily be done, even in limitedmemory [WK07].
�e algorithm has been transformed into a �nite state machine, as shown in the diagram in
Figure 3.6. State transitions are described in Table 3.1, the VHDL source is in Appendix A.3.

Four 36Kbit block-RAM units are used as cache and traversal stack at a time. �is limits stack
size to a �xed maximum. However, if the tree is constructed on-chip, this limit can always be
met. �e cache is not currently connected to the memory controller, due to time constraints
which prohibited the implementation of a DDR2 memory core. Such an implementation
should do careful prefetching to hide memory latency [WSS05, WMS06].

�ere are some issues connecting the BIH output to the ray/triangle intersection unit. Firstly,
the BIH is a state machine and outputs triangle numbers, as long as it is in state leaf. �at
is, when the BIH is busy traversing the inner tree, the pipeline runs empty. �is could be
overcome by using more than one BIH traversal unit and connect them all to a bu�er which
in turn is connected to one single ray/triangle intersection unit. �is would also address a
problem speci�c to our implementation, that the BIH unit only runs at lower clock rates due to
deep combinatorial logic. �is could be avoided by another implementation by increasing the
number of states and thus the number of clock cycles spent on inner node traversal without
output.

Another unimplemented thing is the early-out capability of the BIH traversal algorithm. �e
child nodes do not have to be traversed, if the entry point is further away than a previously
found intersection with a triangle. As the delay of the intersection unit is quite long, the
information sent back from the intersection result would reach the BIH much too late.
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state next state output comment
aabb aabb done if axis-aligned bounding box is missed

node root node loaded
node inner if axis ∈ {00,01, 10}

leaf if axis = 11
inner node traverse one child

push traverse two children
pop miss both children
aabb done miss both and stack empty

push node store stack, then restore second node
pop node restore stack
leaf leaf tri_num, tri_en output triangle for intersection

pop done dumping all tri nums
aabb done done and stack empty

Table 3.1: State transitions in the �nite state machine for the Bounding Interval Hierarchy.

3.5 Results

A fully synthesizable version of the ray generator, the BIH traversal, the ray/triangle intersec-
tion unit and connecting logic have been implemented in VHDL. �is only uses up about
11% of the slices of the Virtex-5. For detailed device utilization statistics see Table 3.2.

�emaximumnet delay is 4.231 nanoseconds, so the design could run at 233MHz, generating a
ray/triangle intersection each clock cycle.�e actual throughput of ray/boundary intersections
depends on the traversal of the acceleration structure, which typically takes O(log(N)) clock
cycles, N being the number of triangles in the scene.

Total power consumption is currently 866.14 mW, resulting in an estimated junction tempera-
ture of 34○ C, but this number is likely to increase when data in- and output interfaces are
added.

Due to the lack of interface cores, the only images generated by our implementation originate
from the simulator.�e resulting image of a hardcoded teapot without any shading applied can
be seen in Figure 3.7. Note that our implementation does output all intersection information
necessary for shading as the barycentric coordinates, distance along the ray to the intersection
and triangle index.
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Slice Logic Utilization Used Available Utilization
Number of Slice Registers 3,274 69,120 4%

Number used as Flip Flops 3,117
Number used as Latches 157

Number of Slice LUTs 5,278 69,120 7%
Number used as logic 4,785 69,120 6%
Number using O6 output only 4,344
Number using O5 output only 75
Number using O5 and O6 366

Number used as Memory 488 17,920 2%
Number used as Shi� Register 488

Number using O6 output only 488
Number used as exclusive route-thru 5

Number of route-thrus 602 138,240 1%
Number using O6 output only 80
Number using O5 output only 522

Slice Logic Distribution
Number of occupied Slices 1,963 17,280 11%
Number of LUT Flip Flop pairs used 5,958

Number with an unused Flip Flop 2,684 5,958 45%
Number with an unused LUT 680 5,958 11%
Number of fully used LUT-FF pairs 2,594 5,958 43%
Number of unique control sets 68

IO Utilization
Number of bonded IOBs 5 640 1%

IOB Flip Flops 1
Speci�c Feature Utilization
Number of BlockRAM/FIFO 11 148 7%

Number using BlockRAM only 11
Total primitives used
Number of 18k BlockRAM used 22
Total Memory used (KB) 396 5,328 7%
Number of BUFG/BUFGCTRLs 3 32 9%

Number used as BUFGs 3
Number of DSP48Es 52 64 81%
Total equivalent gate count for design 1,581,587
Additional JTAG gate count for IOBs 240

Table 3.2: Device Utilization Summary as generated by Xilinx ISE.
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Figure 3.7: Output of the GHDL simulation: binary teapot image showing only boolean inter-
section results. �e gap between the handle and the body of the teapot is due to
the tesselation of the Bézier patches.
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4 Conclusion and FutureWork

4.1 Conclusion

We showed that ray tracing in �xed point arithmetic and thus a hardware implementation
can achieve equally convincing results as ray tracing in �oating point arithmetic. Due to the
equidistant spacing of the numbers, quantization artifacts are more controllable and typical
problems with �oating point special cases can be avoided more easily.

A similar analysis can be applied to other triangle tests [MT97, Jon00] and we expect large
performance bene�ts from applying �xed point arithmetic to the high-precision ray tracing
algorithms for free-form surfaces [DK06].

Since integer functionality is included in hardware description languages such as VHDL, a
hardware description is very simple and on FPGAs even built-in integer functionality can be
exploited.

We currently have a basic, fully pipelined implementation of the triangle test using a specialized
divider unit as well as the BIH traversal implemented on a Virtex-5 FPGA. Only very few
resources have been utilized, as indicated in Section 3.5. �is leaves a lot of room for future
extensions.

4.2 FutureWork

Although our system is capable of tracing a ray, there still remain many things to do, the
most obvious being the interface to the computer. It should be very interesting to see the PCI-
Express bus connected to the core, continuously streaming rays generated by some simulation
application onto the board.

�is directly leads to the next open task, namely initially moving the geometry into the
on-board DDR2 memory, building the BIH and initializing the triangles’ accelerated repre-
sentations on the way.

Only then can a real attempt be made to estimate the overall performance because it will then
be known howmuch area is still le� on the FPGA to be used as parallel ray pipelines [WSS05].

�e possibility to directly attach the Virtex-5 to the front side bus and use the system memory
is very appealing and should be tried as soon as this is practicable.
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�e implementation is not optimized very intensively. �ere are lots of things to be tuned for
e�ciency:

• �e BIH comes without clipnodes (BVH2 case [HHS06])

• �ere are a lot of parameters to be tuned: the number of triangles per leaf, BIH tree
depth, how many BIH traversal units, the combinatorial depth of the pipeline, . . .

• Currently, the ray/triangle intersection pipeline has a very poor �ll rate of about 40%.
�is should be possible to overcome by detaching the iteration through the triangle list
in the leaf state from the BIH state machine.

• �e parameter for the precision of the division has been le� at T = 0 for the hardware
implementation. Clock cycles could be saved by adjusting it according to the precision
needs of the application.

Section 2.1.5 gave an analysis of the ray tracing precision, concluding that a scene and location
independent epsilon value of 2 is su�cient to avoid self-intersections. It is desirable to attain
results which are completely accurate rounded to the integer grid. To achieve this, the error
involved in quantization of the rays and triangles before tracing the ray has to be considered as
well. �is is a useful extension but not related to self-intersection, as this problem only arises
a�er quantizing the triangles and rays. One drawback of the employed Badouel intersection
test in that context is that converting the triangles to the precomputed representation might
result in leaks in the quantized mesh. Other triangle intersection tests should be analyzed
with respect to �xed point as well.

An interesting way to incorporate early out strategies could be using a kd-tree as acceleration
structure and a fast divisionless triangle intersection. If a triangle intersection is reported in
the near node, the far node does not have to be traversed, as it would be further away from
the ray’s origin. However building a kd-tree is signi�cantly more involved than building the
BIH, so this part is even more challenging in a hardware implementation.
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A VHDL Code

A.1 Specialized Divider

Listing A.1: Specialized divider
−− this is part of intrt , a fixed point hardware raytracer
−− Copyright (C) 2007 Johannes Hanika
−−

−− This program is free software : you can redistribute it and/or modify
−− it under the terms of the GNUGeneral Public License as published by
−− the Free Software Foundation, either version 3 of the License , or
−− (at your option) any later version .
−−

−− This program is distributed in the hope that it will be useful ,
−− but WITHOUT ANYWARRANTY; without even the implied warranty of
−−MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
−−GNUGeneral Public License for more details .
−−

−− You should have received a copy of the GNUGeneral Public License
−− alongwith this program. If not , see <http :// www.gnu.org/licenses />.

library ieee ;
use ieee . std_logic_1164. all ;
use ieee . std_logic_arith . all ;
use ieee . std_logic_unsigned. all ;

−− controlled add/subtract unit with overflow , (( signed w) & (w−1 x 0))/( signed w) = signed w
−− specialized for triangle test : if q is < 0, it could have been an intersection error ( hit outside the aabb).
−− sign is used as error bit as well ( since t > 0)
entity t_div is
generic(w : integer := 16);
port
(
clk : in std_logic ;
n : in std_logic_vector (w−1 downto 0); −− signed nominator
d : in std_logic_vector (w−1 downto 0); −− signed denominator
q : out std_logic_vector (w−1 downto 0) −− signed quotient ( all 2s complement)

);
end entity ;

architecture rtl of t_div is
−− constant ZERO : std_logic_vector (w− 2 downto 0) := ( others => ’0’);
type reg_t is record
qn : std_logic_vector (2 w−4 downto 0); −−w−1 +w−1− 1 bits
d : std_logic_vector (w−2 downto 0);
sign : std_logic ;

end record;

type pipe_t is array (0 to w−1) of reg_t ;

signal r : pipe_t ;
signal rin : pipe_t ;

begin

comb : process(r , n, d)
variable v : pipe_t ;
begin
v := r ;

−− read signed input , convert 2s complement to sign

v(w−1).sign := n(w−1) xor d(w−1);
−− qn is nom& 0 and becomes q & remainder.
−− this causes overflows when d << n, but in this case , err is set and
−− the triangle is not intersected , because hit would be outside the aabb.
−−we use sign as err bit , because if t < 0 => no intersection .
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v(w−1).qn(w−3 downto 0) := (others => ’0’);
if (n(w−1) = ’1’) then
v(w−1).qn(2w−4 downtow−2) := not(n(w−2 downto 0)) + 1;

else
v(w−1).qn(2w−4 downtow−2) := n(w−2 downto 0);

end if ;

if (d(w−1) = ’1’) then
v(w−1).d := (not(d(w−2 downto 0)) + 1);

else
v(w−1).d := d(w−2 downto 0);

end if ;
−−

v(w−2).d := r (w−1).d;
−− detect overflow and set sign bit .
if ( r (w−1).qn(2w−4 downtow−2) >= r(w−1).d) then
v(w−2).sign := ’1’;

else
v(w−2).sign := r (w−1).sign;

end if ;
v(w−2).qn(w−3 downto 0) := r (w−1).qn(w−3 downto 0);
v(w−2).qn(2w−4 downtow−2) := r(w−1).qn(2w−4 downtow−2) − r(w−1).d;
for i in w−3 downto 0 loop
v( i ). d := r ( i +1).d;
v( i ). sign := r ( i +1). sign ;
v( i ). qn (2w−4 downto i + w−1) := r( i +1).qn (2w−4 downto i + w−1);
v( i ). qn(i − 1 downto 0) := r ( i +1).qn(i − 1 downto 0);
if ( r ( i +1).qn(i + w − 1) = ’0’) then
v( i ). qn(i + w − 2 downto i) := r ( i +1).qn(i + w − 2 downto i) − r ( i +1).d;

else
v( i ). qn(i + w − 2 downto i) := r ( i +1).qn(i + w − 2 downto i) + r ( i +1).d;

end if ;
end loop;
−− generate output from last register (0)
−− correct for signed values :
−− if ( r (0). sign = ’1’) then
−− q <= ’1’ & ( r (0). qn (2 w−4 downto w−2) + 1);
−− else
−− q <= ’0’ & (not( r (0). qn (2 w−4 downto w−2)));
−− end if ;
−− but neg values are errors anyways:
if ( r (0). d = ZERO) then
q <= ’1’ & (not(r (0). qn (2w−4 downtow−2)));

else
q <= r (0). sign & (not(r (0). qn (2w−4 downtow−2)));

end if ;
rin <= v;

end process;

clocked : process(clk )
begin

if rising_edge( clk ) then
r <= rin ;

end if ;
end process;

end architecture;

A.2 Ray/Triangle Intersection

Listing A.2: Ray/triangle intersection
−− this is part of intrt , a fixed point hardware raytracer
−− Copyright (C) 2007 Johannes Hanika
−−

−− This program is free software : you can redistribute it and/or modify
−− it under the terms of the GNUGeneral Public License as published by
−− the Free Software Foundation, either version 3 of the License , or
−− (at your option) any later version .
−−

−− This program is distributed in the hope that it will be useful ,
−− but WITHOUT ANYWARRANTY; without even the implied warranty of
−−MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
−−GNUGeneral Public License for more details .
−−

−− You should have received a copy of the GNUGeneral Public License
−− alongwith this program. If not , see <http :// www.gnu.org/licenses />.
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library ieee ;
use ieee . std_logic_1164. all ;
use work. intrt_p . all ;

package tri_int_p is
type tri_int_in_t is record
−− ray pos O
pos_x : std_logic_vector (n downto 0);
pos_y : std_logic_vector (n downto 0);
pos_z : std_logic_vector (n downto 0);
−− ray dir omega
dir_x : std_logic_vector (m−1 downto 0);
dir_y : std_logic_vector (m−1 downto 0);
dir_z : std_logic_vector (m−1 downto 0);

−− triangle
pp,pq : std_logic_vector (n−1 downto 0);
d : std_logic_vector (n+2 downto 0);
e1p,e1q,e2p,e2q : std_logic_vector (m−1 downto 0);
np,nq : std_logic_vector (m−1 downto 0);
r : std_logic_vector (1 downto 0);

−− enable
en : std_logic ;

end record;

type tri_int_out_t is record
hit : std_logic ;
u : std_logic_vector (m−1 downto 0);
v : std_logic_vector (m−1 downto 0);
t : std_logic_vector (n+1 downto 0);
rdy : std_logic ; −− passed through en

end record;

component tri_int
port
(
clk : in std_logic ;
d : in tri_int_in_t ;
q : out tri_int_out_t

);
end component;

end package;

library ieee ;
use ieee . std_logic_1164. all ;
use ieee . std_logic_signed . all ;
use ieee . std_logic_arith . all ;
use work. tri_int_p . all ;
use work. intrt_p . all ;

entity tri_int is
port
(
clk : in std_logic ;
d : in tri_int_in_t ;
q : out tri_int_out_t

);
end entity ;

architecture rtl of tri_int is
constant ZERO : std_logic_vector (n+2−m−1 downto 0) := (others => ’0’);
constant LOSER : std_logic_vector (m−2 downto 0) := (others => ’0’);
−− registers for pipeline
type reg0_t is record
pos_p,pos_q,pos_r : std_logic_vector (n downto 0);
dir_p , dir_q , dir_r : std_logic_vector (m−1 downto 0);
d : std_logic_vector (n+2 downto 0);
pp,pq : std_logic_vector (n−1 downto 0);
np,nq : std_logic_vector (m−1 downto 0);
e1p,e1q,e2p,e2q : std_logic_vector (m−1 downto 0);
en : std_logic ;

end record;
type reg1_t is record
dir_p , dir_q , dir_r : std_logic_vector (m−1 downto 0);
pos_r : std_logic_vector (n downto 0);
d : std_logic_vector (n+2 downto 0);
pmpp,pmpq : std_logic_vector (n downto 0);
e1p,e1q,e2p,e2q : std_logic_vector (m−1 downto 0);
t1 , t2 : std_logic_vector (n+1 downto 0);
t3 , t4 : std_logic_vector (m−1 downto 0);
en : std_logic ;
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end record;
type reg2_t is record
dir_p , dir_q : std_logic_vector (m−1 downto 0);
d : std_logic_vector (n+2 downto 0);
pre_nom : std_logic_vector (n+1 downto 0);
pre_den : std_logic_vector (m−1 downto 0);
pmpp,pmpq : std_logic_vector (n downto 0);
e1p,e1q,e2p,e2q : std_logic_vector (m−1 downto 0);
en : std_logic ;

end record;
type reg3_t is record
dir_p , dir_q : std_logic_vector (m−1 downto 0);
nom,den : std_logic_vector (n+2 downto 0);
pmpp,pmpq : std_logic_vector (n downto 0);
e1p,e1q,e2p,e2q : std_logic_vector (m−1 downto 0);
en : std_logic ;

end record;
type reg4_t is record
dir_p , dir_q : std_logic_vector (m−1 downto 0);
pmpp,pmpq : std_logic_vector (n downto 0);
e1p,e1q,e2p,e2q : std_logic_vector (m−1 downto 0);
en : std_logic ;

end record;
−− TODO: adjust comb depth in t_div ?
type regdiv_array is array (0 to n+2) of reg4_t ;

type reg5_t is record
t : std_logic_vector (n+2 downto 0);
e1p,e1q,e2p,e2q : std_logic_vector (m−1 downto 0);
pmpp,pmpq : std_logic_vector (n downto 0);
t1 , t2 : std_logic_vector (m−1 downto 0);
en : std_logic ;

end record;
type reg6_t is record
kp,kq : std_logic_vector (n+1 downto 0);
t : std_logic_vector (n+2 downto 0);
e1p,e1q,e2p,e2q : std_logic_vector (m−1 downto 0);
en : std_logic ;

end record;
type reg7_t is record
t : std_logic_vector (n+2 downto 0);
t1 , t2 , t3 , t4 : std_logic_vector (n+m+1 downto 0);
en : std_logic ;

end record;
type reg8_t is record
t : std_logic_vector (n+2 downto 0);
u : std_logic_vector (n+m+1 downto 0);
v : std_logic_vector (n+m+1 downto 0);
en : std_logic ;

end record;

type reg_t is record
reg0 : reg0_t ;
reg1 : reg1_t ;
reg2 : reg2_t ;
reg3 : reg3_t ;
reg4 : regdiv_array ;
reg5 : reg5_t ;
reg6 : reg6_t ;
reg7 : reg7_t ;
reg8 : reg8_t ;

end record;

component t_div is
generic(w : integer := 16);
port
(
clk : in std_logic ;
n : in std_logic_vector (w−1 downto 0);
d : in std_logic_vector (w−1 downto 0);
q : out std_logic_vector (w−1 downto 0)

);
end component;

signal r , rin : reg_t ;
signal t_div_output : std_logic_vector (n+2 downto 0);

begin

−− TODO save some logic here (parameter T )!
−− finishes after w = n+3 clock cycles .
div : t_div generic map(n+3) port map(clk, r . reg3.nom, r . reg3.den, t_div_output );

comb : process(r , d, t_div_output)
variable v : reg_t ;
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variable t1 , t2 : std_logic_vector (2 n+2 downto 0);
variable t3 , t4 : std_logic_vector (2 m−1 downto 0);
variable sum : std_logic_vector (m+n+1 downto 0);
begin
v := r ;
−− propagate registers .
−− reg0
case d. r is
when "00" =>
v. reg0.pos_r(n downto 0) := d.pos_x(n downto 0);
v . reg0.pos_p(n downto 0) := d.pos_y(n downto 0);
v . reg0.pos_q(n downto 0) := d.pos_z(n downto 0);
v . reg0. dir_r (m−1 downto 0) := d.dir_x(m−1 downto 0);
v . reg0.dir_p(m−1 downto 0) := d.dir_y(m−1 downto 0);
v . reg0.dir_q(m−1 downto 0) := d.dir_z(m−1 downto 0);

when "01" =>
v. reg0.pos_q(n downto 0) := d.pos_x(n downto 0);
v . reg0.pos_r(n downto 0) := d.pos_y(n downto 0);
v . reg0.pos_p(n downto 0) := d.pos_z(n downto 0);
v . reg0.dir_q(m−1 downto 0) := d.dir_x(m−1 downto 0);
v . reg0. dir_r (m−1 downto 0) := d.dir_y(m−1 downto 0);
v . reg0.dir_p(m−1 downto 0) := d.dir_z(m−1 downto 0);

when others =>
v. reg0.pos_p(n downto 0) := d.pos_x(n downto 0);
v . reg0.pos_q(n downto 0) := d.pos_y(n downto 0);
v . reg0.pos_r(n downto 0) := d.pos_z(n downto 0);
v . reg0.dir_p(m−1 downto 0) := d.dir_x(m−1 downto 0);
v . reg0.dir_q(m−1 downto 0) := d.dir_y(m−1 downto 0);
v . reg0. dir_r (m−1 downto 0) := d.dir_z(m−1 downto 0);

end case;
v . reg0.d := d.d;
v . reg0.pp := d.pp;
v . reg0.pq := d.pq;
v . reg0.e1p := d.e1p;
v . reg0.e1q := d.e1q;
v . reg0.e2p := d.e2p;
v . reg0.e2q := d.e2q;
v . reg0.np := d.np;
v . reg0.nq := d.nq;
v . reg0.en := d.en;

−− reg1
−− first step in dotproduct 1:
t1 := r . reg0.pos_p r . reg0.np;
t2 := r . reg0.pos_q r . reg0.nq;
v . reg1.t1 := t1 (2 n + 2 downtom−1);
v . reg1.t2 := t2 (2 n + 2 downtom−1);
−− dotproduct 2:
t3 := r . reg0.dir_p r . reg0.np;
t4 := r . reg0.dir_q r . reg0.nq;
v . reg1.t3 := t3 (2 m−2 downtom−1);
v . reg1.t4 := t4 (2 m−2 downtom−1);
−− both unsigned
v . reg1.pmpp := r . reg0.pos_p − (’0’& r . reg0.pp);
v . reg1.pmpq := r . reg0.pos_q − (’0’& r . reg0.pq);
v . reg1.pos_r := r . reg0.pos_r;
v . reg1.dir_p := r . reg0.dir_p ;
v . reg1.dir_q := r . reg0.dir_q ;
v . reg1. dir_r := r . reg0. dir_r ;
v . reg1.d := r . reg0.d;
v . reg1.e1p := r . reg0.e1p;
v . reg1.e1q := r . reg0.e1q;
v . reg1.e2p := r . reg0.e2p;
v . reg1.e2q := r . reg0.e2q;
v . reg1.en := r . reg0.en;

−− reg2
v . reg2.dir_p := r . reg1.dir_p ;
v . reg2.dir_q := r . reg1.dir_q ;
v . reg2.d := r . reg1.d;
v . reg2.e1p := r . reg1.e1p;
v . reg2.e1q := r . reg1.e1q;
v . reg2.e2p := r . reg1.e2p;
v . reg2.e2q := r . reg1.e2q;
v . reg2.pmpp := r . reg1.pmpp;
v . reg2.pmpq := r . reg1.pmpq;
−− rest of dot1: signed (n+2) + signed (n+2) + unsigned (n+1)
v . reg2.pre_nom := r . reg1.t1 + r . reg1.t2 + (’0’& r . reg1.pos_r );
−− rest of dot2
v . reg2.pre_den := r . reg1.t3 + r . reg1.t4 + r . reg1. dir_r ;
v . reg2.en := r . reg1.en;

−− reg3
v . reg3.dir_p := r . reg2.dir_p ;
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v . reg3.dir_q := r . reg2.dir_q ;
v . reg3.e1p := r . reg2.e1p;
v . reg3.e1q := r . reg2.e1q;
v . reg3.e2p := r . reg2.e2p;
v . reg3.e2q := r . reg2.e2q;
v . reg3.pmpp := r . reg2.pmpp;
v . reg3.pmpq := r . reg2.pmpq;
v . reg3.nom := r . reg2.d − r . reg2.pre_nom;
v . reg3.den := r . reg2.pre_den(m−1) & r.reg2.pre_den;
v . reg3.en := r . reg2.en;

−− reg4
v . reg4 (0). pmpp := r . reg3.pmpp;
v . reg4 (0). pmpq := r . reg3.pmpq;
v . reg4 (0). dir_p := r . reg3.dir_p ;
v . reg4 (0). dir_q := r . reg3.dir_q ;
v . reg4 (0). e1p := r . reg3.e1p;
v . reg4 (0). e1q := r . reg3.e1q;
v . reg4 (0). e2p := r . reg3.e2p;
v . reg4 (0). e2q := r . reg3.e2q;
v . reg4 (0). en := r . reg3.en;
−− have to wait until div finishes . in the meantime, forward rest of the pipe .
for i in 1 to n+2 loop
v . reg4( i ). pmpp := r . reg4( i−1).pmpp;
v . reg4( i ). pmpq := r . reg4( i−1).pmpq;
v . reg4( i ). dir_p := r . reg4( i−1).dir_p ;
v . reg4( i ). dir_q := r . reg4( i−1).dir_q ;
v . reg4( i ). e1p := r . reg4( i−1).e1p;
v . reg4( i ). e1q := r . reg4( i−1).e1q;
v . reg4( i ). e2p := r . reg4( i−1).e2p;
v . reg4( i ). e2q := r . reg4( i−1).e2q;
v . reg4( i ). en := r . reg4( i−1).en;

end loop;

−− reg5
t3 := t_div_output(m downto 1)r . reg4(n+2).dir_p ;
t4 := t_div_output(m downto 1)r . reg4(n+2).dir_q ;
v . reg5.t1 := t3 (2 m−3 downtom−2);
v . reg5.t2 := t4 (2 m−3 downtom−2);
v . reg5. t := t_div_output;
v . reg5.pmpp:= r.reg4(n+2).pmpp;
v . reg5.pmpq:= r.reg4(n+2).pmpq;
v . reg5.e1p := r . reg4(n+2).e1p;
v . reg5.e1q := r . reg4(n+2).e1q;
v . reg5.e2p := r . reg4(n+2).e2p;
v . reg5.e2q := r . reg4(n+2).e2q;
v . reg5.en := r . reg4(n+2).en;

−− reg6
v . reg6.kp := r . reg5.pmpp + r.reg5.t1 ;
v . reg6.kq := r . reg5.pmpq + r.reg5.t2 ;
v . reg6. t := r . reg5. t ;
v . reg6.e1p := r . reg5.e1p;
v . reg6.e1q := r . reg5.e1q;
v . reg6.e2p := r . reg5.e2p;
v . reg6.e2q := r . reg5.e2q;
v . reg6.en := r . reg5.en;

−− reg7
v . reg7. t := r . reg6. t ;
v . reg7.t1 := r . reg6.e1p r . reg6.kq;
v . reg7.t2 := r . reg6.e1q r . reg6.kp;
v . reg7.t3 := r . reg6.e2p r . reg6.kq;
v . reg7.t4 := r . reg6.e2q r . reg6.kp;
v . reg7.en := r . reg6.en;

−− reg 8
v . reg8. t := r . reg7. t ;
v . reg8.u := r . reg7.t1 − r . reg7.t2 ;
v . reg8.v := r . reg7.t4 − r . reg7.t3 ;
v . reg8.en := r . reg7.en;

−− output
q.rdy <= r . reg8.en;
q. t <= r . reg8. t (n+2 downto 1);
q.u <= r . reg8.u(m−1 downto 0);
q.v <= r . reg8.v(m−1 downto 0);
sum := r . reg8.u + r . reg8.v ;
if sum(m+n+1 downto edge_shift+m−1) /= LOSER or
r . reg8.u(m+n+1) = ’1’ or r . reg8.v(m+n+1) = ’1’ or
r . reg8. t (n+2) = ’1’ then
q. hit <= ’0’;

else
q. hit <= ’1’;
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end if ;

rin <= v;
end process;

clocked : process(clk )
begin

if rising_edge( clk ) then
r <= rin ;

end if ;
end process;

end architecture;

A.3 Bounding Interval Hierarchy

Listing A.3: Bounding Interval Hierarchy
−− this is part of intrt , a fixed point hardware raytracer
−− Copyright (C) 2007 Johannes Hanika
−−

−− This program is free software : you can redistribute it and/or modify
−− it under the terms of the GNUGeneral Public License as published by
−− the Free Software Foundation, either version 3 of the License , or
−− (at your option) any later version .
−−

−− This program is distributed in the hope that it will be useful ,
−− but WITHOUT ANYWARRANTY; without even the implied warranty of
−−MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
−−GNUGeneral Public License for more details .
−−

−− You should have received a copy of the GNUGeneral Public License
−− alongwith this program. If not , see <http :// www.gnu.org/licenses />.

library ieee ;
use ieee . std_logic_1164. all ;
use ieee . std_logic_signed . all ;
use work. intrt_p . all ;

package bih_p is
type bih_in_t is record
−− ray pos + precomputed inverse omega
pos_x : std_logic_vector (n−1 downto 0);
pos_y : std_logic_vector (n−1 downto 0);
pos_z : std_logic_vector (n−1 downto 0);
−− rcp ray dir omega
idir_x : std_logic_vector (m−1+C downto 0);
idir_y : std_logic_vector (m−1+C downto 0);
idir_z : std_logic_vector (m−1+C downto 0);
−− sync reset
rst : std_logic ;

end record;

type bih_out_t is record
−− done (next ray please )
done : std_logic ;
−− triangle number
tri_num : std_logic_vector (28 downto 0);
−− enable ( tri number)
tri_en : std_logic ;

end record;

component bih
port
(
clk : in std_logic ;
d : in bih_in_t ;
q : out bih_out_t

);
end component;

end package;

library ieee ;
use ieee . std_logic_1164. all ;
use ieee . std_logic_signed . all ;
use ieee . std_logic_arith . all ;
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use work. tri_int_p . all ;
use work.bih_p.all ;
use work. intrt_p . all ;
use work.bih_ram_p.all ;

entity bih is
port
(
clk : in std_logic ;
d : in bih_in_t ;
q : out bih_out_t

);
end entity ;

architecture rtl of bih is
−− fill in scene ’ s aabb here ( lower bounds are 0).
constant aabb_x : std_logic_vector (n−1 downto 0) := (others => ’1’);
constant aabb_y : std_logic_vector (n−1 downto 0) := "011111010111001011011110010011";
constant aabb_z : std_logic_vector (n−1 downto 0) := "100111110100110011000111111111";
−− always works, but inefficient :
−− constant aabb_y : std_logic_vector (n−1 downto 0) := ( others => ’1’);
−− constant aabb_z : std_logic_vector (n−1 downto 0) := ( others => ’1’);

type state_t is (aabb_s, push_s, pop_s, node_s, inner_s , leaf_s );
−− attribute ENUM_ENCODING: STRING;
−− attribute ENUM_ENCODING of STATE_TYPE:type is "001 010 011 100 101 110 111";
type reg_t is record

state : state_t ;
−− hit distance so far :
hit_dist : std_logic_vector (n downto 0);
−− tri num state for leaf_s
tri_num : std_logic_vector (31 downto 0);
−− stack pointer ( < 32)
stack_pos : std_logic_vector (4 downto 0);
tri_en : std_logic ;
−− registers for tmin/tmax, as ram addr is changed.
tmin : std_logic_vector (62 downto 0);
tmax : std_logic_vector (62 downto 0);
dist0 : std_logic_vector (62 downto 0);
dist1 : std_logic_vector (62 downto 0);
saved_node : std_logic_vector (9 downto 0);

end record;

signal r , rin : reg_t := (aabb_s, (others => ’0’), (others => ’0’), (others => ’0’), ’0’, (others => ’0’),
(others => ’0’), (others => ’0’), (others => ’0’), (others => ’0’));

−− current node
signal node_data : std_logic_vector (31 downto 0);
signal node_clip0 : std_logic_vector (31 downto 0);
signal node_clip1 : std_logic_vector (31 downto 0);

signal data0 : std_logic_vector (35 downto 0);
signal data1 : std_logic_vector (35 downto 0);
signal data2 : std_logic_vector (35 downto 0);
signal data3 : std_logic_vector (35 downto 0);
signal data0_in : std_logic_vector (35 downto 0);
signal data1_in : std_logic_vector (35 downto 0);
signal data2_in : std_logic_vector (35 downto 0);
signal data3_in : std_logic_vector (35 downto 0);
signal addr3x : std_logic_vector (9 downto 0) := (others => ’0’);
signal addr1x : std_logic_vector (9 downto 0) := (others => ’0’);
signal we : std_logic := ’0’;

begin
−− implemented with correct memory dump, stack: addr = ’11111’&stack_pos ,
−− 4x1Kx36 bits block ram, two addresses : 3x node, 1x tri #, together : 4x stack
−− async read , address is clocked .
ram0 : raminfr_bih0 port map(clk, we, addr3x, data0_in, data0 );
ram1 : raminfr_bih1 port map(clk, we, addr3x, data1_in, data1 );
ram2 : raminfr_bih2 port map(clk, we, addr3x, data2_in, data2 );
ram3 : raminfr_bih3 port map(clk, we, addr1x, data3_in, data3 );

−− directly connect node_data, clip0 , clip1 , q.tri_num to ram output pins as tmp signal .
node_data <= data0(31 downto 0);
node_clip0 <= data1(31 downto 0);
node_clip1 <= data2(31 downto 0);
q.tri_num <= data3(28 downto 0);
q. tri_en <= r . tri_en ;

comb : process(r , d, data0, data1, data2, data3, node_data, node_clip0, node_clip1, addr1x)
variable v : reg_t ;
variable aabb_dist_x : std_logic_vector (n downto 0);
variable aabb_dist_y : std_logic_vector (n downto 0);
variable aabb_dist_z : std_logic_vector (n downto 0);
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−− tmp values for aabb idir : (n +1)( m+C) = 31+32+16 bits = 79
variable tx : std_logic_vector (78 downto 0);
variable ty : std_logic_vector (78 downto 0);
variable tz : std_logic_vector (78 downto 0);
−− variable c : std_logic_vector (1 downto 0);
begin
v := r ;
q.done <= ’0’;
−− step state machine.
case r . state is
when aabb_s =>
we <= ’0’;
−− TODO: addmore states for faster clock ?
−− calculate tmin, tmax
v . tmin := (others => ’0’);
−− calculate t0 , t1 , t2 in parallel and let tmax be min(t0 , t1 , t2 )
if d. idir_x (47) = ’1’ then
aabb_dist_x := ’1’&( not(d.pos_x)+1);

else
aabb_dist_x := ’0’&( aabb_x − d.pos_x);

end if ;
if d. idir_y (47) = ’1’ then
aabb_dist_y := ’1’&( not(d.pos_y)+1);

else
aabb_dist_y := ’0’&( aabb_y − d.pos_y);

end if ;
if d. idir_z (47) = ’1’ then
aabb_dist_z := ’1’&( not(d.pos_z)+1);

else
aabb_dist_z := ’0’&( aabb_z − d.pos_z);

end if ;
tx := aabb_dist_x d. idir_x ;
ty := aabb_dist_y d. idir_y ;
tz := aabb_dist_z d. idir_z ;
if tx(78 downto C) < ty(78 downto C) then
if tx(78 downto C) < tz(78 downto C) then
v . tmax := tx(78 downto C);

else
v . tmax := tz(78 downto C);

end if ;
elsif ty(78 downto C) < tz(78 downto C) then
v . tmax := ty(78 downto C);

else
v . tmax := tz(78 downto C);

end if ;

−− tmax < 0 ? =>miss aabb.
if v . tmax(62) = ’1’ then
v . state := aabb_s;
q.done <= ’1’;

else
−− init stack as root node (0)
v .stack_pos := (others => ’0’);
v . state := node_s;
addr3x <= (others => ’0’);
addr1x <= (others => ’0’);
v . hit_dist := (others => ’1’);

end if ;

when pop_s =>
we <= ’0’;
−− load block ram tmin/tmax to registers
−− and node_pos to ram address
v . tmin := data1(26 downto 0) & data0(35 downto 0);
v . tmax := data3(21 downto 0) & data2(35 downto 0) & data1(35 downto 31);
addr3x <= data3(35 downto 26);
−− if hit_dist < tmin, goto pop_s
v . state := node_s;

when push_s =>
we <= ’0’;
−− restore address for near node.
addr3x <= r . saved_node;
v . state := node_s;

when node_s =>
we <= ’0’;
−− set state according to axis
case node_data(1 downto 0) is
when "11" =>
v. state := leaf_s ;
−− load tri index ,
addr1x <= node_data(12 downto 3);
v . saved_node := node_data(12 downto 3) + 1;
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−− set tri num for counter in reg
v . tri_num := node_clip0;
v . tri_en := ’1’;

when "00" =>
−− start to do some calculations ( dist0 , dist1 )
v . state := inner_s ;
tx := (node_clip1(n downto 0) − (’0’&d.pos_x )) d. idir_x ; −− (uns − uns ) sgn
ty := (node_clip0(n downto 0) − (’0’&d.pos_x )) d. idir_x ;
if d. idir_x (47) = ’1’ then
v . dist0 := tx(78 downto C);

else
v . dist0 := ty(78 downto C);

end if ;
if d. idir_x (47) = ’1’ then
v . dist1 := ty(78 downto C);

else
v . dist1 := tx(78 downto C);

end if ;
when "01" =>
v. state := inner_s ;
tx := (node_clip1(n downto 0) − (’0’&d.pos_y )) d. idir_y ; −− (uns − uns ) sgn
ty := (node_clip0(n downto 0) − (’0’&d.pos_y )) d. idir_y ;
if d. idir_y (47) = ’1’ then
v . dist0 := tx(78 downto C);

else
v . dist0 := ty(78 downto C);

end if ;
if d. idir_y (47) = ’1’ then
v . dist1 := ty(78 downto C);

else
v . dist1 := tx(78 downto C);

end if ;
when others => −−"10" =>
v . state := inner_s ;
tx := (node_clip1(n downto 0) − (’0’&d.pos_z )) d. idir_z ; −− (uns − uns ) sgn
ty := (node_clip0(n downto 0) − (’0’&d.pos_z )) d. idir_z ;
if d. idir_z (47) = ’1’ then
v . dist0 := tx(78 downto C);

else
v . dist0 := ty(78 downto C);

end if ;
if d. idir_z (47) = ’1’ then
v . dist1 := ty(78 downto C);

else
v . dist1 := tx(78 downto C);

end if ;
end case;

when inner_s =>
−− axis is 00 01 10
if r . dist0 < r . tmin and r . dist1 > r . tmax then
we <= ’0’;
−− pop stack
if r . stack_pos = 0 then
v . state := aabb_s;
q.done <= ’1’;

else
v .stack_pos := r . stack_pos − 1;
addr3x <= "11111" & v .stack_pos;
addr1x <= "11111" & v .stack_pos;
v . state := pop_s;

end if ;
elsif r . dist0 >= r . tmin and r . dist1 > r . tmax then
we <= ’0’;
−− load node 0 (near)
if r . tmax > r . dist0 then v.tmax := r . dist0 ; end if ;
if (d. idir_x (47) = ’1’ and node_data(1 downto 0) = "00")

or (d. idir_y (47) = ’1’ and node_data(1 downto 0) = "01")
or (d. idir_z (47) = ’1’ and node_data(1 downto 0) = "10") then

addr3x <= node_data(12 downto 3) + 1;
else addr3x <= node_data(12 downto 3); end if ;
v . state := node_s;

elsif r . dist0 < r . tmin and r . dist1 <= r . tmax then
we <= ’0’;
−− load node 1 ( far )
if r . tmin < r . dist1 then v.tmin := r . dist1 ; end if ;
if (d. idir_x (47) = ’1’ and node_data(1 downto 0) = "00")

or (d. idir_y (47) = ’1’ and node_data(1 downto 0) = "01")
or (d. idir_z (47) = ’1’ and node_data(1 downto 0) = "10") then

addr3x <= node_data(12 downto 3);
else addr3x <= node_data(12 downto 3) + 1; end if ;
v . state := node_s;
−− if r . dist0 >= r . tmin and r . dist1 <= r . tmax then
else
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−− push node 1, will be stored on next rising edge.
we <= ’1’;
−− overwrite current stack position , stack_pos++
addr3x <= "11111"&r.stack_pos;
addr1x <= "11111"&r.stack_pos;
v . stack_pos := r . stack_pos + 1;
if (d. idir_x (47) = ’1’ and node_data(1 downto 0) = "00")

or (d. idir_y (47) = ’1’ and node_data(1 downto 0) = "01")
or (d. idir_z (47) = ’1’ and node_data(1 downto 0) = "10") then

data3_in(35 downto 26) <= node_data(12 downto 3);
else data3_in(35 downto 26) <= node_data(12 downto 3) + 1; end if ;

data3_in(21 downto 0) <= r . tmax(62 downto 41);
data2_in(35 downto 0) <= r . tmax(40 downto 5);
data1_in(35 downto 31) <= r.tmax( 4 downto 0);
if r . tmin > r . dist1 then
data1_in(26 downto 0) <= r.tmin(62 downto 36);
data0_in(35 downto 0) <= r.tmin(35 downto 0);

else
data1_in(26 downto 0) <= r. dist1 (62 downto 36);
data0_in(35 downto 0) <= r. dist1 (35 downto 0);

end if ;

−− load node 0 ( set registers )
−− save addr3x for push_s
if (d. idir_x (47) = ’1’ and node_data(1 downto 0) = "00")

or (d. idir_y (47) = ’1’ and node_data(1 downto 0) = "01")
or (d. idir_z (47) = ’1’ and node_data(1 downto 0) = "10") then

v .saved_node := node_data(12 downto 3) + 1;
else v .saved_node := node_data(12 downto 3); end if ;
if r . tmax > r . dist0 then v.tmax := r . dist0 ; end if ;
v . state := push_s;

end if ;

when leaf_s =>
we <= ’0’;
−− TODO: detach this counter from the fsm of the bih .
−− axis is 11, first triangle index has been loaded.
−− count down tri num (reg signal )
if v . tri_num = 1 then
v . tri_en := ’0’;
if r . stack_pos = 0 then
−− stack empty
v . state := aabb_s;
q.done <= ’1’;

else
−− pop stack
v .stack_pos := r . stack_pos − 1;
addr3x <= "11111" & v .stack_pos;
addr1x <= "11111" & v .stack_pos;
v . state := pop_s;

end if ;
else
−− loop until all tris dumped out
v . tri_num := r . tri_num − 1;
v .saved_node := r . saved_node + 1;
addr1x <= r . saved_node;
v . tri_en := ’1’;

end if ;
end case;
rin <= v;

end process;

clocked : process(clk , d)
begin

if rising_edge( clk ) then
if d. rst = ’1’ then
r <= (aabb_s, (others => ’0’), (others => ’0’), (others => ’0’), ’0’, (others => ’0’),
(others => ’0’), (others => ’0’), (others => ’0’), (others => ’0’));

else
r <= rin ;

end if ;
end if ;

end process;

end architecture;
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