
Hardware Ray Tracing using Fixed Point
Arithmetic

Johannes Hanika∗
Ulm University

Alexander Keller†
Ulm University

September 19, 2007

Abstract

For realistic image synthesis and many other simulation applications,
ray tracing is the only choice to achieve the desired realism and accuracy.
Ray tracing has become such an important algorithm that an implemen-
tation in hardware is justified and desirable. The first ray tracing hard-
ware realizations have been using floating point and logarithmic arith-
metic. While floating point arithmetic requires considerably more logic
than integer arithmetic, an implementation in logarithmic arithmetic is
much simpler, but still suffers from similar problems. In analogy to raster-
ization hardware we therefore investigate the use of fixed point arithmetic
for ray tracing. Our software implementation and comparisons provide
strong evidence that an implementation of ray tracing in hardware using
fixed point arithmetic is an efficient and robust choice.

1 Introduction
Rasterization cannot efficiently render secondary effects like reflection and
refraction. Even precise shadows come at a considerable cost and ray
tracing (see Figure 1) as the natural solution of these problems becomes
competitive.

Designing ray tracing in hardware requires selecting an arithmetic. The
common choice, i.e. the IEEE floating point standard, requires considerable
chip area. Simpler and faster arithmetic units can improve the situation very
much.

Implementing the DDA (digital differential analyzer) algorithm used in
polygon rasterization in fixed point arithmetic was a basic step towards the
success of graphics hardware. In analogy to the DDA algorithm we analyze
the applicability of fixed point arithmetic for hardware ray tracing. While
such an implementation is much simpler to design in hardware, it requires
a profound investigation of numerical ranges and quantization effects as

∗e-mail: Johannes.Hanika@uni-ulm.de
†e-mail: Alexander.Keller@uni-ulm.de

1

Figure 1: A car rendered using a ray tracing core completely based on fixed
point arithmetic realized in integer arithmetic. For the ease of custom shader
writing, the color computations were performed using conventional floating
point arithmetic. The quality of the fixed point computations is indistinguish-
able from computations in floating point arithmetic. Due to the equidistant
spacing of fixed point numbers, the self-intersection problem can be tackled
without a scene-dependent epsilon, which makes computations in fixed point
arithmetic preferable.

2

compared to a classic floating point implementation. In the following we
will describe our analysis and exemplary C99 implementation that result in
the conclusion that ray tracing in fixed point arithmetic will be as useful as
the DDA algorithm.

2 Arithmetic used in Hardware Ray Tracing
Integer and floating point units are the two standard kinds of arithmetic
available on mainstream general purpose processors. Other kinds of arith-
metics [11], like for example fixed point or logarithmic arithmetic, are less
widely applied, because they are less general.

For hardware ray tracing all these kinds of arithmetic have been applied
already: The first ray tracing hardware [22] used logarithmic arithmetic,
with the advent of general purpose computing on graphics accelerator
boards, fixed point arithmetic was applied, and with upcoming affordable
reconfigurable hardware even floating point units were used [15, 21, 20, 10].

2.1 Floating Point Arithmetic
The most recent approaches to ray tracing hardware [15, 21, 20] used floating
point units (without considering denormalized values) realized on FPGAs
(Field Programmable Gate Arrays). While this work focussed on the proof
of concept, it did not consider ray tracing problems that arise from the
unequal distribution of floating point numbers along the real axis (see
Figure 2a).

In fact there are many well-known precision issues to address when
using floating point arithmetic [7]. In ray tracing the main problems are the
quantization of numbers that are far from the origin (see Figure 3) and the
self-intersection problem [19].

2.2 Logarithmic Arithmetic
Instead of mantissa and exponent, logarithmic arithmetic only stores the
sign and logarithm of the number to be represented. While the spacing
of the numbers remains similar to the floating point representation [2], the
implementation becomes simpler.

Due to physical constraints at that time, the first ray tracing hardware
was forced to use a compact arithmetic. For this purpose logarithmic
arithmetic (see e.g. [22, Cols. 13 and 14]) prooved to be efficient in space
and performance as it can be realized using almost only integer arithmetic
units. The challenges of a lack of a zero and the computation of Gauss’
logarithm for addition and subtraction were solved by careful algorithm
design and a lookup table. However, the main disadvantage of the non-
equidistant spacing of the representable numbers persists.

2.3 Fixed Point Arithmetic
The main advantage of fixed point arithmetic over floating point and loga-
rithmic arithmetic is the equidistant spacing of the numbers. However, due

3

to a lack of an exponent in the representation, the range is very limited and
an application of fixed point numbers requires a profound investigation of
the ranges of all computations in an application.

The first implementations of ray tracing on graphics hardware [4, 14, 13]
were using fixed point arithmetic and report rendering artifacts due to the
limited range.

We will analyze these issues and the required ranges and present a re-
alization of ray tracing in fixed point arithmetic that achieves the precision
of a floating point implementation. The envisioned hardware implemen-
tation is considerably more compact and simpler than a realization using
floating point or logarithmic arithmetic.

3 Intersection Computation in Fixed Point
Arithmetic
Without loss of generality we focus on triangle based ray tracing. Out of
the many different ways to intersect a ray and a triangle [1, 12, 8, 16, 5, 6]
we select the test of Badouel [1] based on barycentric coordinates, because
it allows for increasing efficiency [18, 3, 9] by precomputation, which in
addition simplifies the actual intersection procedure. For dynamic scenes
the other triangle tests must be investigated, too, which, however, is out of
the focus of this current paper.

We briefly summarize the procedure: For each triangle with the vertices
x0,x1,x2 ∈R

3 we compute the vector

n = (x1−x0)× (x2−x0)

in normal direction and store the smallest index r of its longest absolute
component

nr = ‖n‖∞ = max{|n0|, |n1|, |n2|}

in two bits. Triangles with nr = 0 have no area and are therefore omitted.
Using the additional indices

p := (r + 1) mod 3 and q := (r + 2) mod 3

we further store the components

pp = x0,p, pq = x0,q,

np =
np

nr
, nq =

nq

nr
,

d =
1
nr
〈n,x0〉 = x0,r +pp ·np+pq ·nq, and

eik =
1
nr

(xi,k−x0,k), i ∈ {1,2},k ∈ {p,q}.

The normalization by the maximum norm ‖n‖∞ simplifies the scalar prod-
uct, as the vector component r is guaranteed to be equal to one.

4

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

frequency of IEEE floats

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009

power plant
sponza

jackstraws
xyzrgb dragon

random

a) b)

Figure 2: On a logarithmic scale: a) Frequency of the IEEE floating point
numbers in [0,1] and b) the relative frequency of the triangle edge components
e1p, e1q, e2p, e2q for various scenes after transforming them to the integer
bounding box according to Section 3.2. Most of the values are smaller than
0.0001. Note that the rightmost bin contains all remaining components greater
than 0.0009. For some scenes (sponza and xyzrgb dragon) the distribution then
resembles the distribution of floating point numbers, however, this is not true
in general as can be seen from the random triangles and the remaining scenes.
Also, it is a misinterpretation to conclude that the edge information should
be represented in floating point or logarithmic numbers, as this does not at
all improve on the bigger quantization error of bigger components. Using
equidistantly spaced fixed point numbers reduces these errors, however, at the
cost of a reduced range.

In order to intersect a ray (O,ω) with origin O and direction ω with a
triangle according to the accelerated test from [18], the distance t along the
ray from its origin to the plane of the triangle is computed as

t =
d− 1

nr
〈O,n〉

1
nr
〈ω,n〉

=
d−Or−Op np−Oq nq

ωr +ωp np+ωq nq
. (1)

Then the hitpoint of the ray and the plane projected along the component
r is computed by

kp = Op + t ·ωp−pp,

kq = Oq + t ·ωq−pq,

u = e1,p · kq−e1,q · kp,

v = e2,q · kp−e2,p · kq. (2)

An intersection is reported if the barycentric coordinates u and v fulfill u≥ 0,
v ≥ 0, and u + v ≤ 1.

5

3.1 Numeric Ranges
To store the accelerated representation of a triangle in finite precision with-
out losing vital information, it is necessary to examine the ranges of the
precomputed components.

As pp and pq are copies of the original data, these can be stored in the
given precision. The components of the normal np,nq are normalized using
the maximum norm and consequently np,nq ∈ [−1,1].

For the remaining components we have to consider that each finite
subset of the real numbers has a minimum and a maximum. Hence, given
a setV := {xi = (xi,0,xi,1,xi,2) : 0 ≤ i <N} ⊂R3 of N triangle vertices, we can
define their axis-aligned bounding box components as

b j := min{xi, j : xi ∈V} and B j := max{xi, j : xi ∈V}.

With the fact that for any vector n ∈R3∥∥∥∥∥ n
‖n‖∞

∥∥∥∥∥
2
≤

√

3

we can bound the absolute value of the distance d by

|d | ≤ max
0<i≤N

∣∣∣∣∣ 1
nr
〈n,xi〉

∣∣∣∣∣
≤

√

3 max
0<i≤N

||xi||2 ≤ 3 max
j∈{0,1,2}

(B j− b j).

In order to bound the edge components, we need ε, which is the smallest,
non-zero absolute value of the numbers representable in the arithmetic.
Since triangles where computing nr yields zero are omitted because they
are degenerate, we have

|nr| ≥ ε > 0

and hence
|eik| ≤

1
ε

max
j∈{0,1,2}

(B j− b j). (3)

Note that the bound using the longest side of the scene bounding box is very
loose. Using the longest side of all triangle bounding boxes often yields a
much tighter bound, especially when all triangles are about equally small.

3.2 Quantization and Precision
The quantization now can be parameterized by two bit widths n and m:

Points: The scene geometryV is moved to the positive octant and scaled
such that b j = 0 for j = 0,1,2 and max j=0,1,2{B j} = 2n−1. The values pp
and pq then are represented using n bit unsigned integers resulting in
ε = 1.

Distances: The representation of the distance d needs n + 3 bits, because
the distance is signed (1 bit) and the maximum prolongation by a
factor of 3 (see the above bound) requires two further bits.

6

Vectors: Components of normals (np and nq), ray directions, and triangle
edges (e1p, e1q, e2p, and e2q) are quantized using m bits signed fixed
point numbers to represent the range [−1,1].

Note that rays starting outside the bounding box of the geometry, like e.g.
primary rays, must be clipped to the bounding box prior to quantization.

3.2.1 Clamping of Triangle Edge Components

In order to improve the bound on the edge data, we investigated their
statistics. Figure 2b shows the relative frequency of the edge components
e1p, e1q, e2p, and e2q for several typical test scenes after the transforma-
tion explained in the previous section. The distribution suggests that the
majority of the edge data is smaller 0.001 and most of the time even smaller
than 0.0001.

Linearly mapping the edge data to the range of the fixed point arithmetic
would result in considerable quantization errors, as the maxima can be
relatively large. Instead we clamp the values to the range (−2−E,2−E) before
mapping them to the fixed point range, where E is called the edge shift.
Choosing 2−E ≈ 0.001, i.e. E = 10, as indicated by the statistics, is already
sufficient to render the test scenes without artifacts.

If the modeler can guarantee to keep the bound |eik| < 2−E, which is
much more handy than the bound in Equation 3 from the previous section,
errors due to clamping are completely avoided. Note that this can be
difficult to achieve for long triangles with small area: if the triangle is
simply subdivided into four smaller ones by inserting three new vertices in
the middle of the edges, the edge data would actually increase by a factor
of two. This is because the edges are halved but the resulting area is only
one forth of the original area. Since the vertices are quantized, triangles are
likely to be degenerate in addition.

3.2.2 Triangle Data Structure and Choice of Parameters

For the prototype implementation in C99 it was convenient to match the
standard 32 bits double word width. Because of the precision requirements
of d, we then have n = 32 - 3 = 29 bits. All fixed point numbers use m =
32 bits signed integers. As mentioned before, the edge shift is E = 10. To
simulate smaller bit widths, the least signifciant bits are simply set to zero.
Note that we did not choose to store fractional bits for d. This does not
introduce any additional quantization error, as with careful rounding it is
possible to reconstruct the original quantized triangle vertices using this

7

precision. The triangles are stored as:

typedef struct

{

int d; // regular signed int

unsigned r : 2;

unsigned pp : 29;

unsigned int pq; // unsigned 29 bits

int np, nq; // signed fixed point in [-1,1]

int e1q, e2q; // signed fixed point

int e1p, e2p; // in (-2ˆ-E, 2ˆ-E)

}

accels_t;

typedef union

{

float x[3][3]; // original float data

unsigned int xi[3][3]; // transformed vertices

accels_t a; // accelerated representation

}

triangle_t;

3.3 Fixed Point Ray-Plane Intersection
First, the distance t has to be computed according to Equation 1, which
involves a division. In finite arithmetic the mathematical equivalence

t =
nom
den

=
nom ·2−T

den ·2−T
, where T ∈N0,

changes the result depending on the parameter T: The nominator nom and
the denominator den are shifted to the right, which causes the numbers to
lose their T least signifciant bits, resulting in a loss of precision. However,
the bit width of the division is reduced, which allows for a faster hardware
implementation. The impact of the parameter T is illustrated in Figure 8,
all other images have been rendered using T = 0.

3.3.1 Ray-Axis-Aligned Plane Intersection

For the basic case of axis-aligned planes, as used in the traversal of acceler-
ation data structures, we need to compute t = (P−Oi)/ωi, where the plane
under consideration is {x ∈R3 : xi = P}. For m ≤ 32, 64 bits (long long int)
are sufficient for the temporary values in order to avoid overflows. The

8

distance t can then be calculated as follows:

const long long int mask = 0xFFFFFFFF80000000LL;

const int den = omega[i]>>T;

if(den == 0) return no_intersection;

int t = (((P - O[i])<<(m-1-T)) & mask)/den;

where omega[i] is an m-bit signed integer representing a fixed point
value in [−1,1]. Note that t is stored as a 32-bit integer, because the same
precision as used for d is sufficient here. The variable mask assures that the
precision is really truncated as it would be in a hardware implementation.

3.3.2 Ray-Triangle Plane Intersection

Compared to the previous piece of code, the ray-triangle plane intersection
requires to first project the ray direction onto the triangle normal. To make
the source listing more readable, O and omega are assumed to be arrays of
long long int:

long long int den = ((omega[r] +

(omega[p]*np >> (m-1)) +

(omega[q]*nq >> (m-1)))) >> T;

long long int mask = 0xFFFFFFFF80000000LL;

if(den == 0) return no intersection;

int t =

(((((d - O[r]) << (m-1)) -

O[p]*np - O[q]*nq) >> T) & mask)/den;

if((t <= hit->t) && (t > 0))

{

test barycentric coordinates

}

3.4 Fixed Point Ray-Triangle Intersection
Whether or not the triangle is intersected by the ray is decided according to
the set of Equations 2 using the distance t. Similar to the previous section,
fixed point numbers in [−1,1] are multiplied by 2m−1, computations are
done using integer arithmetic, and finally the result is shifted back to the

9

desired range. The implementation is:

int kp = O[p] + ((t*omega[p]) >> (m-1)) - pp;

int kq = O[q] + ((t*omega[q]) >> (m-1)) - pq;

long long int u = (long long int)e1p*kq -

(long long int)e1q*kp;

long long int v = (long long int)e2q*kp -

(long long int)e2p*kq;

if(u < 0 || v < 0 ||

((u + v) >> E) > (1UL << (m-1)))

return no_intersection;

else report intersection

3.5 Secondary Rays and the Self-Intersection Prob-
lem
A common issue with secondary rays is the so called self-intersection prob-
lem [19]. It refers to the fact that secondary rays sometimes end up hitting
the same object they originate from because of deficiencies of the arithmetic.
The usual solution is to shift the origin of the secondary ray by adding a
small fraction of the normal and/or the new ray direction. For floating
point algorithms the most advanced approach to this problem is the robust
triangle test [6].

Since in fixed point arithmetic the geometry lies on an equidistant raster
with known resolution, the self-intersection can be approached in a simpler
way: The distance t measured along the ray direction ω uses the same
resolution as the vertex data (only a larger range is allowed) and, therefore,
can be only wrong by 1 unit of the integer grid (= 2−n times the largest
side of the bounding box in our implementation). The computation of the
hitpoint h = O + t ·ω uses one more fractional bit and is rounded to the
integer grid, which can cause an additional error of 0.5 in each component.
The worst case error along each axis thus is 1+0.5< 2 and consequently the
ray origin just needs to be shifted by two units:

int dt = dotproduct(n, omega);

O[k] = hit[k] + ((dt > 0) ˆ (n[k] < 0) ? 2 : -2);

The variable dt determines transmissive rays, where the point has to be
shifted into the reverse direction.

Note that in the presence of shading normals (as used in Figure 1), it
still has to be detected whether the ray is accidentally sampled under the
surface due to the perturbed normal. Thus, one has to decide for either
precision ray tracing or the use of shading normals.

3.6 Acceleration
As we are heading for the simplest possible ray tracing hardware, numeri-
cally involved triangle-plane intersections as required for building kd-trees

10

should be avoided. Hence we use a bounding interval hierarchy [17, 20] for
an acceleration data structure. For its construction only divisions by 2 and
comparisons are required, which are trivial to transfer to integer arithmetic
and both operations are unconditionally robust.

Compared to the kd-tree, the construction of a bounding interval hierar-
chy (BIH) is much faster and simpler, while ray tracing speed is comparable
as long as the overlap of the object bounding boxes is small [17].

The traversal of the data structure requires intersecting a ray with a pair
of axis-aligned planes. This intersection can be computed as derived in
Section 3.3.1, however, at the cost of a division, which is relatively slow.

In order to accelerate the traversal, the reciprocal of the ray direction
can be stored for ωi , 0, replacing the division by a multiplication:

|ωi| ∈
[
2−m+1,1

)
⇔

∣∣∣ω−1
i

∣∣∣ ∈ (
1,2m−1

]
,

so omega_inv[i] = (1<<(m-1))/omega[i].
However, computing the distance to the clip planes in a different way

as the ray-triangle intersection introduces inconsistencies, especially for
axis-aligned triangles. In order to obtain a sufficient accuracy, ω−1

i has
to be stored in m+ C bits, requiring more bits for multiplication, too. The
additional bits also ameliorate the fact that due to its hyperbolic nature the
range of ω−1

i is not well represented by equidistant quantization.
In the actual implementation, one has to take care that there will be no

overflow, which in turn affects precision. The images in Figure 9 show the
effect of the parameter C and the resulting quite visible inconsistencies for
too small C. The computations have been executed using the following code
fragment :

// precompute

const long long int nom = 1ULL << (m + C);

omega_inv[i] = nom/omega[i];

// plane test

int t = ((P - O[i]) >> C) * omega_inv[i];

4 Numerical Evidence
In Figure 7 the effect of varying the fixed point precision m is shown. Already
a rather low precision allows for correct renderings. In an actual hardware
implementation m will certainly be chosen in a safe way, i.e. even m > 32.

4.1 Constructing a Stress Test
Triangles with long edges and small area are numerically difficult to ray
trace. The worst-case triangle would be ranging diagonally through the
complete bounding box with the third vertex exactly in the center of the
bounding box. Since this triangle is degenerated, i.e. has zero area and
cannot be visible, we moved one integer vertex so that the area became

11

non-zero. A comparison to the floating point setting was impossible, as
the floating point computation still classified this triangle as degenerate.
The triangle then was further extended until if formed a thin line at an
image resolution of 640×480 pixels. In fact the edge data for this triangle is
in (−0.0001,0.0001) and thus well represented in integer quantization. No
difference between the floating point and fixed point computations could
be spotted and we therefore omitted images of this experiment.

4.2 Clamped Edge Components
Due to clamping (see Section 3.2.1) intersection errors may occur. Therefore
we extracted the triangles with |eik| > 2−E from the power plant scene. As
a reference and for comparison, the robust single-precision floating point
triangle test [6] has been used.

This test revealed errors in both floating point and fixed point arithmetic,
however, the fixed point version reported notably more intersections. A
possible explanation for these false positives is that clamping eik implicitly
puts a lower bound to nr and thus to the triangle area. The visual results in
Figure 4 are rather abstract and only included for the sake of completeness.

Additional tests were performed for the powerplant model, the Sponza
atrium, a jackstraws scene, the xyzrgb dragon and random triangles. The
floating point images have been generated using the original data set, i.e.
without scaling the vertices to the integer bounding box. Often no differ-
ences can be observed (see Figure 5). Most of the differences in Figure 6
originate from slightly differently quantized primary rays. Sometimes both
versions cast rays through triangles spuriously.

It can be seen that the intersections are reported correctly even for tri-
angles not so well behaved in terms of the ratio of edge length to triangle
area. In the jackstraws scene one stick contains 2048 very long and narrow
triangles forming a cylinder. Also the capillary crane in the power plant
closeup does not cause errors.

5 Conclusion
We showed that ray tracing in fixed point arithmetic and thus a hardware
implementation can achieve equally convincing results as ray tracing in
floating point arithmetic. Due to the equidistant spacing of the numbers,
quantization artifacts are more controllable and typical problems with float-
ing point special cases can be avoided more easily.

Since integer functionality is included in hardware description lan-
guages such as VHDL, a hardware description is very simple and on FPGAs
even built-in integer functionality can be exploited. We currently have a
basic, pipelined implementation of the triangle test using a specialized di-
vider unit, as well as the BIH traversal running in a simulator and will
continue implementing it on a Virtex-5 FPGA.

A similar analysis can be applied to other triangle tests [12, 8] and we
expect large performance benefits from applying fixed point arithmetic to
the high-precision ray tracing algorithms for freeform surfaces [6].

12

6 Acknowledgements
The first author has been funded by the project information at your fingertips
- Interaktive Visualisierung für Gigapixel Displays, Forschungsverbund im
Rahmen des Förderprogramms Informationstechnik in Baden-Württem-
berg (BW-FIT). Our special thanks go to Sun Microsystems GmbH who
kindly supported our research with computing equipment. We also want
to thank the anonymous reviewers for well-meaning and helpful comments.

References
[1] D. Badouel. An efficient ray-polygon intersection. In A. S. Glassner,

editor, Graphics Gems, pages 390–393. Academic Press Professional,
1990.

[2] J. Barlow and E. Bareiss. On roundoff error distributions in floating
point and logarithmic arithmetic. Computing, 34:325–347, 1985.

[3] C. Benthin. Realtime Ray Tracing on current CPU Architectures. PhD
thesis, Saarland University, 2006.

[4] N. Carr, J. Hall, and J. Hart. The ray engine. In Graphics Hardware
(Proc. Eurographics/SIGGRAPH 2002), pages 37–46, 2002.

[5] N. Chirkov. Fast 3d line segment-triangle intersection test. journal of
graphics tools, 10(3):13–18, 2005.

[6] H. Dammertz and A. Keller. Improving ray tracing precision by world
space intersection computation. In Proc. 2006 IEEE Symposium on In-
teractive Ray Tracing, pages 25–32, Sept. 2006.

[7] D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

[8] R. Jones. Intersecting a ray and a triangle with Plücker coordinates.
Ray Tracing News, 13(1), July 2000.

[9] A. Kensler and P. Shirley. Optimizing ray-triangle intersection via
automated search. In Proc. 2006 IEEE Symposium on Interactive Ray
Tracing, pages 33–38, Sept. 2006.

[10] S.-S. Kim, S.-W. Nam, D.-H. Kim, and I.-H. Lee. Hardware-accelerated
ray-triangle intersection testing for high-performance collision detec-
tion. In Proc. WSCG, 2007.

[11] I. Koren. Computer Arithmetic Algorithms. A. K. Peters Ltd., 2nd edition,
2002.

[12] T. Möller and B. Trumbore. Fast, minimum storage ray/triangle inter-
section. Journal of Graphics Tools, 2(1):21–28, 1997.

[13] T. Purcell. Ray Tracing on a Stream Processor. PhD thesis, Stanford
University, March 2004.

[14] T. Purcell, I. Buck, W. Mark, and P. Hanrahan. Ray tracing on pro-
grammable graphics hardware. In SIGGRAPH 2005 Course Notes, page
268, 2005.

13

[15] J. Schmittler, S. Woop, D. Wagner, W. Paul, and P. Slusallek. Realtime
ray tracing of dynamic scenes on an FPGA chip. In Graphics Hardware
(Proc. SIGGRAPH/Eurographics 2004), pages 95–106, 2004.

[16] R. Segura and F. Feito. Algorithms to test ray-triangle intersection. In
Proc. WSCG, 2001.

[17] C. Wächter and A. Keller. Instant ray tracing: The bounding inter-
val hierarchy. In Rendering Techniques 2006 (Proc. 17th Eurographics
Symposium on Rendering), pages 139–149, 2006.

[18] I. Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD
thesis, Saarland University, 2004.

[19] A. Woo, A. Pearce, and M. Ouellette. It’s really not a rendering bug,
you see... IEEE Computer Graphics & Applications, 16(5):21–25, Sept.
1996.

[20] S. Woop, G. Marmitt, and P. Slusallek. B-KD trees for hardware ac-
celerated ray tracing of dynamic scenes. In Graphics Hardware (Proc.
Eurographics/SIGGRAPH 2006), pages 67–77, 2006.

[21] S. Woop, J. Schmittler, and P. Slusallek. RPU: A programmable ray
processing unit for realtime ray tracing. ACM Transactions on Graphics
(Proc. SIGGRAPH 2005), 24(3):434–444, 2005.

[22] A. Wrigley. Method of and apparatus for constructing an image of a
notional scene by a process of ray tracing, May 1997. United States
Patent US 5,933,146, 28.05.1997.

14

Rendered using IEEE single-precision floating point arithmetic.
While the red bunny is perfectly accurate, the green bunny suffers
from numeric instabilities (see the dark spots). The scene bounding
box was about [−105,105]× [−3 ·104,2 ·103]× [−105,105].

Before rendering the scene has been scaled to fit inside [−1.0,1.0]3,
where the floating point frequency is particularly high. The over-
all accuracy is reduced as there is a very high difference in the
frequency of the values near zero and near the borders. As a con-
sequence even the red bunny now suffers from false intersections.

Rendered using fixed point arithmetic realized in 32 bit integer
arithmetic, where the scene has been scaled to fit the bounding
box to the available fixed point range. Although the rendering
is not accurate, it now is invariant under translation, i.e. the same
precision is reached over the whole range of representable numbers:
Both bunnies show a few spurious black spots.

Figure 3: Bunnies in a city problem (similar to the teapot in a stadium problem):
Combining small and large scale data sets. The red bunny is located at the
origin, while the green bunny is located close to the boundary of the city.
Both bunnies are of same size. The scene has intentionally been constructed
to show the limitations of any kind of arithmetic using only 32 bits, so there
are intersection errors in all images. The city model is courtesy of Leonhard
Grünschloß.

15

Figure 4: Triangles with components e1p, e1q, e2p or e2q outside the the rep-
resentable fixed point range (−2−E,2−E) extracted from the power plant model.
To leave the range, a triangle needs to be very long and thin, and hence has
almost zero area. Both kinds of investigated arithmetics (floating point in the
middle and fixed point arithmetic on the right) create intersection errors, the
fixed point test even shows false positives. The triangles are so narrow that
even the reference image (robust floating point intersection test [6] on the left)
shows mostly aliasing.

Figure 5: Some test cases where fixed point and floating point arithmetic almost
cannot be distinguished. Master images were computed using a robust floating
point arithmetic reference implementation [6].

Figure 6: Comparison of screenshots made using the robust floating point
arithmetic intersection [6] (left), floating point arithmetic (middle), and fixed
point arithmetic (right). The red circles in the zoomed images mark the most
apparent intersection errors. Concerning precision, floating point and fixed
point arithmetic perform equivalently.

16

m = 10 m = 12 m = 14

m = 16 m = 18 m = 20

m = 22 m = 24 m = 26

m = 28 m = 30 m = 32

Figure 7: The Utah Teapot tesselated into 6320 triangles and rendered using
different bit widths m for the fixed point numbers. This affects the precision
of the components of the triangle edges, normals, and directions. A moderate
precision already allows for artifact free renderings.

17

T = 0 T = 8 T = 16 T = 24

Figure 8: The Utah Teapot at different levels of precision for the division used
in the distance computation, needed while traversing the BIH and during ray
triangle intersection. The T least significant bits of nominator and denominator
(m= 32) are omitted to reduce the number of clock cycles needed for the division.
Only 32− T bits are used for the calculations, so for T = 24 only a 16/8 bit
division is performed instead of 64/32 bits, resulting in unacceptable artifacts.
For smaller values of T, the loss of precision might be negligible and acceptable
compared to the gain of clock cycles.

18

C = 2 C = 4 C = 8

C = 12 C = 16 C = 20

C = 24 C = 28 C = 30

Figure 9: The teapot with different values of the precision parameter C. This
parameter determines how many additional bits the precomputed inverse ray
direction receives. This inverse value is used to avoid a division during BIH
traversal. As it is not well represented using equidistant fixed point values, an
additional C fractional bits are used. Artifacts for large C are due to a truncation
needed to avoid overflows in 64 bit integer arithmetic in software and can be
avoided in hardware by performing computations using greater bit widths.
Inconsistencies for axis-aligned triangles become especially visible for C = 12.

19

