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Figure 1: Equal time comparison (40min, 640×960 resolution): rendering with a virtual lens (Canon 70-200mm f/2.8L at f/2.8)
using spectral path tracing with next event estimation and Metropolis light transport (Kelemen mutations [KSKAC02]). Our
method enables efficient importance sampling and the degree 4 fit faithfully reproduces the subtle chromatic aberrations (only
a slight overall shift is introduced) while being faster to evaluate than ray tracing, naively or using aperture sampling, through
the lens system.

Abstract
In this paper we present a novel approach to simulate image formation for a wide range of real world lenses in
the Monte Carlo ray tracing framework. Our approach sidesteps the overhead of tracing rays through a system of
lenses and requires no tabulation. To this end we first improve the precision of polynomial optics to closely match
ground-truth ray tracing. Second, we show how the Jacobian of the optical system enables efficient importance
sampling, which is crucial for difficult paths such as sampling the aperture which is hidden behind lenses on both
sides. Our results show that this yields converged images significantly faster than previous methods and accurately
renders complex lens systems with negligible overhead compared to simple models, e.g. the thin lens model. We
demonstrate the practicality of our method by incorporating it into a bidirectional path tracing framework and
show how it can provide information needed for sophisticated light transport algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

In the endeavor of ever increasing the realism of physically-
based renderings, much progress has been made in the last
years in improving light transport algorithms and material
models. However, for mimicing real photography we also
have to pay attention to accurately simulate camera lenses.
Only then can we reproduce bokeh and depth of field effects
accurately and match real footage for computer-generated
imagery, e.g. in the movie industry.

In contrast to popular lens models in computer graphics,
real-world lenses often consist of several to dozens of lens
elements and an aperture. Although straightforward, path or
light tracing through these lenses is impractical as it requires
an exorbitant number of paths for converged images (see
Fig. 1). The problem (as opposed to the pinhole or thin lens
model) is that it is not possible to specifically create camera
rays into the scene, or connect light paths to the sensor; and
most of the paths will not even propagate through the lenses
because they hit the diaphragm or the lens housing.
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A camera model which is useful for efficient Monte Carlo
rendering must support the following with little overhead
and deterministic results:

• sampling a new path from the sensor: sample sensor point,
sample aperture, get direction,
• connecting to the lens: sample pupil, get sensor point,
• computing the probability densities for both aforemen-

tioned cases to support bidirectional (Markov chain)
Monte Carlo methods.

In this paper, we present a camera model that can repro-
duce realistic lenses, such as a Canon 70-200mm f/2.8L or
a Lensbaby, with high accuracy yet meeting the above crite-
ria. As in polynomial optics [HHH12] we represent the lens
with a polynomial approximation, however, we show how to
reduce the approximation error by 1–2 orders of magnitude
(measured in pixels, see Fig. 2) compared to previous work.
Our further key contributions are direct sampling techniques
and the computation of probability densities based on the
Jacobians of the polynomial. We demonstrate our method in
a bidirectional Monte Carlo framework where it is crucial
that path and light tracing yield exactly equivalent results,
and compare to direct ray tracing as well as previous work
in terms of accuracy and computation time. Our method re-
quires only negligibly more computation than a thin lens
model and enables importance sampling without need for
tabulation and handles small apertures efficiently. It supports
all aberrations, vignetting, enables focusing via sensor shifts
and faithfully reproduces interesting point spread functions.

2. Previous Work

Lens Systems in Raytracing Simulation of more sophis-
ticated camera lens distortion models than the thin lens
model was introduced to computer graphics by Kolb et
al. [KMH95]. Other aberrations, wavelength dependent ef-
fects and some diffraction effects were added later by Stein-
ert et al. [SDHL11]. Their methods reproduce a variety of
realistic effects, but were not practical because of long com-
putation times and the need for tabulation for every lens con-
figuration (aperture, focus). Furthermore, the integration into
existing Monte Carlo rendering frameworks was hard due to
the specific set of requirements of such frameworks, e.g. the
evaluation of probability densities.

Brute force ray tracing through lens systems is not only
computationally expensive, but also complicates importance
sampling: casting a ray from the sensor through the aper-
ture is an “SDS” problem (the aperture with specular vertices
before and after). Specialized sampling techniques, such as
Metropolis light transport with manifold walks [Jak13] in-
side the lens, are possible but intricate and most importantly:
complex camera paths complicate every transport path in the
image. Our sampling scheme avoids the explicit representa-
tion of the specular chain while being similar to specular
manifold walks in effect.

canon zoom border canon zoom center

offset 11.7mm 8.8mm 5.8mm 2.9mm 0
border 147.99 - Taylor [HHH12]
center 39.89 26.03 16.25 7.91 0.00
border 0.93 - our method
center 0.23 0.38 1.10 0.92 0.00

Figure 2: A comparison of the pixel error for a 36mm/2k
sensor back between previous work (Taylor expansion
around the optical axis) and our method for λ = 500nm. The
individual numbers in each row correspond to the differently
colored rays.

Lens Approximations The first-order paraxial approxima-
tion [Gau41] by ABCD matrices has been used for image for-
mation in pencil tracing [STN87] and more recently for real-
time lens flares [LE13]. Our approximation is third-order
(fourth-order if wavelength is included) to support the aber-
rations described by Seidel optics [Sei57]. We perform first-
order analysis to transform probability densities using the
Jacobians of our functions.

Using polynomials to approximate lens distortions is
common practice in photography applications [KZB∗07,
CJC∗10]. However, these account for image distortions only
and do not cover point spread functions (such as in Fig. 11).

Polynomial Optics Systems of polynomials from Taylor
expansions have been used to approximate transformations
through an optical system on the full four dimensional in-
cident light field [HHH12]. These functions capture all in-
teresting aberrations and enable fast rendering of lens flares.
However, naively using this approach as a camera model in
a Monte Carlo renderer reveals a number of weaknesses:

• the precision of the Taylor expansion is sufficient for lens
flares, but its inaccuracy leads to unacceptable results with
regard to image distortion, sharpness, and bokeh (e.g.
more than 140 pixels at the image boundaries, see Fig. 2),

• practical rendering with lens systems requires the evalua-
tion from both the sensor and the light sources,

• to perform multiple importance sampling probability den-
sity functions for both sampling techniques must be
known,

• in the original work there is no easy way to focus the lens,
• the plane/sphere light-field parametrization in [HHH12]

is suboptimal for image formation (see Sec. 3.1)

Some of these requirements involve finding roots of the
polynomial system. For the general case, algorithms and
software packages, such as [GKK∗04, LLT08], exist. How-
ever, our systems are comparatively small and we show how
a simple Newton iteration converges well in our case.
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Figure 3: We choose a paraxial plane/plane parametrization
of the light field around the optical axis (see Sec. 3.1).

3. Background on Lens Systems and Light Fields

In this section we introduce the background for our work. We
start by formalizing the light transport through a lens system
and recapitulate the well-known thin lens model which we
then generalize to complex lenses.

3.1. Light Fields and Polynomial Optics

In order to describe the image formation – the gathering of
light and focusing on the sensor plane – we use a plane/plane
parameterized light field (see Fig. 3). The light field at a po-
sition x = (x,y,u,v,λ) is parameterized based on the spatial
position x, y in a plane perpendicular to the optical axis of
the lens system, u, v define a direction vector ω = (u,v,1),
and λ denotes the wavelength of light.

As pointed out by Igehy [Ige99, Sec. 2], the linearized
paraxial approximation used in pencil tracing [STN87] does
not accurately represent the propagation of rays through
empty space due to the plane/sphere parameterization. Us-
ing the plane/plane parameterization instead makes paraxial
transport between parallel planes precise at first degree al-
ready. As a consequence, empty-space transport Jacobians
are non-approximate, which enables focusing with our algo-
rithm. Lastly, a plane/sphere parameterization would not al-
low rectilinear lenses with a minimal number of coefficients.

Lenses can be seen as a transformation of light fields
as radiance propagates through the photographic objectives.
Fig. 4 shows a simple lens system. The transport between
two locations y and x can be approximated by a function
P′(y) = x which transforms the lightfield (x,y,u,v,λ) at y to
(x′,y′,u′,v′,λ) at x (λ is constant as we assume that lenses
do not fluoresce). We use a 5×4 polynomial system to rep-
resent this function [HHH12].

3.2. The Thin Lens Model

In this section, we briefly recapitulate path and light tracing
and importance sampling with the simple, well-known thin
lens model. We use this model as an example to introduce the
general notation required for more complex lens systems.

thin lens

a=y

x

Figure 4: Schematic of the thin lens model. The aperture and
the flat lens are imagined to fall into the same plane. The
colors denote different rays (not wavelengths) with spatial
offsets on the outer pupil. The point x is on the sensor, a is
on the aperture and y on the outer pupil.

To compute an image with Monte Carlo raytracing, we
integrate the measurement contribution f over vertices x on
the sensor and a on the aperture, where ωo is the direction of
the ray at the outgoing pupil at y (Fig. 4). Note that a and y
coincide in this case. The measurement contribution [Vea97]
is defined as:

f = L(y,−ωo)G(y↔ x)W (x), (1)

where L denotes radiance, G is the geometric term, and W is
the sensor responsivity.

Path tracing samples a point x proportional to a prob-
ability density function (PDF) p(x) on the sensor, and a
point a ∼ p(a) on the aperture. This defines the ray di-
rection ωs = a− x off the sensor with density p(ωs) =
p(a)/G(a ↔ x). The probability density of the outgoing
point and direction (y,ωo) is then the density of (x,ωs)
transported through the optical system. In this simple case
p(y,ωo) = p(x)p(ωs)G(a ↔ x). This means that the geo-
metric term cancels out of the combined PDF, but stays in
the measurement contribution. The estimator then becomes

1
N ∑L(y,−ωo)

G(a↔ x)W (x)
p(x)p(a)

. (2)

Light tracing creates paths starting from light sources and
connects path vertices to a point on the lens y ∼ p(y) with
incident direction ωo. Again, the inward facing direction
ωs and x follow deterministically, resulting in an on-surface
density p(x) = p(ωs)G(y↔ x). The estimator is then simply

1
N ∑L(y,−ωo)W (x)/p(y), (3)

as the geometric term G(y↔ x) appears in both the sampling
density p(x) and the measurement contribution and thus can-
cels out, which makes the weights simple to compute.

Note that often the inverse of the geometric term G(y↔ x)
is implicitly baked into the sensor response W (x) to avoid the
vignetting effect that comes with the cosine terms.

c© 2014 The Author(s)
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Figure 5: Schematic of an Angenieux lens. The transforma-
tion of the lightfield from outer pupil y to x is considered to
be a black box function evaluation P′(y) = x. The light field
at x is then transported to x′ on the sensor in focus.

4. Beyond the Thin Lens Model

To support arbitrary lens systems, we need to extend the
probability densities in Sec. 3.2 to account for lens elements
between the aperture and both the outer pupil and the sen-
sor (compare Fig. 4 and 5). We also need to be able to focus
the lens by other means than just implicitly altering the focal
length of the imagined lens element in the thin lens model.

4.1. Geometric Terms from Transport Jacobians

We start from the thin lens model (Fig. 4): to evaluate
the geometric term G(a↔ x) required in the path tracing
case, we express the transport between a and x in parax-
ial plane/plane parametrization and assume that we can rep-
resent the mapping of the light field at x = (x,y,u,v,λ) to
a = (x′,y′,u′,v′,λ) using a polynomial system Pa(x) = a
(For an intuition what these polynomials look like we pro-
vide example equations in the additional material). Ignoring
wavelength for now, the Jacobian of the transport operator
P(x) in empty space is

Jx→a =

(
I T
0 I

)
∈ R4×4 with T =

(
d 0
0 d

)
(4)

where I is the 2× 2 identity matrix and d is the distance
along the optical axis between a and x. This means (u,v) stay
constant and (x,y) are moved by distance times direction.
Note that in this simple case the first-order version of our
function is already precise.

This analysis is required to compute the first-order differ-
entials as they appear when expressing the geometric term
as ratio of differentials G = dω

⊥/dA (e.g. when performing
a change of variables in integration). This is closely related
to the formulation using ABCD matrices [STN87, Sec 4.2].
For path tracing, the geometric term in plane/plane parame-
terization G||(a↔ x) can then be written as:

G||(a↔ x) = 1/|T |, (5)

because T is the block which maps directional components

to spatial ones. In the case of the thin lens model, this corre-
sponds to the inverse square law 1/d2. Note that we need ad-
ditional cosine terms to convert the plane/plane parametriza-
tion to solid angle and further to projected solid angle (the
space of the geometric term, see Appendix A). Finally, this
yields the well-known formula for the geometric term for
projected solid angle to vertex area measure:

G(a↔ x) = cos4
θ/d2. (6)

In a more complex lens model, the probability densities
p(x), p(a) and p(y) are derived analogously to the thin lens
model from the transport polynomials, the only difference
is that there can be additional lens elements between x and
a and between a and y (see Fig. 5). In effect, the measure-
ment contribution (1) remains the same, only G(y↔ x) now
becomes a generalized geometric term [Jak13]. As a conse-
quence, the Jacobian Jx→a will be different, but the relevant
determinant will still be formed from the B component of
the ABCD-matrix (mapping angular densities to spatial den-
sities), analogous to Eq. (5). Note that light tracing does not
need the evaluation of any Jacobians (Sec. 3.2).

4.2. Accurate Polynomials for Image Formation

After introducing the basic concept of our lens model, the
next step is to derive an accurate polynomial mapping rep-
resenting complex lens systems with equally high precision
over the entire image plane. Hullin et al. [HHH12] used a
Taylor series to approximate the mapping of a lens system,
analytically expanded around the center of the screen. As a
consequence, the quality of the approximation severely de-
grades towards the image boundaries. While this is tolerable
for lens flare rendering, it is unacceptable for image forma-
tion (see Fig. 1,2 and 13).

Initial Polynomial We recall that all interesting aberrations
are phenomenologically present when using polynomials of
degree 3 or higher [Sei57]. This is why in our approach the
minimal Taylor expansion of degree 3 (4 with wavelength
dependency, see below) serves as a starting point for a sub-
sequent optimization of the polynomial. We create this ex-
pansion using the same approach as previous work, by sym-
bolically inserting analytically created Taylor expansions of
individual lens elements into each other. This process is iter-
ated through the lens description table, starting at the outer
pupil towards the sensor. The polynomials for each individ-
ual element (such as transmission through a spherical ele-
ment or propagation through empty space) are created us-
ing a computer algebra program, the coefficients of the com-
bined polynomials are computed in C++ code [HHH12].

Optimization We then use non-linear least squares
(Levenberg-Marquardt) optimization over the coefficients
to match a set of randomly ray traced ground truth samples.
We create a set of several thousands of valid paths through

c© 2014 The Author(s)
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the lens system by first sampling the sensor uniformly
and shooting towards the inner pupil of the lens system.
We transform the light field at every intersection using
Snell’s law. This results in many absorbed rays (e.g. hitting
the aperture or lens body, see Table 1), and we only keep
surviving paths for fitting. The paths are samples of the
transformation of the light field at the sensor to the light
field at the outer pupil. The error measure when fitting
the polynomial is the L2 norm of the 4D difference vector
of a path’s computed transformation and the polynomial
evaluated for the same path through the lens system. We
use Levmar [Lou04] to optimize the coefficients of the
polynomials; derivatives are computed via finite differences.
This proved to work well for all lenses we tested (except the
fisheye lens, see Fig. 6), as the initial Taylor series, although
unacceptable for image formation, is not completely off.

Spectral Dimension The wavelength λ is a dimension in
the polynomial (not discretized before fitting) so we can
change it continuously in a spectral rendering context. If
grey transport is sufficient, this dimension can be left con-
stant and the symbol λ can be removed from the formulas.

Discussion As an alternative to polynomials, we also im-
plemented 5D piecewise cubic tensor product splines which
provide high precision interpolation at low degree. Unfortu-
nately the 5D domain of definition of the lens system is not
aligned with the tensor product cube: when choosing loca-
tions on the sensor and the inner pupil as parameters only
a small percentage of that domain actually corresponds to
paths passing through the lens. Even unphysical, mathemati-
cally smooth extensions of the domain as proposed by Hullin
et al. [HESL11] reaches its limits when a ray completely
misses the spherical element, or when Fresnel’s laws dictate
total internal reflection. This leads to many unknown control
points with huge impact on the behaviour of the interpola-
tion, which then need to be optimized, too. Lastly, evaluating
the splines will not be data-free and slower to compute.

Example To summarize the process, we give an example
how to compute the Jacobian Ja→x for the lens shown in
Fig. 5. It has eight combined propagations and interface in-
teractions on the way from the sensor to the aperture. We
first go through the lens description table and extract poly-
nomials Pi for each interface i and the following propagation
up to the next interface. The combined polynomial is then
Pa→x = P7 ◦P6 ◦P5 · · ·P0. The fitting process then optimizes
the coefficients of the polynomial to better match ray traced
ground truth. The Jacobian is constructed by symbolically
taking the 16 partial derivatives dP{x,y,u,v}/d{x,y,u,v}.

4.3. Focusing

For practical reasons, focusing in real lenses is usually ad-
justed by moving only a few lenses inside the housing. In
our virtual lenses, we can achieve the same effect by moving

fisheye

Figure 6: Fail case of our plane/plane parametrization
choice, a fisheye lens with 220 degrees field of view. The den-
sities are extremely compressed through the optical system
and the Taylor expansion (green line segment at pupil, aper-
ture, and sensor) does not line up with the ray traced ground
truth (gray path) at all. Even if fitting was done for this sys-
tem, plane/plane coefficients could never represent a field of
view larger than 180 degrees. See the additional material for
a working wide angle example.

the sensor plane instead (which allows us to keep the poly-
nomial fixed).

In terms of our representation this means that we express
the transport through lens elements (between x and y) as one
polynomial as described above, and add another short trans-
port step between x and the point on the sensor x′ (Fig. 5).
In path tracing we sample x′ and determine the outgoing di-
rection (see Sec. 5.2), and then intersect this ray with the
lens black box yielding x. In this case the Jacobian under-
goes another transform, Jx′→x, multiplied from the right to
the one described in Sec. 3.2. The subblock determinant has
to be taken of the product of these two matrices. We can
do that without approximation because first-order transport
through empty space is lossless in plane/plane parametriza-
tion. In the case of light tracing we intersect the ray exiting
the lens black box at x with the sensor to determine x′; as
before, no additional Jacobian is required in this case.

5. Monte Carlo Rendering with Polynomial Lenses

In this section we describe how to use our lens model,
i.e. the improved polynomial representation of a camera lens
(Sec. 4.2), in Monte Carlo rendering algorithms.

5.1. Bidirectional Transport through Lenses

In Sec. 4 we introduced our model and improved the ac-
curacy of the polynomial representation. This polynomial
P′(y) = x transports light from the outer pupil to the sensor.
For the opposite direction (path tracing), we need the adjoint
polynomial P(x) = y. In principle, we can construct it in a
straightforward way by processing the lens description table
in the reverse order.

c© 2014 The Author(s)
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evaluate_reverse:
input : y[x,y,u,v] point on the outer pupil
output: x[x,y,u,v] point on the sensor

// evaluate (approximate) adjoint polynomial
x = P’(y)
// Newton iterations
for(int it=0;it<8;it++) {

// forward evaluate to get error vector
y* = P(x[x,y,-u,-v])
delta = y - y*[x,y,-u,-v]

// adjoint Jacobian
Ji = jacobian’(y*[x,y,-u,-v])
x += Ji * delta

}

Figure 7: Pseudo code of the reverse evaluation procedure.
Usually 4-8 steps are enough to get a converged solution.

However, every evaluation P(x) or P′(y) has an O(d +1)
approximation error for polynomials of degree d and this
error causes different results for path and light tracing, i.e.
evaluating P(x), flipping the sign of the direction and then
evaluating P′(.) on that will not end up on the same point.
Our improvement of the precision of P(x) (Sec. 4.2) to
match the reciprocal ray traced solution more closely re-
duces the error significantly compared to a pure Taylor ex-
pansion. Nevertheless, there still remain errors for large
apertures and wide angles.

In order to remove the discrepancy between the two direc-
tions we declare one as the “reference” and adjust the other
direction to match it. We decided for the path tracing direc-
tion P(x) as reference, as this case is more common in ren-
dering than connecting a light path to the camera. To accom-
plish the matching of light tracing, we use Newton’s iteration
with x = P′(y) as the initial guess and the adjoint Jacobian
J′(y) in subsequent iteration steps. Note that we use J′(y)
rather than J−1(y), as the adjoint Jacobian is both faster to
compute and numerically more stable than the matrix inver-
sion. Fig. 7 details this procedure as pseudo code.

5.2. Importance Sampling the Aperture

When sampling locations on and directions off the sensor to
generate rays (path tracing case) many of these rays will hit
the housing or the aperture (and be absorbed), which can be
avoided by importance sampling the aperture. To this end,
we proceed analogously to path tracing with the thin lens
model and sample points x′ on the sensor and a on the aper-
ture. The sampling densities are those described in Sec. 4.

In contrast to the thin lens model, there are lens elements
between these two points and we first need to determine the
directional component (u,v) at x. The direction at a will then
follow from a = Pa(x).

sample_aperture:
input: x’[x,y,u,v]

a [x,y,u,v]
[x,y] fixed and [u,v] initial guess

dist, distance x’ to x
output: updated [u,v] components

for(int k=0;k<4;k++) {
// move to start of polynomial blackbox
x = [x’[x,y] + dist * x’[u,v], x’[u,v]]
// predict point a* on aperture
a* = Pa(x)
Ja(x) = [ dx/du dx/dv ]

[ dy/du dy/dv ]
Ji = invert(Ja)
delta = (a - a*)[x,y]
x’[u,v] += Ji * delta

}
a[u,v] = a*[u,v]

Figure 8: Pseudo code of the optimization procedure. Usu-
ally 2-4 steps are enough to get a converged solution.

tessar anamorphic xz tessar anamorphic yz

Figure 9: Tessar 100mm design with a custom anamorphic
converter using cylindrical elements at f/8.0. The illustra-
tions in the top row show xz and yz projections. The image
shows clearly visible aberrations caused by the poor design
of the converter. Right: point spread functions for the chan-
nels red, green, blue (from top to bottom).

In principle we have to connect two points (x and a)
through a specular chain of interactions (lens elements),
which is related to manifold exploration [Jak13], however,
we do not have a valid seed path to start from. But again, we
can make use of our polynomial lens description: it proved
to be sufficient to use the direction pointing from x to a ig-
noring the lens system at first as an initial guess, and re-
fine using Newton’s method. This iteration (Fig. 8) uses the
2× 2 block (dx,dy)× (1/du,1/dv) out of the Jacobian and
converges quickly. The parameter dist in the pseudo code
handles sensor offsets for focusing (see Sec. 4.3).

c© 2014 The Author(s)
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Figure 10: Images taken with a single bi-convex, uncorrected 35mm lens equipped with an aperture at f/2.8. Left: rendering
with a fitted polynomial of degree 4. Right: using a polynomial of degree 1 using plain Taylor coefficients: this model has too
few degrees of freedom and a fit to the ray traced solution would result in an overall blurry image.

Figure 11: Point spread functions evaluated with our fit for a simple lens (single bi-convex lens, same as Fig. 10). The shape of
the dots changes towards the borders of the image due to clipping at the hexagonal aperture. The right image shows how the
dots which are too close to be in focus turn red whereas the points too far away turn blue due to chromatic aberrations.

6. Implementation Details

We compute the initial polynomial from the Taylor ex-
pansion using the source code provided by Hullin et
al. [HHH12], and use the levmar package [Lou04] to opti-
mize its coefficients. In order to obtain high performance, we
compile the polynomials P(x),P′(y) and Pa(x) as c99 code
to be included in our rendering framework. The resulting
code is 20x (forward evaluation)–60x (aperture sampling)
faster than interpreting the polynomial from lists of coeffi-
cients. Note that it is necessary to write the code out in full
floating point precision (i.e. using %g not %f in fprintf)
as the coefficients can be very small. We found, however,
that single precision floating point arithmetic is sufficient for
our needs.

As we simulate transport through dispersive camera
lenses, we use spectral rendering: we use bidirectional
path tracing with multiple importance sampling weight-
ing [Vea97] where every path transports spectral radiance
for one differential wavelength. To assure that the bokeh
matches exactly between path tracing and light tracing, we
clip the rays at the inner pupil, the outer pupil, and the aper-

ture. We only need to do that explicitly for the openings
which were not sampled directly.

7. Results

All our images were created on an Intel Core i7 hexacore
with 3.20GHz. Fig. 9 shows results for an anamorphic lens
design. These are well represented in our framework since
we work on the full 4D light field.

Our formulas degenerate to a rectilinear model if only
first-order terms are used (see Fig. 10), resulting is a trans-
form similar to the thin lens model. Fig. 11, using the same
simple bi-convex lens as in the previous figure, shows point
spread functions to illustrate that our method produces the
five Seidel aberrations (coma, spherical aberration, curvature
of field, astigmatism, distortion) and chromatic aberration.
Fig. 12 illustrates a combined effect of aberrations, where
a small f-stop value introduces overall contrast loss and a
slight color shift.

Table 1 shows the survival rates of samples through the
lens system, i.e. the ratio of primary rays created off the sen-
sor actually exiting the lens into the scene. The maximum
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Figure 12: A simple lensbaby-like lens (achromatic dou-
blet) at f/2.8 (left) and f/8.0 (right). Stopping down improves
sharpness and contrast.

number reported for pre-tabulated pupil sampling [SDHL11,
Table 1] is 87.6% for the Brendel Tessar design at f/2.8. Our
data-free aperture sampling yields 99.1% for this setting, and
100% at f/4.0. As can be seen, our technique yields close to
optimal survival rate, even though we only explicitly sample
the aperture and not the combination of outer pupil and aper-
ture. Apparently, good lens design takes care that rays pass-
ing the aperture also penetrate through the outer pupil. This
is also supported by the scatter plots in [SDHL11, Fig. 9] and
Fig. 11 (middle), which suggests that the elliptical shape of
the point spread function is due to distortion of the aperture
shape, not due to clipping at the outer pupil. The reduced rate
of survivors in pupil sampling [SDHL11] is probably due to
the conservative nature of the fitted circle bounding the pixel
pupil. Also note that we can sample the shape of the aperture
directly (e.g. six rounded blades vs. full circle).

A performance evaluation of our algorithm is difficult: as
it does not access any data, but is compute-only, some of its
overhead is hidden by memory fetches during ray tracing in a
full rendering system. Tracing a ray through the Canon zoom
lens, for example, takes 26 times longer than evaluating the
corresponding polynomial of degree 4 in a standalone unit
test. We further implemented ray traced aperture sampling
based on Jacobians from ray differentials (also used in Fig-
ure 1). We compute the offset at the inner pupil using trans-
port matrices obtained from a manifold walk aiming to end
at the aperture point [Jak13]. Ray tracing through the sys-
tem does not always succeed (Sec. 4.2). Taking the optical
axis as starting point for the iteration is possible, but leads
to increased iteration counts. Our experiments use a con-
stant number of iterations for better comparison and yield
the following timings relative to the evaluation of the thin
lens model:

thin lens model 1.00x
lens (no glass between aperture and sensor), degree 1 0.94x
lens (no glass between aperture and sensor), degree 4 1.18x
four lens elements, polynomial degree 4 2.98x
Canon zoom lens, polynomial degree 4 2.98x
Canon ray traced/ray differentials 85.00x

If no lens elements are placed between the aperture and the
sensor, aperture sampling converges in the first iteration and
is thus faster compared to the general case.

lens Canon zoom Simple Tessar
f/# IS RT IS RT IS RT PS
f/16 100 0.2 100 0.7 100 2.4 -
f/11 100 0.3 100 1.5 100 5.0 -
f/8 100 0.6 100 2.9 100 9.4 85.7
f/5.6 100 1.2 100 5.9 100 19.3 -
f/4.0 100 2.4 100 11.6 100 37.5 -
f/2.8 100 4.9 100 23.7 99.1 64.2 87.6

Table 1: Effectiveness of aperture importance sampling. The
numbers show the percentage of started rays that make it
through the lens system without being absorbed by the hous-
ing or the aperture blades. IS is our importance sampling,
RT straight forward ray tracing, PS pupil sampling (taken
from [SDHL11] where available). Since we only sample
the aperture, not the combination of aperture and outgoing
pupil, the effectiveness of our method degrades slightly at
smaller f-stop values.

Figure 14: Rendering with the Canon zoom lens (left) and
after lens corrections applied in external photography soft-
ware (center). The software uses correction data of the real
lens. Our method is so accurate that this correction can be
directly applied and also straightens the barrel distortion of
our renders. Right: difference image (inverted for print) be-
fore and after correction.

Fig. 13 shows how badly the plain Taylor expansion
matches ground truth, even if wavelength-dependency is ig-
nored. In contrast, we applied third-party lens correction
software [KZB∗07] to our render to demonstrate that real
world calibration data for this lens design matches the dis-
tortions we synthesize (see Fig. 14).

As additional material, we provide Maxima [Max13]
sheets for the plane/plane parametrized Taylor expansion, as
well as source code to compute an image using a simple lens
system. The latter uses the smallpt source code [Bea10] and
adds minimalistic lens code for path tracing (without aper-
ture sampling).

8. Limitations and Future Work

A failure case for the plane/plane parametrization is a fisheye
lens (Fig. 6). This is a widely acknowledged special case and
handled separately in many models [CJC∗10]. We handle
wide angle lenses reasonably well (see additional material).
Extreme cases, however, require fall back to the slower ray
traced aperture sampling.
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Figure 13: A Canon zoom lens (f/2.8L 70-200mm) at f/8.0 rendered using Taylor expansion [HHH12] (left) and our fitted
polynomial (center). The wavelength dimension is problematic in the Taylor series. The fit shows that this design is in fact
an excellent lens. Right: using a gray Taylor series, i.e. ignoring the wavelength domain and fixing λ = 500nm, avoids color
fringing. Note, however, how the difference image reveals the wrong barrel distortion.

While our importance sampling of the aperture works
very well for the path tracing direction, we can only con-
nect to the outer pupil in the light tracing case. Recall that
we declared the path tracing polynomial P(x) = y as the ref-
erence which maps points on the sensor to the outer pupil.
In aperture sampling in light tracing we would have a fixed
point on the scene geometry and sample one on the aper-
ture. Determining the inbetween point on the pupil using
P(x) = y is difficult and subject to constraints regarding x
and a. Another issue is that sampling the aperture is not the
best strategy in this case, as certain object points will be im-
aged onto the sensor only through a small fraction of the
aperture (Fig. 2, border case).

As Hullin et al. [HHH12] we do not consider Fresnel’s
laws when evaluating ray transmission. Our results will thus
be consistently too bright. As lens manufacturers try to opti-
mize for high transmission this should be reasonably close to
reality. Nevertheless, our primary goal is an efficient, practi-
cal rendering method and not lens design, but precision can
always be increased by using higher order polynomials.

We implemented spherical and cylindrical elements.
Prisms and aspherical elements could be handled in the same
framework. Provided that there is a ray traced ground truth,
aspherical elements could probably be added via fitting of an
initial polynomial from a spherical element.

It would be interesting to apply the fitting procedure also
to lens flare rendering and evaluate the visual difference of
the improved accuracy.

9. Conclusion

We showed how a precise polynomial approximation to op-
tical lens systems can be used for image formation in a
bidirectional Monte Carlo path tracing context. The result
closely matches the ray traced ground truth. The computa-
tional overhead over the well-known thin lens model is only
small, and since we do not access any data it can, to some
extent, be hidden between memory accesses taking place in
ray tracing. Sampling the aperture results in close to opti-
mal ray survival rates and all features of a modern Monte

Carlo renderer are supported. Bidirectional path tracing, as
well as lens perturbations in Metropolis light transport are
supported, as the generalized geometric term cancels out
of the ratio measurement contribution/transition probability.
Lastly, ray differentials can be implemented using the Jaco-
bian of the polynomial system.
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Appendix A: Converting Plane/Plane Jacobians to
Projected Solid Angle

Consider the Jacobian of an optical system in plane/plane
space:

Jx′→a = Jx→a ·F =

(
A B
C D

)
,

where F is the matrix that traces the ray from the focused
sensor plane x′ to the start of the black box x.

To apply this transformation to a ray x̂′ in solid angle
space (plane/sphere parametrization), we need to renormal-
ize the directional part from L2 norm to L∞ norm by multi-
plying the Jacobian from the right with

N =

(
1

l

)
Jx′→a ·N =

(
A l ·B
C l ·D

)
where l is the length of the directional component (u,v) in
plane/plane parametrization l =

√
1+u2 + v2 or 1/l = cosθ

which is used to convert (u,v) to solid angle space (ξ,ζ).

Along the lines of [STN87], the combined Jacobian deter-
minant of the B block in solid angle space is then |dxdy|

|dξdζ| =

|l ·B| = l2|B| = |B|/cos2
θ. We then compute the general-

ized geometric term as the ratio between projected solid an-
gle measure dω

⊥ and vertex area measure dA:

G(x′↔ a) = dω
⊥/dA

=
dξdζ · cosθ

dxdy/cosθ

= cos4
θ/|B|.
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