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Figure 1: Our new importance sampling strategy allows easy inclusion of Marschner and related hair reflectance functions in physically-
based Monte Carlo renderers. Here we show hair volumes illuminated by environment maps and area lights with unbiased global illumination
(computed using a forward path-tracer with multiple importance sampling). Our sampling strategy requires no precomputation, so it is easy
to vary the absorption along the fiber (second image), and to add noise to the index of refraction, roughness, and scale tilt to create subtle
heterogeneity along each fiber. Each image is 1024 samples/pixel.

Abstract

We present a new strategy for importance sampling hair reflectance
models. To combine hair reflectance models with increasingly pop-
ular physically-based rendering algorithms, an efficient sampling
scheme is required to select scattered rays that lead to lower vari-
ance and noise. Our new strategy, which is tied closely to the
derivation of physically-based fiber functions, works well for both
smooth and rough fibers based on the Marschner et al. model and
also for Lambertian fibers. It should be directly usable with future
hair reflectance models that allow for more general cross-sections
and more complex surface properties, provided the lobes are de-
rived in a similar, separable fashion. Our strategy includes lobe
selection and can efficiently sample complex lobe shapes like the
Marschner TRT function. The scheme is easy to implement and
requires no precomputation, allowing fully heterogeneous variation
of all fiber parameters.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing;
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1 Introduction

Believable computer generated characters require believable hair.
For rendered hair to appear realistic the Bidirectional Curve Scat-
tering Distribution Function (BCSDF) used to simulate the light

�a�Longitudinal Analysis �Θ�

α

Figure 2: Refracted pathways through a hair fiber. Single
Reflection (R), double transmission (TT), transmission-reflection-
transmission (TRT) and so on.

interaction with the individual hair fibers must be accurate—all of
the visibly relevant behaviours seen in plausible illuminations of
typical hair volumes must be well approximated.

Previously in graphics, the fiber model of Kajiya and Kay [1989]
remained predominant until Marschner et al. [2003] introduced the
factored-lobe analytic BCSDF that remains the basis of most high-
accuracy, parameteric hair rendering today. Factored-lobe BCSDFs
decompose the reflectance into separate modes of propagation—
direct reflection (R), double transmission, (TT) and paths with one
or more internal reflections (TRT, TRRT, . . . ) (Figure 2). The to-
tal reflectance function S is the sum of all such lobes Sp, indexed
by p, the number of internal path segments traversed by light rays
contributing to that mode (Figure 2),

S(θi, θo, φ) =
∞

∑
p=0

Sp(θi, θo, φ). (1)

Many Monte Carlo rendering algorithms, such as path tracing, re-
quire efficient schemes for randomly selecting samples (directions
and weights) with a statistical distribution that is close to the re-
flectance function of the material being simulated. We derive a
practical, analytic, easy-to-implement importance-sampling strat-
egy for several recent physically-based factored-lobe BCSDFs, al-
lowing their efficient combination with these rendering algorithms.



2 Related work

Our new sampling strategy works for fiber models including those
of Zinke and Weber [2007], who introduced the formalism of BCS-
DFs. They also derived a near-field model, important for close
rendering of hair fibers. We use the energy-conserving longitudinal
term of d’Eon et al. [2011] and Zinke and Weber’s [2007] method
of treating azimuthal roughness—these remove the requirement for
root-solvers and careful treatment of caustics required in the origi-
nal Marschner model.

The Marschner, Zinke and d’Eon models are the most physically
accurate parametric models, but no analytic sampling scheme has
been previously presented for these full models. Hery and Ra-
mamoorthi [2012] presented importance sampling for the R lobe of
Marschner et al. [2003] and Ou et al. [2012] presented importance
sampling for the full model of Sadeghi et al. [2010]. The Sadeghi
model allows more intuitive user control of the hair appearance,
but isn’t as physically accurate as other models. Our sampling of
the NR function closely corresponds to both of these related works,
but our approach also handles the complex T T and T RT lobes that
closely match the transport of light within dielectric cylinders. In
addition, we handle lobe selection automatically in a fashion that
works well regardless of the angle of incidence or absorption level
and we present the first longitudinal sampling scheme that accounts
for all angular variables.

Our sampling scheme can be used for direct illumination sampling
(where indirect illumination may be approximated by Dual Scatter-
ing [Zinke et al. 2008]) and also for indirect illumination, where
sampling at each vertex of a random path is used to create photon
maps within hair volumes [Moon et al. 2008] or within a variety
of unbiased path-tracing algorithms [Veach 1997]. For an extensive
review of hair shading, animation and modeling techniques we refer
the reader to the survey by Ward et al. [2007].

3 Hair BCSDF Importance Sampling

We begin with some notation. Following the convention of
Marschner et al. [2003], directions are measured in a spherical co-
ordinate system centered on the fiber axis, with θi and θo measuring
inclinations to the normal plane of the fiber and φ = φo − φi mea-
suring the azimuthal difference between the incident and reflected
directions. Each lobe is factored into a longitudinal scattering func-
tion Mp and an azimuthal scattering function Np:

Sp(θi, θo, φ) = Mp(θi, θo)Np(θi, θo, φ). (2)

Note that our notation differs from previous work by including all
inclination-dependent factors in Mp, such as the cos2

θd term of
the original Marschner model. Notation is simplified by referring
to the longitudinal difference angle θd = (θo − θi)/2. The rela-
tive index of refraction η of the hair to the surrounding medium is
typically fixed at 1.55. Given θd , η , and the offset h ∈ [−1, 1] of
an incoming ray from the fiber axis (Figure 2), a Bravais analysis
gives the azimuthal distributions compactly using γi = arcsin(h),

γt = arcsin( h
η ′
), η

′ =

√
η2−sin(θd)

cos(θd)
to predict the relative change in

azimuth
Φ(p, h) = 2 p γt − 2 γi + pπ (3)

for each mode p being considered. For rough fibers we use the
azimuthal functions Np of d’Eon et al. [2011] evaluated using a 70-
point Gaussian quadrature

Np(φ) =
1
2

∫ 1

−1
dh A(p, h)Dp(vp,N , φ −Φ(p, h)). (4)

Here, the attenutation terms A(p, h) and the wrapped Gaussian Dp
of variance vp,N are those given by d’Eon et al. [2011]. The ef-

fects due to tilted scales are simulated approximately by perturbing
the specular cone angles slightly, θcone,R = −θi + 2α, θcone,T T =
−θi − α, θcone,T RT = −θi − 4α, where α is the scale tilt angle.

We now describe our importance sampling strategy, using the hair
reflectance model of d’Eon et al. [2011] as an example. Alterna-
tive longitudinal functions (and sampling for those functions) can
be substituted and the remaining elements of the approach remain
unchanged.

3.1 Strategy Outline

A good importance sampling method for a BCSDF starts with a
fixed incoming direction (θi and φi) and produces random out-
going directions (θo and φo) with a distribution that is close to
S(θi, θo, φ) cos2

θo (one cosine for the spherical coordinate system
and another for the geometric projection to the fiber). We begin
with lobe selection, by using uniform random sampling of a posi-
tion h along the cross section of the hair fiber. Given this offset h,
we first use the attenuations through a smooth fiber at this offset h
for selecting a lobe, then use the same h to choose θo and φ . Because
the longitudinal functions Mp in Equation 2 are independent of az-
imuth, we sample θo first, and then sample the azimuthal direction.
For the former procedure, we derive perfect importance sampling
for the energy-conserving longitudinal term of d’Eon et al. [2011].
Then we show how to use Equation 3 to importance sample the az-
imuthal functions Np for smooth (vp,N = 0) hairs. To sample rough
hairs, we use an additional Gaussian random variable applied to the
exitant azimuth predicted by the smooth hair sampling. The result
is an analytic, easy to implement, and efficient sampling scheme
requiring no precomputation.

3.2 Importance Sampling the Longitudinal M function

We use the longitudinal scattering function M(v, θcone, θo) of d’Eon
et al. [2011] for all lobes

M(v, θc, θo) =
csch(1/v)

2v
e

sin θc sin θo
v I0

[
cos θc cos θo

v

]
1

cos θo
. (5)

For additional numerical recipes for evaluating this function,
see [d’Eon 2013]. The derivation of this M function was to con-
volve a Dirac circle δ(θ − θcone) on the surface of a sphere by a
spherical Gaussian and then take the longitudinal distribution of
that result to be the spreading in θ due to roughness. To sample
this with a single random number seems intractable. However, with
two uniform random variables ξ1 and ξ2 each within [0, 1) we can
importance sample M cos2

θo perfectly. We start with the impor-
tance sampling of a spherical Gaussian of variance v (being careful
of numerical issues for low variance [Jakob 2013])

u(ξ1) = v log
(

e1/v − 2ξ1 sinh
1
v

)
(6)

and then take the final inclination θo of a point chosen uniformly on
the Dirac specular-cone circle parameterized by φ = 2πξ2 and tilted
away from the north pole by the angle θ sampled from the spheri-
cal Gaussian, cos θ = u(ξ1). Putting this all together, sampling θo
given variance v and the specular cone angle θcone(θi, φ ,α) is

θo(ξ1, ξ2, v, θcone) =

arcsin(u(ξ1) cos θ
′ +
√

1− u(ξ1)2 cos(2πξ2) sin θ
′) (7)

where θ
′ = π

2 − θcone. This is perfect importance sampling, so the
sample weight is 1 and the PDF is M cos2

θo.

We note that this M function is not reciprocal due to the 1/ cos θi
term. Lack of reciprocity is common in other forms of energy-
conserving M functions that renormalize Gaussians over the finite



domain of inclinations based on the incoming angle θi. Also,
analagous to shading normals for surfaces, the tilted scales treat-
ment generally yields non-reciprocal scattering functions in any
case. We haven’t found any issues with ignoring these details in
our implementation, however.

3.3 Importance Sampling Azimuthal N functions

The azimuthal functions Np of the Marschner model describe a
large family of lobe shapes that model the distributions of light
exiting a dielectric fiber when illuminated from a single direction.
However, despite their complexity and variety, they can be sampled
analytically and efficiently. The key insight is to exploit the original
derivation of Marschner et al. [2003]—the fiber function is a uni-
form integral over the fiber cross-section h ∈ [−1, 1] (Equation 4)
and the laws relating an incident azimuth to an exitant azimuth
are compact expressions. In fact, the derivation of the original
Marschner model was precisely the calculation of the outgoing den-
sities that arise from this sampling scheme.

We first select a random cross-section offset h = 2ξh − 1 (where
ξh ∈ [0, 1) is a uniformly distributed random number). For smooth
fibers, the exitant normal-plane inclination is θo = θconep(θi) from
which θd is then known. In the case of no azimuthal roughness, the
set of directions Φ(p, 2ξh − 1), using Equation 3, each with weight
A(p, 2ξh − 1) ≤ 1, is an efficient scheme for importance sampling
the functions Np derived by Marschner et al. [2003]. In the case
p = 0, this is identical to prior sampling schemes for NR [Hery and
Ramamoorthi 2012; Ou et al. 2012].

In the case of azimuthal roughness the functions we wish to sample
are the convolution of Φ(p, h) by a wrapped Gaussian Dp(vp,N)
with variance vp,N (Equation 4). These are easily sampled by se-
lecting relative azimuths

φ = Φ(p, 2ξh − 1) + g
√

vp,N (8)

where g is a Gaussian distributed random variable with standard
deviation 1 (sampled with a lookup table or Box-Muller). Again,
the sample weight is A(p, h) ≤ 1 and the PDF is Equation 4 with
A(p, h) replaced by 1. We mention that sampling the Np functions
is quite cheap—much cheaper than evaluating them or computing
their PDF, due to the quadrature.

3.4 Lobe Selection

We now return to lobe selection. The key to lobe selection is to
delay the choice until after randomly selecting h. Given h, the
attenuations through a smooth, ideally specular fiber, Aspec(p, h),
are known—they are the product of Fresnel terms and absorp-
tion terms for the single set of paths predicted for the smooth
fiber (assuming M is a delta function at the ideal specular cone
angle when computing θd). We use these attenuations for the
smooth fiber to select a lobe p to sample, even for rough fibers.
When the inclination is high and Fresnel dominates, or absorption
is high, we tend to select the R lobe, for example. A random
number ξp ∈ [0, 1) can be used to choose a lobe p in proportion
to wp = Aspec(p, h)/∑p Aspec(p, h). Selecting p proportional to
wp incurs a selection weight of 1/wp. The attenuation through
the actual path (which deviates from the specular cone path af-
ter sampling M) has a throughput of A(p, h), so the final sample
weight is w = A(p, h)/wp, which is ∑p Aspec(p, h) times the ratio
A(p, h)/Aspec(p, h). Provided the roughness is reasonably low, the
Fresnel and absorption terms for slightly deflected paths will not
differ significantly from the ideal specular case, keeping the final
sample weights low. However, for extreme inclinations and rough-
nesses, we clamp the upper bound of the final sample weights to

2.0 (and have noted no measurable energy loss in a variety of hair
renders).

3.5 Sampling Summary and PDF Computation

To summarize, our importance sampling strategy for the full fiber
function with rough surfaces is:

• An incoming direction θi is given
• We uniformly choose a random offset h ∈ [−1, 1] along the fiber

cross-section
• We compute attenuations Aspec(h, p) for each lobe p assuming

no deflection away from the specular cone angles
• We select a lobe in proportion to the specular attenuations
• We now know which Mp function (of variance vp) to sample

using Equation 7, giving θo and θd .
• We sample a random Gaussian variable g and use Equation 8 to

compute the relative outgoing azimuth.
• We return a sample weight of w = A(p, h)/wp

The PDFs of this sampling scheme are exactly analogous to eval-
uation of the model S, but with the attenuations A replaced by the
selection weights wp, which are easily evaluated for R and T T by
solving for the single root hp. For the more complicated TRT lobe,
the quadrature evaluation of NT RT with the selection weights wp in
place of A is required, and this is of comparable cost to evaluation
of TRT itself. The total PDF is the sum of these individual lobe pdf
terms.

4 Lambertian Fibers

We briefly mention two new (to our knowledge) results regarding
diffuse fibers. Zinke and Weber [2007] derived the BCSDF for
an opaque, cylindrical fiber with Lambertian reflectance properties.
They expressed the exact solution as an integral and gave an ap-
proximate expansion of it. We note that the exact solution has a
simple form (taking care that this holds only for φ ∈ [0, 2π]):

SLambert(θi, θo, φ) = kd

∣∣∣∣ (π − φ) cos(φ) + sin(φ)
4π

∣∣∣∣ (9)

where kd is the diffuse albedo. We also note that importance sam-
pling this BCSDF is done easily with three uniform random vari-
ables by, again, selecting h ∈ [−1, 1] uniformly and then sampling a
Lambertian BRDF about normal (h, 0,

√
1− h2) (in the coordinate

space where we have chosen the fiber tangent to be aligned with
the y axis and the incoming direction to be (0, sin θi, cos θi). After
sampling an outgoing direction in this coordinate space, a rotation
back to world space gives the desired direction, and a sample weight
of kd is returned. We mention this approach because the CDF for
the azimuthal angle seems to have no analytic inversion.

5 Results

We have implemented our new importance sampling for the d’Eon
et al. [2011] hair model in a path tracer. Russian roulette is used to-
gether with next event estimation and multiple importance sampling
at each vertex. The geometric term includes a sine between the hair
fiber axis and the ray direction instead of the cosine term applied
to surfaces. Timings for a single call to our sampling function are
comparable to the time of a single BCSDF evaluation (the most
expensive calculations are the quadrature for evaluating the TRT
function and its PDF).

Figures 1 and 3 show several results under IBL or area light il-
lumination. We easily support a variety of heterogeneous fiber



Figure 3: Various IBL illuminations of hair.
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Figure 4: Limiting the number of indirect bounces (from left to
right: 0, 1, 2, ..., 29) clearly shows how much the appearance of
hair depends on multiple scattering. The concentration of melanin
in the hair is varied from top to bottom to simulate a variety of hair
types in one dataset.

properties—a challenge for sampling strategies that use precom-
putation, especially for smooth fibers, which have strongly peaked
reflectances and would require very high resolution datasets to store
their sampling tables. With our new importance sampling, the im-
ages converge at about 1024 samples or less and are fast enough to
allow reasonable iteration time for achieving a desired look, even
with very low absorption hairs where most of the reflectance is due
to high-order scattering (Figure 4). The requirement for such a high
sample count is reduced with lower variance illumination, but sun-
light illumination of light, shiny hair remains a challenge to render
both efficiently and accurately.

6 Conclusions

We have presented new methods for importance sampling
physically-based fiber reflectance functions. The analytic form
of our sampling scheme makes it easy to adopt in a variety of
Monte Carlo renderers. We demonstrated the utility of our new
methods for rendering physically-based images in a path tracer.
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