
High Performance Iterated Function
Systems

Christoph Schied, Johannes Hanika, Holger Dammertz, Hendrik P. A. Lensch

{christoph.schied,johannes.hanika,holger.dammertz,hendrik.lensch}@uni-ulm.de

Ulm University, James-Franck-Ring, 89081 Ulm

Figure 1: A crop from a Fractal Flame image rendered using 2 · 106 points at a resolution of
1280× 800 with 40 Hz on a GTX280.

This article presents an implementation of the Fractal Flames algorithm. It uses CUDA
and OpenGL to take advantage of the computational power of modern graphics cards. GPUs
use a SIMT (Single Instruction Multiple Thread) architecture. It is needed to design programs
in a way which avoids divergent branching. The Fractal Flames algorithm involves random
function selection which needs to be calculated in each thread. The algorithm thus causes
heavy branch divergence which leads toO(n) complexity in the number of functions. Current
implementations suffer severely from this problem and address it by restricting the amount
of functions to a value with acceptable computational overhead.

The implementation presented in this paper changes the algorithm in a way that leads to
O(1) complexity and therefore allows an arbitrary amount of active functions. This is done
by applying a presorting algorithm that removes the random function selection and thus
eliminates branch divergence completely.

1 Problem Statement and Mathematical Background

Fractal Flames is an algorithm to create fractal images based on Iterated Function Systems
(IFS) with a finite set of functions. The algorithm uses the Chaos Game [Bar88], which is an
iteration scheme that picks one random function for each data point and iteration, evaluates
it, and continues with the next iteration. This scheme is visualized in Figure 2. The larger

1

Figure 2: Naive parallelizing approach of the Chaos Game. The parallelization is realized by
assigning a thread to each data point. Every thread chooses a random function
and replaces the point by the computed value. This process is repeated m times.

the number of different functions, the more interesting the images that can be rendered. It
is therefore a goal to allow for as many functions as possible.

Selecting a random function per sample results in a different branch per thread, if the
algorithm is implemented on graphics hardware. One needs to consider that these devices
execute the same instruction in lockstep within a warp of 32 threads. That is, the multipro-
cessor can execute a single branch at a time, and therefore diverging branches are executed
in serial order.

The random function selection causes very heavy branch divergence as every thread
needs to evaluate a different function in the worst case. This results in linear runtime com-
plexity in the number of functions which severely restricts the number of functions that can
be used in practice, due to the computational overhead involved.

1.1 Iterated Function Systems

As described in [Bar88], an IFS consists of a finite set of affine contractive functions

F = {fi : X → X|i = 1, 2, ..., N}, N ∈ N. (1)

The set Fs = {fs1 , fs2 , fs3} for example forms a Sierpinski triangle with

fs1 (p) =
p

2
, fs2 (p) =

1

2

(
p+

(
0
1

))
, fs3 (p) =

1

2

(
p+

(
1
0

))
, (2)

where p is a vector.
The associated set S is the fixed point of Hutchinsons’s recursive set equation

S =

N⋃
i=1

fi(S). (3)

2

It is not possible to directly evaluate the set, as the Hutchinson equation (Equation 3) de-
scribes an infinite recursion. An approximate approach is the Chaos Game [Bar88] which
solves the Hutchinson equation by a Monte Carlo method. Figure 3 shows it in a basic ver-
sion. The Chaos Game starts by selecting a random point off the bi-unit square p = (x, y)
with |x| ≤ 1, |y| ≤ 1 and starts its iterating phase by choosing a random function fi each
iteration and evaluates p := fi(p). With increasing number of calculated iterations, p con-
verges closer to the set [Sil98]. After a sufficient number of steps, the point can be plotted
in every iteration.

Iterated Function Systems have numerous applications, as outlined in [FF90, Chapter 9–
18], such as graphs of functions, dynamical systems and brownian motion. Furthermore,
this approach could be used in multilayer material simulations in ray tracing. In this article
we concentrate on IFS for the simulation of Fractal Flames.

We chose to start with a random point and do random function selection, even though
randomness is not a requirement of the algorithm. The initial point is actually arbitrary, it
will still converge to the set, given that the last iterations contain all possible combinations
of functions. As we aim for real time performance, we can only evaluate a very limited
number of iterations, but on a lot of points due to parallelization. Should the resulting fractal
be too complicated to achieve sub-pixel convergence, the random initialization still creates
a uniform appearance. This is, especially over the course of some frames, more visually
pleasing than deterministic artifacts.

1.2 Fractal Flames

Fractal Flames, as described in [DR04] extend the IFS algorithm by allowing a larger class
of functions that can be in the set F . The only restriction that is imposed on the functions fi
is the contraction on average. These functions can be described by

fi(x, y) = Pi

∑
j

vijVj(aix+ biy + ci, dix+ eiy + fi)

 (4)

p = a random point in [−1, 1]2

iterate m times {
i := random integer from 0 to N − 1 inclusive
p := fi(p)
if iteration > 17

plot(p)
}

Figure 3: The Chaos Game Monte Carlo algorithm. It chooses a random point and starts its
iteration phase. Every iteration, a random function fi is selected and evaluated for
p which is then assigned to p.

3

with Pi(x, y) = (αix + βiy + γi, δix + εiy + ζi), where ai . . . gi and αi . . . ζi express affine
transformations on 2D points, while Vj , so-called variations apply non-linear transforma-
tions, which are scaled by the factors vij . Typically, each function has it’s own set of up to
20 variations Vj . A few variation functions can be found in Figure 4. An extensive collection
of those variations can be found in [DR04].

ψ : random number ∈ [0, 1], Ω : random number ∈ [0, π]

r =
√
x2 + y2, θ = arctan(x/y)

V0(x, y) = (x, y)

V1(x, y) = (sin x, sin y)

V2(x, y) =
1

r2
(x, y)

V3(x, y) = (x sin(r2)− y cos(r2), x cos(r2) + y sin(r2))

V13(x, y) =
√
r · (cos(θ/2 + Ω), sin(θ/2 + Ω))

V18(x, y) = ex−1 · (cos(πy), sin(πy))

V19(x, y) = rsin θ · (cos θ, sin θ)

Figure 4: A few selected variation functions. Ω and ψ are new random numbers in each
evaluation of the variation function.

Every function is assigned a weight wi which controls the probability that fi is chosen in a
Chaos Game iteration. This parameter controls the influence of a function in the computed
image. Furthermore, a color ci ∈ [0, 1] is assigned. Every point has a third component
which holds the current color c which is updated by c := (c + ci)/2 in each iteration and is
finally mapped into the output color space.

The computed points are visualized by creating a colored histogram. Since the computed
histogram has a very high dynamic range, a tone mapping operator is applied.

2 Core Technology

In order to remove branch divergence, we replace the randomness of the function selection
by randomized data access. This way, instructions can be optimally and statically assigned
to threads.

Warps are assigned to a fixed function and every thread randomly selects a data point
in each iteration. This selection is realized by a random bijective mapping between the
data and the thread indices. A fixed set of precomputed permutations is used as they don’t
depend on dynamic data and may be cyclic as it doesn’t matter if images repeat after a few
rendered frames.

Every thread calculates its assigned function and indirectly accesses the data array by its
permuted index. It then evaluates the function and writes the data back. A new permutation

4

is picked in each iteration.
Figure 5 shows the iteration scheme.

Figure 5: Optimized parallel algorithm. Instead of indexing directly into the data array as in
Figure 2, the data is shuffled randomly in every iteration. This allows to statically
assign threads to functions and thereby remove the branch divergence.

3 Implementation

The optimized algorithm as well as the divergent approach have been implemented to
benchmark both of them. The implementation uses CUDA to be able to tightly control the
thread execution which would not have been possible with traditional shading languages.

All variation functions have been implemented in a large switch statement. A struct con-
taining variation indices and the scalar factor is stored in the constant memory. To evaluate
a function fi, a loop over all those indices is performed which is used to index in the switch
statement. The results are summed up according to Equation (4).

3.1 The Three Phases

The optimized Chaos Game algorithm requires synchronization across all threads and blocks
after each iteration, because the data gets shuffled across all threads. Due to CUDA’s lack
of such a synchronization instruction, the Chaos Game had to be split into three kernels to
achieve synchronization by multiple kernel executions (see Figures 7 and 6):

The initialization kernel performs one iteration of the Chaos Game on the randomly per-
muted Hammersley point set. The warm-up kernel performs one Chaos Game iteration and
is called multiple times until the output data points converged to the fractal. The last kernel
generates a larger set of points by randomly transforming each of the previously generated
points 64 times, producing 64 independent samples for each input sample. The generated
points are recorded in a vertex buffer object (VBO), which is then passed to the rendering

5

15×

init warm-up generate

h

pi po

64×p cached

GL

ro rorw rw wo

Figure 6: Illustration of the pseudo code listing in Figure 7, the three left red boxes are the
three kernels, the last represents rendering in OpenGL. Memory access patterns
are indicated by the gray lines. On the left, h indicates the Hammersley point set
as the input.

stage. From those kernels, the point generation kernel takes by far the most computation
time. Those run times on a GTX280 are 34.80µs init, 43.12µs warm-up, and 1660.59µs gen-
erate points. The init kernel occupies 1.5% of the total Chaos Game runtime, the warm-up
kernel is called 15 times and thus takes 27.6%, whereas the point generation kernel takes
70.9%.

3.2 Memory Access Patterns

The point generation kernel needs to select a point from the point buffer multiple times,
calculate one iteration and write the result into the VBO. As the input point array does not
change, texture caching can be used. The effect of this optimization is 6.9% speed im-
provement for the 9500GT and 18% for the GTX280. The access pattern is pretty bad for
the texture caching mechanisms of a GPU as it completely lacks locality. As the memory
consumption of the samples is approximately 200kb, the cache of a GPU seems to be big
enough to hold a large amount of samples and therefore this method yields a major per-
formance improvement. Benchmarks have been conducted to measure the effect of the
number of samples on the texture caching. As shown in Figure 8, the number of threads
– and therefore the number of samples in the texture cache – doesn’t have a huge impact:
The runtime stays constant up to 212 threads and then increases linearly with the number of
threads; the cached version is constantly faster.

Note that only the warm-up kernel has a completely random memory access pattern
during read and write. It needs to randomly access the point array to read a point for the
iteration and write out its result. To avoid race conditions on write accesses, either data has
to be written back to the position the point was read from, or else a second point array is

6

f : fixed function for each thread
i : thread index
h := Hammersley point set in the bi-unit square
p : the point buffer
φ := random permutation

// phase one: initialization
p[i] := f(h[φ(i)])

// phase two: warm-up
iterate 15 times {

φ := next random permutation
p[φ(i)] := f(p[φ(i)])

}

// phase three: generate points
iterate 64 times {

φ := next random permutation
plot(f(p[φ(i)]))

}

Figure 7: The three phases of the GPU version of the Chaos Game. First, p is initialized
by transforming the Hammersley points by one function evaluation. Second, the
warm-up phase assures that the points p are sufficiently close to the fractal. Finally,
the point set is transformed 64 times more. In this last phase, the transformed
points are displayed, but not written back to p.

needed. The former approach involves random reads and writes, whereas the latter one
has higher memory use The initialization kernel needs to randomly select a start point, but
it can write the iterated points in coalesced manner. Due to its low runtime, there is no need
to optimize it further.

3.3 Rendering

The generated points are rendered as a tone mapped histogram using OpenGL. This step
consumes approximately 70% of the total time, depending on the particular view.

The 1D color component needs to be mapped into the RGBA representation. This is done
by a 1D texture look-up in a shader. To create the colored histogram, the points are rendered
using the OpenGL point primitive and using an additive blending mode. This yields brighter
spots where multiple points are drawn in the same pixel. To cope with the large range of
values, a floating point buffer is employed. The resulting histogram is then tone mapped and
gamma corrected because the range between dark and bright pixel values is very high. For

7

1
2
3
4
5
6
7
8
9

10

4 6 8 10 12 14 16

ru
nt

im
e

in
m

ill
is

ec
on

ds

number of threads in powers of 2

GTX280 – optimized algorithm

3 3 3 3 3 3 3 3
3

3

3

3

3
GTX280 – no texture caching

+ + + + + + + +
+

+

+

++

Figure 8: Runtime on the GTX280 in dependence of number of running threads. Each
thread generates 64 samples. The runtime stays almost constant to 212 threads
and subsequently increases linearly with the number of threads.

sake of simplicity and efficiency, we use L′ = L/(L+ 1) to calculate the new pixel lightness
L′ from the input lightness L, but more sophisticated operators are possible [DR04].

Monte Carlo generated images are typically quite noisy. This is especially true for the
real-time implementation of Fractal Flames as only a limited number of samples can be
calculated in the given time frame. Using temporal anti aliasing smoothes out the noise by
blending between the actual frame and the previously rendered ones. This is implemented
by using Frame Buffer Objects and increases the image quality significantly.

3.4 Static Data

Some static data is needed during runtime which is calculated by the host during program
startup. A set of Hammersley Points [Lem09] is used as the starting point pattern to ensure a
stratified distribution, which increases the quality of the generated pictures. The presorting
algorithm needs permutations which are generated by creating multiple arrays containing
the array index and a random number calculated by the Mersenne Twister [MN98]. These
arrays are then sorted by the random numbers, which can be discarded after that. The
resulting set of permutations is uploaded onto the device. As some of the implemented
functions need random numbers, also a set of random numbers is created and uploaded
onto the device. All of this generated data is never changed during runtime.

In the runtime phase, it is necessary to specify various parameters which characterize
the fractal. Every function needs to be evaluated in p(fi) · num_threads threads, where
p(fi) is the user specified probability that function fi is chosen in the Chaos Game. As
the number of functions is small compared to the number of threads, it doesn’t matter if
this mapping is done in warp size granularity instead of thread granularity. Each thread is
mapped to a function by an index array which is compressed into a prefix sum. A thread

8

20

40

60

80

100

120

0 5 10 15 20 25 30

ru
nt

im
e

in
m

ill
is

ec
on

ds

activated functions

9500GT optimized algorithm

3333333333333333333333333333333

3
9500GT divergent

++ +++ ++++ +++ +++ ++++ +++ +++ +
+++ ++

+

Figure 9: Runtime comparison between divergent and optimized Chaos Game on a 9500GT
in dependence on the number of activated functions. The divergent implementa-
tion shows linearly increasing runtime in the number of activated functions while
the optimized algorithm shows constant runtime. The optimized version beats the
divergent solution when eight or more functions are activated.

can find out which function it has to evaluate by performing a binary search on this array.
This search does not introduce a performance penalty in our experiments, but reduces the
memory requirements significantly. The parameters and the prefix sum are accumulated in
a struct that is uploaded into the constant memory each frame.

4 Final Evaluation

The naive parallel implementation degenerates to an O(n) algorithm in the number of func-
tions on graphics hardware due to the branch divergence issues. The proposed algorithm
turns the function evaluation in the naive Chaos Game algorithm to an O(1) solution. This is
shown in Figure 9 and Figure 10 where the optimized algorithm is benchmarked against the
naive parallel implementation on a 9500GT and a 280GTX, respectively. In the benchmark,
20 randomly selected variation functions Vj were used in each fi. The evaluation time of
the optimized algorithm stays constant, whereas the naive solution increasingly suffers from
branch divergence issues. Employing the CUDA profiler, the branch divergence can be mea-
sured. The amount of branch divergence with 20 activated functions is at 23.54% for the
divergent approach, whereas the optimized algorithm only shows branch divergence inside
the function evaluation (0.05%).

The optimization doesn’t come without cost though. The algorithm basically trades branch

9

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

ru
nt

im
e

in
m

ill
is

ec
on

ds

activated functions

GTX280 optimized algorithm

3333333333333333333333333333333

3
GTX280 divergent

222222222222222222222
22222

2
22

22

2

Figure 10: Runtime comparison between divergent and optimized Chaos Game on a
GTX280 in dependence on the number of activated functions. The performance
characteristics are the same as with the 9500GT shown in Figure 9, with a
smoother increase in the divergent graph. The optimized version is always faster.

1

1.5

2

2.5

3

6 8

ru
nt

im
e

in
m

ill
is

ec
on

ds

threads per block in powers of 2

GTX280 – optimized algorithm

3

3
3 3

3

3

Figure 11: Runtime changing with increasing block size and constant number of threads.
The fastest configuration is a block size of 26.

10

divergence for completely random memory access patterns. As the benchmark shows,
GPUs handle this surprisingly well. Different GPUs have been benchmarked to show that
this behavior isn’t restricted to high end GPUs (the speed impact of permuted read and
write access versus completely linear operations was 3.1% for the 9500GT and 5.3% for the
280GTX).

In Figure 11, it is shown that the Chaos Game runtime is not monotonically decreasing
with increasing block size. The best runtime is achieved with 64 threads per block. It is not
entirely clear from where this behavior arises, but it may be that the scheduler has a higher
flexibility with lower block sizes.

In our implementations the occupancy as reported by the CUDA profiler is 0.25. This is
due to high register usage of the function evaluation code. Enforcing a lower register usage
at compile time increases the occupancy to 1.0 but reduces the performance by 51.3%.

We additionally implemented a CPU version to verify the benefits of using graphics hard-
ware. Benchmarks have shown that a GTX285 is able to perform the Chaos Game itera-
tions without the rendering about 60 times faster than a single-core Opteron CPU clocked
at 2.8GHz (240Hz vs. 3.7Hz).

5 Conclusion

A presorting approach has been presented that completely eliminates branch divergence in
Monte Carlo algorithms that use random function selection and evaluation. Furthermore it
was shown that the approach is sufficiently fast for real-time rendering at high frame rates,
while it is necessary to keep an eye on the imposed performance penalty due to high mem-
ory bandwidth costs.

The optimized approach allows us to change all parameters in real-time and observe
their effects, it thus can effectively help in getting an understanding of Iterated Function
Systems. This also makes it possible to use the Fractal Flame algorithm in live performances
by changing the parameters in real-time, conducting interactive animations.

References

[Bar88] M. Barnsley. Fractals Everywhere: The First Course in Deterministic Fractal Ge-
ometry. Academic Press, 1988.

[DR04] S. Draves and E. Reckase. The fractal flame algorithm, 2004.

[FF90] K. Falconer and K.J. Falconer. Fractal geometry: mathematical foundations and
applications. Wiley New York, 1990.

[Lem09] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Springer Verlag,
2009.

11

[MN98] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Model-
ing and Computer Simulation (TOMACS), 8(1):3–30, 1998.

[Sil98] B. Silverman. Density estimation for statistics and data analysis. Chapman &
Hall/CRC, 1998.

12

